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Abstract: This study aimed to propose an automated prediction approach of the consolidation
tumor ratios (CTRs) of part-solid tumors of patients treated with radiotherapy on treatment planning
computed tomography images using deep learning segmentation (DLS) models. For training the
DLS model for cancer regions, a total of 115 patients with non-small cell lung cancer (NSCLC) who
underwent stereotactic body radiation therapy were selected as the training dataset, including solid,
part-solid, and ground-glass opacity tumors. For testing the automated prediction approach of CTRs
based on segmented tumor regions, 38 patients with part-solid tumors were selected as an internal
test dataset A (IN) from a same institute as the training dataset, and 49 patients as an external test
dataset (EX) from a public database. The CTRs for part-solid tumors were predicted as ratios of the
maximum diameters of solid components to those of whole tumors. Pearson correlations between
reference and predicted CTRs for the two test datasets were 0.953 (IN) and 0.926 (EX) for one of the
DLS models (p < 0.01). Intraclass correlation coefficients between reference and predicted CTRs for
the two test datasets were 0.943 (IN) and 0.904 (EX) for the same DLS models. The findings suggest
that the automated prediction approach could be robust in calculating the CTRs of part-solid tumors.

Keywords: consolidation tumor ratio; deep learning; part-solid tumors; independent test; non-small
cell lung cancer (NSCLC)

1. Introduction

Lung cancer is the leading cause of cancer-associated deaths in the United States [1]
and Japan [2]. Non-small cell lung cancer (NSCLC), including squamous cell carcinoma
(SCC) and adenocarcinoma (ADC), accounts for about 80% of all lung cancer cases [3].
Some factors, e.g., tumor size [4], operability [5], and consolidation tumor ratio (CTR) [6],
for NSCLC have been proven to have relationships with treatment outcomes. The CTR
is defined as the ratio of the maximum diameter of consolidation (C) to that of a whole
tumor (T) on computed tomography (CT). The consolidation means solid components of
part-solid tumors. The CTR has been reported to be associated with the prognoses of lung
cancer patients who underwent surgical treatment [6–10]. In addition, some other studies
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suggested the feasibility of the CTR to predict patients’ prognoses after stereotactic body
radiation therapy (SBRT) [11,12].

To estimate the CTR in general, clinical physicians need to manually delineate both
whole tumor regions and solid components in part-solid tumors [13]. Due to the different
levels of experience and skill among physicians, manual contouring may lead to inter-
observer and intra-observer variability in contours [14], resulting in uncertainties with
random and/or systematic errors in estimating CTRs. To reduce these types of uncer-
tainties, automated prediction approaches for CTRs for lung cancer patients treated with
surgical resection have been developed based on deep learning (DL) [15–17]. Sun et al. [15]
introduced a DL-based CTR measuring approach for the prediction of tumor invasiveness
for lung adenocarcinoma. Wang et al. [16] assessed the invasiveness of lung cancer using
a DL-based method for the prediction of 2D and 3D CTRs. Zhu et al. [17] evaluated the
performance of a DL algorithm for CTR measurements in predicting the prognosis of lung
adenocarcinoma. However, there have been no studies on automated prediction approaches
of CTRs on treatment planning CT images for patients who underwent radiotherapy. In
addition, the three studies did not assess the segmentation accuracy of their DL models
with evaluation indices [e.g., Dice’s similarity coefficient (DSC)].

For the prediction of accurate CTRs, automated segmentation techniques for part-
solid tumors of lung cancer are necessary. Cui et al. [18,19] investigated a deep learning
segmentation (DLS) approach using a dense V-Net for SBRT cases with the three types of
tumors [solid, part-solid, and ground-glass opacity tumors (GGO)] on treatment planning
CT images. They reported a mean DSC of 0.822 for part-solid tumors [18]. The dense
V-Net has shown the advantage for segmentation of small tumors including part-solid
tumors [18,19]. Therefore, the dense V-Net could be feasible for the segmentation of whole
tumors and measurement of CTRs.

The authors hypothesized that DLS approaches based on the dense V-Net can provide
more accurate contours of whole tumors to measure CTRs on treatment planning CT
images. In this study, an automated prediction approach of CTRs was proposed for part-
solid tumors of patients treated with radiotherapy on treatment planning CT images using
a DLS model based on the dense V-Net.

