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Abstract: This research introduces an improved control strategy for an active power filter (APF)
system. It utilizes an adaptive super-twisting sliding mode control (STSMC) scheme. The proposed
approach integrates an interval type-2 fuzzy neural network with a self-feedback recursive structure
(IT2FNN-SFR) to enhance the overall performance of the APF system. The IT2FNN with STSMC pro-
posed here consists of two components, with one being IT2FNN-SFR, which demonstrates robustness
for uncertain systems and the ability to utilize historical information. The IT2FNN-SFR estimator is
used to approximate the unknown nonlinear function within the APF. Simultaneously, the STSMC
component is integrated to reduce system chattering, improving control precision and overall system
performance. STSMC combines the robustness and simplicity of traditional sliding mode control,
effectively addressing the chattering problem. To mitigate inaccuracies and complexities associated
with manual parameter setting, an adaptive law of sliding mode gain is formulated to achieve optimal
gain solutions. This adaptive law is designed within the STSMC framework, facilitating parameter
optimization. Experimental validation is conducted to verify the harmonic suppression capability
of the control strategy. The THD corresponding to the designed control algorithm is 4.16%, which
is improved by 1.24% and 0.55% compared to ASMC and STSMC, respectively, which is below
the international standard requirement of 5%. Similarly, the designed controller also demonstrates
advantages in dynamic performance: when the load decreases, it is 4.72%, outperforming ASMC and
STSMC by 1.15% and 0.38%, respectively; when the load increases, it is 3.87%, surpassing ASMC and
STSMC by 1.07% and 0.36%, respectively.

Keywords: interval type-2 fuzzy neural network (IT2FNN); self-feedback recursive structure;
super-twisting sliding mode control (STSMC); active power filter (APF)

1. Introduction

With increasing types of loads, especially due to the introduction of power electronic
equipment, undesirable harmonic components are injected into the power grid, which pose
a serious threat to power quality and equipment life [1]. Active power filters have been
verified as the most widely used solution to address these issues, which can generate coun-
teractive currents or voltages to compensate for adverse harmonic components in power
systems, thereby enhancing power quality [2,3]. Excellent control algorithms can give full
play to the advantages of APF’s fast response and excellent compensation performance.

In contemporary applications, sliding mode control (SMC) is extensively employed to
address diverse nonlinear challenges owing to its rapid dynamic response, stability, and
robustness to external disturbances [4–7]. However, the most characteristic feature of SMC
is the discontinuous control, which will result in unexpected chattering when approaching
the sliding mode surface. Introducing fractional-order theory into sliding mode control
can better describe some nonlinear dynamic characteristics, improve control performance
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and robustness, and effectively reduce chattering issues [8–10]. However, fractional-order
sliding mode control involves fractional-order calculus, leading to increased complexity in
mathematical models and algorithms, which in turn increases the difficulty of computation
and implementation. Additionally, parameter tuning for fractional-order sliding mode
control is relatively challenging. Super-twisting sliding mode control is also commonly
used to suppress chattering in controllers, which generates continuous control signals,
effectively reducing chattering [11–13]. A new composite controller integrating STSMC was
devised for speed and altitude tracking control in air-breathing hypersonic vehicles [14].
This illustrates the versatility and applicability of STSMC in addressing chattering-related
challenges across various control domains.

The great approximation performance of neural networks has been verified in many
studies [15–17]. In [18], Sun et al. incorporated an RBF neural network into a primary
controller, achieving the faster and more accurate recovery of unknown disturbances,
thereby addressing the issue of system uncertainty. Fuzzy logic rules are considered as
one of the effective approaches to deal with nonlinear problems. Incorporating fuzzy rules
into neural networks proves highly advantageous for enhancing their performance [19–22].
The implementation of an adaptive universal type-2 fuzzy neural network control system
enhances the anti-interference capability in the motion balance of power line inspection
robots [23]. For neural networks designed for dynamic pattern recognition, the introduction
of a self-feedback structure enables the storage and utilization of historical information,
thereby enhancing the network’s memory capacity and better adapting to changes and
uncertainties [24–27]. While the theoretical validation of the method has been conducted in
previous studies, the feasibility and superiority of the algorithm in simulations are primary
concerns. Hence, the simulation environment is an ideal experimental setting, allowing for
the selection of high sampling frequencies to achieve rapid data acquisition [28]. However,
in practical applications, constraints on the computational capabilities of control devices
often prevent the realization of the ideal sampling frequencies observed in simulations.
Therefore, the designed method needs to be validated for its feasibility on a hardware
experimental platform. Inspired by the preceding studies, this paper proposes an adaptive
super-twisting sliding mode control method, incorporating an interval type-2 fuzzy neural
network with a self-feedback recursive structure (IT2FNN-SFR STSMC), aiming to enhance
the compensation accuracy of the APF system. The novel IT2FNN-SFR consolidates the
advantages of IT2FNN and RNN, leading to superior dynamic approximation capacity.

The primary contributions of this article are outlined as follows: (1) A novel structure
named IT2FNN-SFR has been presented, which amalgamates the robustness inherent in
IT2FNN with the dynamic response characteristics of Recurrent Neural Networks (RNNs).
This newly introduced neural network operates in an error-driven and online-optimized
manner, reducing its dependence on precise system information. The recursive structure
within the neural network enables the storage and utilization of historical information,
thereby enhancing estimation accuracy and dynamic approximation. (2) STSMC merges the
robustness and simplicity inherent in traditional sliding mode control, effectively mitigating
the chattering phenomenon. To mitigate inaccuracies and complexities stemming from
manual parameter adjustment, a sliding mode gain adaptive law was devised to attain an
optimal array of gain solutions. (3) The designed controller algorithm was tested on the
corresponding hardware experimental platform and had better harmonic compensation
performance than the traditional ASMC and STSMC, verifying its feasibility under actual
working conditions.

2. Mathematical Model of Active Power Filter

Figure 1 illustrates the fundamental circuit configuration of single-phase active power
filter (APF) system control. The working principle of the APF is as follows: The APF collects
current signal is, voltage signal us, DC-side voltage signal Udc, and load current signal
iL through sensors, extracting the harmonic signals from them. The controller generates
corresponding control signals based on the extracted harmonic signals. These signals are



Appl. Sci. 2024, 14, 3271 3 of 14

modulated through PWM and control the conduction and turn-off of power semiconductor
devices (IGBTs are used as an example in this paper) via a driving circuit, thereby generating
compensating current ic to counteract the adverse components in the original grid current.
In addition, the equivalent inductance and resistance of the APF circuit are L and R.
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With reference to [15], the practical system can be simplified as follows:

.
x = f + bu (1)

where f = f (x) + g(t) = − R
L ic − us

L − Udc
L + g(t), and g(t) represents the overall distur-

bance, encompassing both parameter perturbation and external disturbance.

3. Controller Design and Analysis

The comprehensive control strategy is outlined in the framework diagram presented
in Figure 2. The architecture of the innovative networks is illustrated in Figure 3.

Layer I (input layer): The input of the neural network is customized according to the
requirements of the specific problem and introduced into the network processing through
this layer. The signal transfer of this layer is expressed as follows:

net1
i (N) = x1

i (N) (2)

y1
i (N) = f 1

i

(
net1

i (N)
)
= net1

i (N) (3)

where x1
i (N) and y1

i (N) represent the input and output of the node, respectively, the
superscript represents the number of layers in which the variable exists, the subscript
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represents the input number corresponding to the variable, and N represents the number
of sampling cycles.
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Layer II (membership function layer/fuzzy layer): In this layer, Gaussian functions
with center vectors and uncertain base widths are utilized to enhance the neural network’s
capability in handling nonlinearity. Let the j-th group in the type-2 fuzzy output set be
defined as [µ2

ij
, µ2

ij]. The relationship between input and output is expressed as follows:

x2
ij(N) = y1

i (N) (4)

µ2
ij
(N) = exp

−1
2

(
x2

ij(N)− c2
ij

σ2
ij

)2
 (5)

µ2
ij(N) = exp

−1
2

(
x2

ij(N)− c2
ij

σ2
ij

)2 (6)

where µ2
ij, c2

ij, and σ2
ij represent the output of the node, the center vector, and the base width

of the Gaussian function, respectively. In addition, the lower bound and upper bound of
the variable are distinguished by “∗” and “∗”, respectively.