2. Materials and Methods
2.1. Clinical Cases

This study was approved by the Institutional Review Board of our hospital. For
building and testing DLS models, 257 patients were selected with stage I NSCLC in total.
The dataset with treatment planning CT images for 208 cases consists of 115 training cases
from our hospital and 93 internal test cases (internal test dataset A) from the same hospital.
Another dataset included 49 cases selected from NSCLC Radiogenomics [20], the Lung
Adenocarcinoma Collection [21] and the Lung Squamous Cell Carcinoma Collection [22]
in The Cancer Imaging Archive (TCIA) public dataset, as shown in Table 1. The 208
cases underwent SBRT. The 49 external test cases received radiation therapy or chemo-
radiotherapy. The datasets included three types of tumors, i.e., 118 solid, 118 part-solid,
and 21 pure GGO tumors, because DLS models have the potential to segment part-solid
tumors including GGO and solid components by learning pure GGO and solid tumors as
well as part-solid tumors [18]. The internal test dataset B and external test datasets shown
in Table 2, which contain only part-solid cases, were employed in the prediction of CTRs.
The internal test dataset B includes part-solid tumor cases out of the internal test dataset
A. The patients’ times to progression were obtained by a radiation oncologist (T.Y.) in a
Kaplan–Meier (KM) analysis.
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Table 1. Patient characteristics with imaging parameters for training, internal test A and external test
datasets for building and testing deep learning segmentation models of three lung tumor types.

Characteristics Training Dataset
(n = 115)

Internal Test Dataset A
(n = 93)

External Test Dataset
(n = 49)

Institution Kyushu University
Hospital

Kyushu University
Hospital TCIA *

Age (years) 40–92
(median: 76)

44–89
(median: 78)

50–85
(median: 72)

Sex
Male 69 61 24
Female 46 32 25

Tumor type
Solid 73 45 0
Part-solid 31 38 49
Pure GGO 11 10 0

Matrix size 512 × 512 512 × 512 512 × 512

Number of slices 103–235 103–225 38–515

Pixel size (mm) 0.78–0.98 0.78–0.98 0.55–0.98

Slice thickness
(mm) 2.0 2.0, 3.2 0.63–5.0

* TCIA: The Cancer Imaging Archive.

Table 2. Patient characteristics with imaging parameters for internal test dataset B and external test
dataset for prediction of CTRs for part-solid tumor cases.

Characteristics Internal Test Dataset B
(n = 38)

External Test Dataset
(n = 49)

Age 59–89
(median: 79.5)

50–85
(median: 72)

Sex
Male 22 24
Female 16 25

Tumor type
Part-solid 38 49

Matrix size 512 × 512 512 × 512
Number of slices 120–224 38–515
Pixel size (mm) 0.78–0.98 0.55–0.98
Slice thickness (mm) 2.0 0.625–5.0
Histology

Adenocarcinoma 17 39
Squamous cell

carcinoma 1 10

Unknown 20 0
Time to progression

Unknown 16 0

Range (days) 283–2329
(median: 920)

12–2793
(median: 1014)

Maximum diameters of
solid components (mm) *

1.5–57.5
(median: 20.3)

1.5–81.7
(median: 32.6)

Maximum diameters of
whole tumors (mm) *

10.5–67.3
(median: 32.3)

21.4–81.7
(median: 42.4)

* Measurement based on an iso-voxel size of 1.5 mm.
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Patients from our hospital were scanned while breathing freely to acquire the planning
CT images using 4-slice CT scanners (Mx 8000, Philips, Amsterdam, The Netherlands;
Aquilion, Toshiba, Tokyo, Japan; Aquilion PRIME, Toshiba, Tokyo, Japan). Patients from
TCIA were scanned with CT scanners from Siemens and GE. A radiologist (H.Y.) deter-
mined the three tumor types based on the planning CT images with a lung window level
(WL) of −600 and window width (WW) of 1500 Hounsfield units (HU) [23]. All lung cancer
regions on CT images were observed by the radiologist with almost the same contrast and
brightness, which were manually adjusted according to the WL and WW. Since CT images
are obtained from invariant physical values (linear attenuation coefficients) [24], the CT
values (HU) including WL and WW could ideally be independent of CT scanners.

2.2. Overall Workflow

Figures 1 and 2 show the overall workflows of the developments of the DLS model and
automated prediction of CTRs, respectively. The dense V-Net was trained with the training
dataset, and the trained model was evaluated with internal test dataset A by using the
DSC. Whole tumor regions were predicted for internal test dataset B and the external test
dataset. Then, a thresholding technique with a clinical window level and width was applied
to the CT images within the predicted whole tumor regions to obtain solid components.
Finally, the maximum diameters for both the whole tumor and the part-solid regions were
measured by using the Feret method. The CTR for each part-solid tumor was predicted as
a ratio of the maximum diameter of the largest solid component to that of the whole tumor.
The automated prediction approach of CTRs was assessed with the Pearson correlation
coefficient (PCC) [25] and the intraclass correlation coefficient (ICC) [26]. The prognostic
power of predicted CTRs was evaluated with p-values in a KM analysis.
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Figure 1. The overall workflow for a deep learning (dense V-Net) segmentation (DLS) model of
lung cancers.
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Figure 2. The overall workflow for an automated prediction approach of CTRs of part-solid tumor
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WW: window width.

2.3. Preprocessing of Dataset

The three-dimensional (3D) treatment planning CT images and gross tumor volume
(GTV) regions were converted into iso-voxel images (1.5 mm) using a cubic interpolation
method and a shape-based interpolation method [27], respectively. A 40 × 40-pixel region
centered on the GTV centroid for all axial slices containing each GTV was extracted from
the 3D CT image and was inputted into the DLS model.

2.4. DLS Model

The dense V-Net [28] was constructed as the DLS model in this research according to
the previous study [19]. The architecture of the revised model is illustrated in Figure S1. The
hyperparameters of the DLS model are included in Table S2. A Laplacian of Gaussian (LoG)
filter was applied to all treatment planning CT images to enhance the edges and reduce
image noise. The input CT image size and output tumor region image size for the DLS
model was 40 × 40 × 40 pixels. The model outputs were binarized with a threshold of 0.5
to obtain segmented tumor regions. The dilated convolution and spatial prior in the dense
V-net were removed since they did not generate significant benefit to the performance [28].
To reduce the calculation time and the number of parameters, a bottleneck structure [29]
was used in the densely connected layers. Except for the final layer, the activation function
was a Scaled Exponential Linear Unit (SELU) [30], which is the best activation function
in [18]. SELU was defined as

SELU(x) = s(max(0, x) + min(0, α(ex − 1))) (1)

where s and α were the constant values, which were set as α = 1.6733 and s = 1.0507,
respectively, based on a past study [30].

2.5. Prediction of CTR

The CTR for a part-solid tumor was defined as the ratio of the maximum diameter of
the largest solid component to the maximum diameter of the whole tumor region. Therefore,
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the CTR of a pure GGO is 0, and the CTR of a solid tumor is 1 [9]. An example of the
estimation of a solid component (C) and whole tumor region (T) is illustrated in Figure 3.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 16 
 

 

Figure 3. A measurement of a part-solid component (C) and a whole tumor region (T) on a planning 

CT image for measurement of a CTR (C/T). 

To extract solid components of a whole tumor, a thresholding technique was applied 

with a mediastinal window, a WL of 50 HU and WW of 400 HU [23] within a whole tumor 

region that was obtained from the DLS model. The largest solid component was selected 

by counting the number of voxels within solid components in a whole tumor region when 

there are more than two solid components in the tumor region. 

The AJCC Cancer Staging Manual (8th edition) [31] states that a tumor size should be 

obtained in its greatest dimension, which may be assessed by the axial, coronal and sagit-

tal directions. If technically possible, all the different projections should be investigated to 

determine the tumor size. In this study, the 3D Feret method was adopted to calculate the 

maximum diameters of the whole tumor region and solid component for all projections 

[32]. The Feret diameter is the distance between two parallel tangents to the projection of 

the tumor in a certain direction (Figure 4). The thresholding technique and Feret method 

were applied to both whole tumor regions predicted by DLS models and reference whole 

tumor regions to determine the predicted and reference CTRs. 