Layer III (rule layer): This layer consolidates input signals received from the preceding
layer. The detailed rules are expressed as follows:

F3
k =

I

∏
i=1

µ2
ij

; F3
k =

I

∏
i=1

µ2
ij (7)

f 3
k
=

F3
k

K
∑

k=1
F3

k

; f
3
k =

F3
k

K
∑

k=1
F3

k

(8)

where f 3
k represents the output of the rule layer after normalization.

Layer IV (self-feedback recursive layer): This layer integrates signals from the rule
layer with past information regarding this layer’s output (handled and stored through a
temporary recursive structure), and the specific operational logic is as follows:

x4(N) = ∑ ω3
k f 3

k
(9)

x4c(N) = αx4c(N − 1) + y4(N − 1) (10)

net4(N) = ω4x4(N) + ω4cx4c(N) + b4 (11)

y4(N) = σ
(

net4(N)
)

(12)

x4(N) = ∑ ω3
k f

3
k (13)

x4c(N) = αx4c(N − 1) + y4(N − 1) (14)

net4(N) = ω4x4(N) + ω4cx4c(N) + b
4

(15)

y4(N) = σ
(

net4(N)
)

(16)

σ(z) =
1

1 + e−z (17)

where x4(N) denotes the signal from the rule layer at the current sampling time; x4c(N)
represents the historical information stored in the temporary recursive structure; ω4c

represents a self-feedback weight; ω4 signifies the weight of the SFR layer; α serves as the
self-feedback gain, determining the weighting of historical information; b4

l is a bias term;
σ(·) denotes a sigmoid activation function.
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Layer V (output layer): The output of the network is computed through weighted
operation, expressed as follows:

yo(N) = ω5y4(N) + ω5y4(N) (18)

The super-twisting sliding mode control (STSMC) is implemented to mitigate chat-
tering. In this study, an adaptive rate for gain k1 is additionally devised to alleviate the
challenges associated with parameter adjustment, as illustrated in Figure 2. Assume the
tracking error of the APF system is as follows:

e = x − xr (19)

where x corresponds to the actual compensation current in the APF system and xr represents
its expected value.

The sliding mode surface is defined as follows:

s = Ce (20)

where C serves as the sliding mode surface gain, which is a positive constant.
Integrated with the neural network output f̂ , the control strategy is formulated as follows:

u =
1
b
(− f̂ +

.
r)− k̂1|s|

1
2 sgn(s)−

∫
k2sgn(s)dt (21)

where k1 > 0 and k2 > 0.
According to the properties of the neural network, the following results can be deduced:

f = W∗
5

TΦ∗(W∗
4 , W∗

4c, B∗
4 , W∗

3 , B∗
2 , C∗

2) + W∗
5

T
Φ∗(W∗

4 , W∗
4c, B∗

4 , W∗
3 , B∗

2 , C∗
2) + ε (22)

where ε represents the difference between the desired and actual values and C∗
2 , C∗

2 , B∗
2 , B∗

2 ,
W∗

3 , W∗
3 , W∗

4 , W∗
4 , W∗

4c, W∗
4c, W∗

5 , W∗
5 , B∗

4 , and B∗
4 denote the optimal parameters.

For further simplicity of presentation, the following is defined:

Φ = Φ(W4, W4c, B4, W3, B2, C2) (23)

Φ = Φ(W4, W4c, B4, W3, B2, C2) (24)

The output of IT2FNN-SFR is utilized as a substitute for f , denoted as follows:

f̂ = yo = ŴT
5 Φ̂ + Ŵ

T
5 Φ̂ (25)

where the superscript “̂” of the variables indicates their estimated value.
The approximation error of the designed neural network is represented by the following:

f̃ = f − f̂ = W∗
5

TΦ∗ + W∗
5

T
Φ∗

+ ε − (ŴT
5 Φ̂ + Ŵ

T
5 Φ̂)

= ŴT
5 Φ̃ + W̃

T
5 Φ̂ + Ŵ

T
5 Φ̃ + W̃

T
5 Φ̂ + ε0

(26)

where the superscript “˜” represents the estimation error; ε0 = W̃
T
5 Φ̃ + W̃

T
5 Φ̃ + ε denotes

the total integration of approximation errors.
Expanding Taylor series for both Φ∗ and Φ∗, the subsequent results can be derived

as follows:

Φ̃ = ΦW4
W̃4 + ΦW4c

W̃4c + ΦB4
B̃4 + ΦW3

W̃3 + ΦC2
C̃2 + ΦB2

B̃2 + Oh (27)

Φ̃ = ΦW4
W̃4 + ΦW4c

W̃4c + ΦB4
B̃4 + ΦW3

W̃3 + ΦC2
C̃2 + ΦB2

B̃2 + Oh (28)
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where Oh and Oh represent extended high-order terms, and the above partial derivatives
satisfy the Jacobian matrix arrangement.