The counting of the voxels depends on one-voxel connectivity, i.e., a 6-connectivity 

approach [33]. The example for a 3-connectivity approach is shown in Figure S2. 

 

Figure 4. An illustration of the Feret diameter, the maximum diameter using the Feret method. 

2.6. Evaluation and Statistical Analysis 

The segmentation accuracies for the DLS model were evaluated using the DSC [34]. 

All DSCs were calculated from the 3D volumes predicted by the DLS model. The DSC 

indicates the similarity between predicted contours and reference contours delineated by 

a radiation oncologist. DSC could be calculated by the following equation: 

Feretdiameter 

Figure 3. A measurement of a part-solid component (C) and a whole tumor region (T) on a planning
CT image for measurement of a CTR (C/T).

To extract solid components of a whole tumor, a thresholding technique was applied
with a mediastinal window, a WL of 50 HU and WW of 400 HU [23] within a whole tumor
region that was obtained from the DLS model. The largest solid component was selected
by counting the number of voxels within solid components in a whole tumor region when
there are more than two solid components in the tumor region.

The AJCC Cancer Staging Manual (8th edition) [31] states that a tumor size should be
obtained in its greatest dimension, which may be assessed by the axial, coronal and sagittal
directions. If technically possible, all the different projections should be investigated to
determine the tumor size. In this study, the 3D Feret method was adopted to calculate the
maximum diameters of the whole tumor region and solid component for all projections [32].
The Feret diameter is the distance between two parallel tangents to the projection of the
tumor in a certain direction (Figure 4). The thresholding technique and Feret method were
applied to both whole tumor regions predicted by DLS models and reference whole tumor
regions to determine the predicted and reference CTRs.
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The counting of the voxels depends on one-voxel connectivity, i.e., a 6-connectivity
approach [33]. The example for a 3-connectivity approach is shown in Figure S2.
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2.6. Evaluation and Statistical Analysis

The segmentation accuracies for the DLS model were evaluated using the DSC [34].
All DSCs were calculated from the 3D volumes predicted by the DLS model. The DSC
indicates the similarity between predicted contours and reference contours delineated by a
radiation oncologist. DSC could be calculated by the following equation:

DSC =
2n(T ∩ D)

n(T) + n(D)
,

where T is the reference contour delineated by a radiation oncologist and D is the contour
estimated using the DLS method. n(T) is the number of voxels in contour T, n(D) is the
number of voxels in contour D and n(T ∩ D) is number of overlapping voxels between
reference contour T and estimated contour D.

The accuracy for the automated prediction approach of CTRs was assessed using the
PCC, the ICC and a Bland–Altman analysis [35]. The PCC evaluates the correlation between
the reference and predicted CTRs for both the internal (B) and external test datasets. The
ICC of ICC (2,1) tests the reliability between the reference and predicted CTRs. ICC (2,1) is
the intraclass correlation coefficient where the model is two-way random effects, the type
is single rater/measurement, and the definition of relationship considered to be important
is absolute agreement [26].

The degree of agreement between reference and predicted CTRs was assessed using
the Bland–Altman analysis. The limits of agreement in the analysis were defined as the
mean difference ± 1.96 × standard deviation of the differences, and systematic biases in
the differences between predicted and measured values were evaluated.

Prognostic predictability of predicted CTRs was assessed by using p-values in a KM
analysis [36], which has been widely used in time survival analyses in the medical field [37].
The p-values were evaluated using a log-rank test in KM curves for time to progression
between low-risk and high-risk patients, who were stratified with the medians of predicted
CTRs for internal test dataset B and the external test dataset. If the CTR of a patient was
higher than the median, the patient was considered a high-risk patient. Otherwise, the
patient was regarded as a low-risk patient. The p-values less than 0.05 were considered
statistically significant differences.

2.7. Implementation of Automated Prediction Approach of CTRs

The conversion of iso-voxel images, centroid-based cropping and quantization were
performed using MATLAB R2018a (MathWorks, Inc., Natick, MA, USA). All other processes
were performed in Python 3.8, accelerated by CuPy 11.1, an open-source GPU accelerating
library for NumPy and SciPy.

The DLS model was constructed using TensorFlow 2.5.0 and trained with 115 training
cases in Table 1. To avoid overfitting when using extremely small training datasets, data
augmentation including image flipping, rotation and rescaling was separately applied
to the training dataset. The parameters to be optimized were learning rate, batch size,
number of iterations, parameters of LoG processing sigma and weight of Log processing
beta. The candidate batch sizes were 64, 32, 16 and 8 in this study. To reduce the time cost
for optimizing the hyperparameters, the Dice loss was fixed as the loss function [29], which
was the best loss function in the previous study [18]. The optimal iteration was defined
as the one with the lowest dice loss on the validating data of the training dataset within
9000 iterations. The hyperparameters were optimized separately on a server with two
NVIDIA GeForce RTX 3090 devices and a server with two NVIDIA Quadro P6000 devices
(NVIDIA Corporation, Los Alamitos, CA, USA). The Feret diameters of whole tumors and
solid components were calculated based on a Python package for extracting 2D and 3D
shape measurements from images (imea) [38].
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3. Results

Figure 5 shows DSCs of regions for three types of lung tumors (solid, part-solid, and
pure GGO) and all types obtained from the DLS model (dense V-Net) for internal test
dataset A. The DSCs for all types of tumors, solid tumors, part-solid tumors and pure GGO
tumors are 0.810 ± 0.08 (mean ± SD), 0.828 ± 0.08, 0.784 ± 0.09 and 0.824 ± 0.03. Figure 6
shows DSCs for part-solid tumor regions obtained from the DLS model for internal test
dataset B and the external test dataset. The DLS model exhibited DSCs of 0.784 ± 0.09 and
0.776 ± 0.107 for internal test dataset B and the external test dataset, respectively.
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Figure 7 shows the correlation between reference and predicted CTRs with the DLS
model for the internal test dataset B. The predicted CTRs showed a PCC of 0.953 and an
ICC of 0.943. Figure 8 shows the Bland–Altman plot of agreement between reference and
predicted CTRs for the internal test dataset B. The horizontal lines are drawn at the mean
difference of 0.03, and 95% of internal test dataset B (36 of 38 cases) is within the limits of
agreement. Figure 9 shows four cases that indicated the highest and lowest differences in
CTR between reference and predicted CTRs.
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Correlation between reference and predicted maximum diameters of both whole tumor
regions and solid components and the Bland–Altman plot of agreement between reference
diameters and diameters predicted with the DLS model are shown in Figures S3–S6.

Figure 10 shows the correlation between reference and predicted CTRs with the dense
V-Net for the external test dataset. The CTRs predicted by the dense V-Net still show a PCC
of 0.926 and an ICC of 0.904. Figure 11 shows the Bland–Altman plot of agreement between
reference CTRs and predicted CTRs for the external test dataset. The horizontal lines are
drawn at the mean difference of 0.05 (solid line), and 92% of the external test dataset (45 of
49 cases) is within the limits of agreement (dotted lines).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 16 
 

Figure 10 shows the correlation between reference and predicted CTRs with the 

dense V-Net for the external test dataset. The CTRs predicted by the dense V-Net still 

show a PCC of 0.926 and an ICC of 0.904. Figure 11 shows the Bland–Altman plot of agree-

ment between reference CTRs and predicted CTRs for the external test dataset. The hori-

zontal lines are drawn at the mean difference of 0.05 (solid line), and 92% of the external 

test dataset (45 of 49 cases) is within the limits of agreement (dotted lines). 

Correlation between the reference and predicted maximum diameters of both whole 

tumor regions and solid components and the Bland–Altman plot of agreement between 

reference diameters and diameters predicted with the proposed model with the dense V-

Net are shown in Figures S7–S10. 

 

Figure 10. Correlation between reference and predicted CTRs with the proposed model for  an ex-

ternal test dataset. PCC: Pearson correlation coefficient, ICC: intraclass correlation coefficient. 

 

Figure 11. Bland–Altman plot of reference and predicted CTRs by the proposed model for an exter-

nal test dataset. SD: standard deviation. 