By substituting (27) and (28) into (26), the following can be obtained:

f̃ = ŴT
5 ΦW4

W̃4 + ŴT
5 ΦW4c

W̃4c + ŴT
5 ΦB4

B̃4 + ŴT
5 ΦW3

W̃3 + ŴT
5 ΦC2

C̃2 + ŴT
5 ΦB2

B̃2 + W̃
T
5 Φ̂

+Ŵ
T
5 ΦW4

W̃4 + Ŵ
T
5 ΦW4c

W̃4c + Ŵ
T
5 ΦB4

B̃4 + Ŵ
T
5 ΦW3

W̃3 + Ŵ
T
5 ΦC2

C̃2 + Ŵ
T
5 ΦB2

B̃2 + W̃
T
5 Φ̂ + ∆0

(29)

where the high-order comprehensive approximation error is expressed as follows:

∆0 = Ŵ5Oh + Ŵ5Oh + ε0 (30)

Theorem 1. For the given APF system in (1), when the controller is designed according to (21)
and the parameter adaptive rule is appropriately formulated as follows, the stability of the proposed
IT2FNN-SFR STSMC strategy is ensured:

.
Ŵ4

T
= η1Csgn(s)ŴT

5 ΦW4
;

.

Ŵ4

T

= η2Csgn(s)Ŵ
T
5 ΦW4

(31)

.
Ŵ4c

T
= η3Csgn(s)ŴT

5 ΦW4c
;

.

Ŵ4c

T

= η4Csgn(s)Ŵ
T
5 ΦW4c

(32)

.
B̂4

T
= η5Csgn(s)Ŵ

T
5 ΦB4

;
.

B̂4

T

= η6Csgn(s)Ŵ
T
5 ΦB4

(33)

.
Ŵ3

T
= η7Csgn(s)ŴT

5 ΦW3
;

.

Ŵ3

T

= η8Csgn(s)Ŵ
T
5 ΦW3

(34)

.
Ĉ2

T
= η9Csgn(s)ŴT

5 ΦC2
;

.

Ĉ2

T

= η10Csgn(s)Ŵ
T
5 ΦC2

(35)

.
B̂2

T
= η11Csgn(s)Ŵ

T
5 ΦB2

;
.

B̂2

T

= η12Csgn(s)Ŵ
T
5 ΦB2

(36)

.
Ŵ5 = η13Csgn(s)Φ̂;

.

Ŵ5 = η14Csgn(s)Φ̂ (37)
.
k̂1 = −

.

k̃1 = η15Cb|s|
1
2 (38)

where η1 ∼ η15 are the adaptive learning rate gains of the corresponding parameters, all of which
are positive constants.

Proof When s ̸= 0, the Lyapunov function is designed as follows:

V = |s|+ 1
2η1

tr
(

W̃
T
4 W̃4

)
+ 1

2η2
tr
(

W̃
T
4 W̃4

)
+ 1

2η3
tr
(

W̃
T
4cW̃4c

)
+ 1

2η4
tr
(

W̃
T
4cW̃4c

)
+ 1

2η5
tr
(

B̃
T
4 B̃4

)
+ 1

2η6
tr
(

B̃
T
4 B̃4

)
+ 1

2η7
tr
(

W̃
T
3 W̃3

)
+ 1

2η8
tr
(

W̃
T
3 W̃3

)
+ 1

2η9
tr
(

C̃
T
2 C̃2

)
+ 1

2η10
tr
(

C̃
T
2 C̃2

)
+ 1

2η11
tr
(

B̃
T
2 B̃2

)
+ 1

2η12
tr
(

B̃
T
2 B̃2

)
+ 1

2η13
tr
(

W̃
T
5 W̃5

)
+ 1

2η14
tr
(

W̃
T
5 W̃5

)
+ 1

2η15
k̃2

1 +
Cbk2

2 (
∫

sgn(s)dt)2

(39)

Taking the derivative of Equation (39) yields the following:

.
V = sgn(s) · .

s + 1
η1

.
W̃4

T
W̃4 +

1
η2

.