Figure 12 shows four cases that indicated the highest and lowest differences in CTR 

between reference and predicted CTRs.  

Figure 13 shows the KM curves for time to progression between low-risk and high-

risk patients, who were stratified with the medians of predicted CTRs for internal test 

dataset B (left) and the external test dataset (right). There were statistically significant dif-

ferences between the low-risk and high-risk patients. 

Figure 10. Correlation between reference and predicted CTRs with the proposed model for an external
test dataset. PCC: Pearson correlation coefficient, ICC: intraclass correlation coefficient.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 16 
 

Figure 10 shows the correlation between reference and predicted CTRs with the 

dense V-Net for the external test dataset. The CTRs predicted by the dense V-Net still 

show a PCC of 0.926 and an ICC of 0.904. Figure 11 shows the Bland–Altman plot of agree-

ment between reference CTRs and predicted CTRs for the external test dataset. The hori-

zontal lines are drawn at the mean difference of 0.05 (solid line), and 92% of the external 

test dataset (45 of 49 cases) is within the limits of agreement (dotted lines). 

Correlation between the reference and predicted maximum diameters of both whole 

tumor regions and solid components and the Bland–Altman plot of agreement between 

reference diameters and diameters predicted with the proposed model with the dense V-

Net are shown in Figures S7–S10. 

 

Figure 10. Correlation between reference and predicted CTRs with the proposed model for  an ex-

ternal test dataset. PCC: Pearson correlation coefficient, ICC: intraclass correlation coefficient. 

 

Figure 11. Bland–Altman plot of reference and predicted CTRs by the proposed model for an exter-

nal test dataset. SD: standard deviation. 

Figure 12 shows four cases that indicated the highest and lowest differences in CTR 

between reference and predicted CTRs.  

Figure 13 shows the KM curves for time to progression between low-risk and high-

risk patients, who were stratified with the medians of predicted CTRs for internal test 

dataset B (left) and the external test dataset (right). There were statistically significant dif-

ferences between the low-risk and high-risk patients. 

Figure 11. Bland–Altman plot of reference and predicted CTRs by the proposed model for an external
test dataset. SD: standard deviation.

Correlation between the reference and predicted maximum diameters of both whole
tumor regions and solid components and the Bland–Altman plot of agreement between
reference diameters and diameters predicted with the proposed model with the dense
V-Net are shown in Figures S7–S10.

Figure 12 shows four cases that indicated the highest and lowest differences in CTR
between reference and predicted CTRs.
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between reference and predicted CTRs by the proposed model for the external test dataset.
∆CTR = |Reference CTR–Predicted CTR|. Green line: whole tumor contour, sky blue line: solid
component contour, orange line: overlapping contour.

Figure 13 shows the KM curves for time to progression between low-risk and high-risk
patients, who were stratified with the medians of predicted CTRs for internal test dataset B
(left) and the external test dataset (right). There were statistically significant differences
between the low-risk and high-risk patients.
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4. Discussion

The proposed automated prediction approach for CTRs showed high PCCs of 0.953
(IN) and 0.926 (EX) and high ICCs of 0.943 (IN) and 0.904 (EX) for the prediction of CTRs
on both internal test dataset B and the external test dataset, respectively. Further to this, the
predicted CTRs showed the prognostic power of both datasets in stratifying SBRT patients
into low-risk and high-risk patients, as shown in Figure 13.

As shown in Figure 9, the two worst cases (Figure 9c,d) showed lower DSCs of 0.747
and 0.771 than the best case (Figure 9b) (DSC: 0.895). These lower DSCs affected the
difference between reference and predicted contours and caused the larger differences
in CTRs. The solid component contours are similar to each other between the predicted
and reference ones. Since the whole tumor contour varied, this variability of whole tumor
contours could cause the larger CTR differences. The other best case (Figure 9a) shows a
lower DSC of 0.729 and low ∆CTR because of the small sizes of the solid component and
large whole tumor regions. On the other hand, the two best cases (Figure 9a,b) showed
higher DSCs of 0.889 and 0.748 than the worst case (Figure 9d) (DSC: 0.559) as shown in
Figure 12. The worst case (Figure 12c) shows a DSC of 0.785, however, the tumor edge is
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erroneously involved in a tumor region and leads to the lower accuracy. This issue could
be solved by combining other DLS models [39] with our approach.

DL-based prediction approaches for CTRs have been investigated for lung cancer
patients treated with surgical resection [15–17]. Sun et al. [15] reported an area under
receiver operating characteristic curve (AUC) of 0.803 (validation test) for the prediction of
tumor invasiveness for lung adenocarcinoma. Wang et al. [16] demonstrated the prediction
power of tumor invasiveness with an AUC of 0.826 (validation test). Zhu et al. [17] showed
ICCs of 0.838 and 0.832 for DL-based measurements of maximum whole tumor size and
maximum solid component size, respectively. In this study, the proposed prediction model
exhibited ICCs of 0.980 and 0.801 for both sizes of the external test dataset as shown in
Figures S7 and S9.

The AJCC Cancer Staging Manual (8th edition) suggested to the radiologists to estimate
the tumor sizes in all different projections if it is technically possible [31]. Dinkel et al. [39]
proposed a method that can measure the diameters of lung cancer regions on the three
orthogonal views (axial, coronal and sagittal views). Haddad et al. [40] measured the
diameters of breast cancers by dividing the cancer into serval slices in one dimension,
whereas the proposed approach measured the maximum diameters of whole tumor regions
and solid components with the Feret method for all projections. Thus, the proposed
approach in this study followed the guidelines rather than past studies. Heuvelmans
et al. [41] measured the lung tumor diameters by a semi-automatic method based on the
contours delineated by two radiologists. On the other hand, the authors developed the DLS
model to automatically predict the contours, which could reduce the labors of radiologists,
for the prediction of CTRs.

CT image quality (e.g., motion artifacts or image blurring) degraded by respiratory
motion could affect the segmentation accuracy of lung tumors [42]. In addition, a review
reported that the performance of deep learning-based segmentation approaches has been
deteriorated by low image quality such as low contrast objects [43]. The image quality of
treatment planning CT images used in this study may be affected by respiratory motion.
Even so, in our results, the proposed prediction approach of CTRs reached ICCs of 0.943
(IN) and 0.904 (EX), possibly because the LoG filter for all treatment planning CT images
enhanced the edges and reduced image noise. Nevertheless, the image quality of the
treatment planning CT images should be improved continuously using other filters, which
could reduce motion artifacts [44].

There are several limitations in this study. First, unbalanced training datasets were
employed, including 73 solid, 31 part-solid and 11 pure GGO tumors. This may be the
reason for the imbalance in performance for the different tumor types and could affect
the segmentation accuracy of the pure GGO and part-solid tumors. This could influence
the performance of the predicted CTR. Therefore, training the model on a larger number
of cases, especially more part-solid tumors, is needed to improve the accuracy for the
prediction of CTRs. Although the image augmentation technique with image flipping,
rotation and rescaling was applied to increase the training data, more pure GGO and
part-solid cases will be collected from Kyushu University Hospital or open-source datasets
with prognostic data. In addition, advanced augmentation techniques including generative
adversarial networks [45] can be applied to adjust the number of unbalanced data. Second,
the DSCs for three types of tumors obtained with our DLS model were still below 0.9, and
especially, were lower than 0.8 for part-solid tumors. The performance can be improved
by using novel networks, for instance morphological vision transformers [46]. Finally, the
38 cases in the internal test dataset underwent SBRT, but the 49 external test cases received
radiation therapy or chemo-radiotherapy. Since the patients in this study received different
types of radiotherapy, the times to progression for the KM analysis may have been affected
by the treatment methods. Therefore, we should use data from patients who underwent
the same type of radiotherapy in future work.
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5. Conclusions

The authors proposed an automated prediction approach for calculating CTRs of
part-solid tumors, which achieved high ICCs of 0.943 and 0.904 between reference and
predicted CTRs for the internal and external test datasets, showing its robustness for clinical
use. The predicted CTRs showed the prognostic power of both datasets in predicting
radiotherapy patients with low-risk and high-risk. Future work will involve investigating
the improvement of the DLS model and application in patients treated with the same type
of radiotherapy.
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