W̃4

T

W̃4 +
1
η3

.
W̃4c

T
W̃4c +

1
η4

.

W̃4c

T

W̃4c +
1
η5

.
B̃4

T
B̃4 +

1
η6

.

B̃4

T

B̃4

+ 1
η7

.
W̃3

T
W̃3 +

1
η8

.

W̃3

T

W̃3 +
1
η9

.
C̃2

T
C̃2 +

1
η10

.

C̃2

T

C̃2 +
1

η11

.
B̃2

T
B̃2 +

1
η12

.

B̃2

T

B̃2 +
1

η13
W̃

T
5

.
W̃5

+ 1
η14

W̃
T
5

.

W̃5 +
1

η15
k̃1 ·

.

k̃1 + Cbk2sgn(s)
∫

sgn(s)dt

(40)
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By substituting (31)–(38) into (40) and ensuring the conditions in Theorem 1 are met,
the following can be obtained:

.
V = Csgn(s) · ∆0 − Cbk∗1 |s|

1
2 ≤ −Cbk∗1 |s|

1
2 + C|∆0| (41)

Assuming that the |∆0| derived above has an upper bound, i.e., |∆0| < ∆max, the
following can be obtained: 

.
V ≤ 0 |s| ≥ (∆max

bk∗1
)

2

.
V > 0 |s| < (∆max

bk∗1
)

2 (42)

It can further be derived that s will eventually converge to the following:

−(
∆max

bk∗1
)

2
≤ s ≤ (

∆max

bk∗1
)

2
(43)

When the value of optimal sliding mode gain k∗1 is appropriately chosen, the sliding
mode surface will eventually converge to a small domain, which can indicate that the
system is stable. □

4. Experiment Verification

The efficacy, dependability, and practical feasibility of the innovative control strategy
for the APF system are validated through experimental implementation. The following
provides an overview of the hardware experiment, including comparative results.

The practical feasibility of the IT2FNN-SFR STSMC is validated using a real-time
experimental apparatus for single-phase APF, which is based on the DSPACE DS1104. The
parameter of the hardware experiment is given in Table 1, where the sampling period is
Ts = 50 µs.

Table 1. Parameters in experiment.

Parameters Values

Supply voltage 24 V/50 Hz

APF main circuit Lc = 18 mH, Rc = 0.1 Ω,
C0 = 2200 µF, U∗

dc = 50 V

Nonlinear load at steady state R1 = 5 Ω, R2 = 15 Ω, C1 = 1000 uF

Additional nonlinear load in parallel R1 = 15 Ω, R2 = 15 Ω, C2 = 1000 uF

Sampling time Ts = 50 µs

The real-time experimental apparatus is depicted in Figure 4. It can be seen that the
implement is composed of an APF circuit module, an AC power supply module, a DC
power supply module, a DSPACE control module, and an oscilloscope. As depicted, the
APF main circuit, shown in Figure 5, encompasses components such as the IGBT driver,
IGBTs, DC capacitor, nonlinear load, additional nonlinear load, and a signal acquisition
circuit. The DC power is used to power the IGBT drive. Experimental waveforms and
spectrum analyses of the power supply current are captured using the Agilent DSO-X3034A
oscilloscope (Keysight Technologies, Santa Rosa, CA, USA). The necessary current and
voltage signals are gathered by sensors, and these measured signals are subsequently
transmitted to the controller via the A/D converter. The IGBT receives the Pulse Width
Modulation (PWM) signal computed by the controller to produce the compensation current.
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As shown in Figure 6, the signal waveform curves obtained from the oscilloscope
under different methods during stable operation are depicted. The four curves from top
to bottom represent the AC power voltage, load current, harmonic compensation current,
and AC current, respectively. When the APF is not operational (as shown in Figure 6a),
the compensation current is 0 A, indicating severe distortion in the current waveform.
Under the influence of different control algorithms (the designed IT2FNN-SFR STSMC,
adaptive sliding mode control (ASMC), and traditional super-twisting sliding mode control
(STSMC)), compensation of the supply current can be achieved, transforming the distorted
waveform into an approximately sinusoidal shape. To further intuitively compare the
compensation performance differences among the various methods, a frequency spectrum
analysis of the power current is conducted, and the total harmonic distortion (THD) of the
supply current under each control method is calculated (results are shown in Figure 7).
The results indicate that the harmonic components in the power current are significantly
suppressed under the control algorithms. Specifically, the THD corresponding to the control
algorithm designed in this paper is improved by 1.24% and 0.55% compared to ASMC and
STSMC, respectively, which is below the international standard of 5%.

Remake 1: The harmonic distortion rate is one of the key indicators for assessing
the level of harmonics in the power grid. It is typically required to be within a certain
range to ensure the stability and normal operation of the power system. According to [29],
for generating equipment where the ratio of maximum short-circuit current to maximum
demand load current (fundamental component) at the point of common coupling is less
than 20, the THD should be kept within 5.0%. Additionally, in [30], the assessment of
harmonics is extended to include the limitation of the maximum 50th harmonic, at which
point, a sampling period of 50 µs already meets the requirement.
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In practice, as the electrical equipment changes, so will the load. Hence, dynamic
experiments are formulated to validate the dynamic performance of the devised control
method. During the stable operation of the APF system, an additional nonlinear load is
introduced to simulate a load collapse. After stable operation, a sudden load increase is sim-
ulated by an additional load disconnected in parallel. The results of the dynamic tests are
illustrated in Figure 8. It can be observed from the figure that the introduction of additional
load results in an increase in the amplitude of both the source current and the load current.
It is noteworthy that although the source current under all three control algorithms can
recover to a new stable sinusoidal waveform within a relatively short period, the current
curve under ASMC control is more prone to sudden changes, which may have adverse
effects on the actual operation of the power grid. When the additional load is disconnected,
the source current can also recover to a new stable sinusoidal waveform within a short
period of time, as shown in Figure 9. Similarly, spectrum analysis is performed on the
power supply current with load variation, and the results are listed in Table 2.
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Table 2. Comparison of THD under the three strategies.

ASMC STSMC IT2FNN-SFR STSMC

Steady state 5.40% 4.71% 4.16%

Additional load connected 4.94% 4.23% 3.87%

Additional load disconnected 5.87% 5.10% 4.72%
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In addition, a comparison of the THD rates in the hardware experiment under the
two methods is given in Table 2. It is obvious that the compensation performance of
the designed controller is better than ASMC and STSMC in terms of steady state and
dynamic response, and it meets the international standard of THD of less than 5% in each
state. STSMC, owing to the incorporation of a super-twisting term, enables the continuous
switching of the controller, facilitating the rapid convergence of the system on the sliding
surface. Compared to ASMC, it reduces the dwell time of the system on the sliding surface,
thereby enhancing control efficiency. Hence, the THD under the STSMC algorithm is
lower. Additionally, the introduction of IT2FNN-SFR allows for the pre-estimation of
the dynamic equations of the APF system, reducing current distortion resulting from
external disturbances and further enhancing the robustness of the controller. Based on
the aforementioned hardware experimental results, it is evident that the control strategy
proposed in this paper meets the control requirements, and its feasibility is demonstrated.

5. Conclusions

This paper presents an adaptive super-twisting sliding mode control (STSMC) strategy
for a single-phase active power filter (APF), which integrates an interval type-2 fuzzy
neural network (IT2FNN) with a self-feedback recursive structure. The proposed con-
troller effectively addresses the challenges of harmonics suppression in APF systems by
approximating the unknown system model using the IT2FNN. By leveraging interval
type-2 fuzzy membership functions and historical information, the network enhances its
nonlinear processing capability and accuracy, thereby improving the controller’s approxi-
mation ability. Moreover, the adaptive STSMC reduces the chattering phenomenon and
simplifies parameter setting by incorporating an adaptive law for network parameters.
The stability of the system is rigorously established using the Lyapunov method, ensuring
reliable performance in practical applications. The experimental results validate the sig-
nificant improvement in the total harmonic distortion (THD) rate compared to traditional
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adaptive sliding mode control and super-twisting sliding mode control, demonstrating
commendable steady-state performance and dynamic response. It can be inferred that the
controller effectively suppresses harmonics in the APF system, highlighting its potential
for real-world implementation and contributing to the advancement of power quality
improvement techniques.
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