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Abstract: Air quality directly affects the health of humans. The health implications of poor air
quality are recognized by professionals and the public alike and these concerns have driven both the
proliferation of formal sensor networks, but also low-cost sensors which can be used in the home.
The advancement of technology in recent years has also led to the rapid development of low-cost
sensors. Given that citizens are concerned about the air quality of the environment in which they
live, they are turning to the supply of low-cost sensors, as they are affordable. The question of the
reliability of measurements from low-cost sensors remains an area of research. In this research work,
the optimization of ozone (O3) and nitrogen dioxide (NO2) measurements of low-cost electrochemical
air quality sensors is investigated by applying nonlinear regression, using a second-order polynomial
equation as a correction factor. The proposed correction method is implementable in IoT devices,
as it does not require high computational resources. The results show that the measurements are
susceptible to correction, with the effect that the corrected values are close to the actual values
obtained by the reference instruments of the Department of Environmental Pollution Control Project
of Athens (PERPA), a service of the Greek Ministry of the Environment and Energy.

Keywords: air quality; NO2 measurements; O3 measurements; nonlinear regression; IoT air quality;
electrochemical sensors

1. Introduction

Air quality is a vital factor for human health, particularly in densely populated areas.
Low-cost sensors have emerged on the market in recent years as a consequence of the
development of technology, presumably also because of demand or the growth of a market
for small-scale measurements. Citizens are increasingly using these sensors to monitor
the air quality in their area. Research centers and governmental agencies are engaged in
monitoring air quality in all countries, using expensive scientific instruments to ensure
the reliability of the measurements, resulting in only a few such systems covering large
areas, like cities [1]. The use of low-cost sensors can help develop a large spatial network of
measurements for a region [2]. Low-cost sensors can be used as a complement to monitor
the air quality of a region and not as a replacement for expensive scientific equipment [3].
The reliability of low-cost sensor measurements is an ongoing area of research and study in
the scientific community.

The following research papers present methodologies aiming at correcting and visual-
izing the measurements obtained from these sensors. Many manufacturers and research
groups have devoted themselves to developing low-cost sensors and evaluating their per-
formance in laboratory conditions [4–7]. Low-cost electrochemical air quality sensors use a
specific measurement methodology [8–10]. All low-cost sensors exhibit errors, resulting in
differences in measurement data compared to reference data. There are two main sources
of error in measurements from low-cost sensors [11], the internal errors, which are based
on the operating principle of the sensor, including dynamic detection limits, nonlinear
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sensor response and displacement, and the external errors, which occur according to the
working conditions, with the main one the low selectivity of the target gas, affected by cross-
sensitivity with other gases. These errors can be reduced using laboratory and simplified
calibration methods.

Therefore, many investigations into low-cost sensors have demonstrated the devel-
opment of sensor calibration in the field [12]. These include low-cost sensor calibration of
carbon monoxide (CO) [13,14], nitrogen dioxide (NO2) [13–15], sulfur dioxide (SO2) [13,14],
ozone (O3) [13,15], and particulate matter (PM) [16–18]. In [19] the evaluation of the
performance of low-cost particle sensors indicated the ability of the sensors to monitor
particle concentrations with relatively high linearity and moderate repeatability. In an-
other work [20], the effect of relative humidity (RH) and gas sample flow rate on sensor
calibration and sensitivity was investigated.

The performance of the low-cost sensors was evaluated in the field, in an ambient
atmosphere. Many of the aforementioned studies focused on the influence of meteorological
factors, such as temperature (T), RH, wind, sunlight, etc., and proposed calibration schemes
based on long-term evaluation in urban or suburban environments [21–24]. In addition,
other studies have reported on the effect of cross-sensitivity in low-cost sensors [25–27].
Many methods have been used by research groups to calibrate air quality sensors, such
as linear regression (LR), multiple linear regression (MLR), random forest (RF), artificial
neural network (ANN), support vector machine (SVM), and support vector regression
(SVR) [28]. The LR and MLR methods are commonly for calibration of low-cost sensor
data, and symmetric variables are used to improve the calibrations. However, LR shows a
lower R2 correlation score and should be avoided for gas sensors [29,30]. RF, ANN, SVM,
and SVR are supervised learning technique methods and show significant improvement
in the R2 correlation coefficient in most sensors. However, their application requires a
large amount of data for training each model [31,32]. The simplest correction methods
are presented by the Kalman filtering [33] and LASSO regression [34] approaches, as well
as the measurements variation limits [35] approach. According to manufacturers, the
lifetime of low-cost electrochemical sensors is set at 1 to 2 years, and during its operation
the change in sensor response is referred to as aging [36,37]. Specifically, [37] reports on
the identification of aging factors in low-cost electrochemical sensors for measurement
corrections. Other research works present the application of low-cost sensors for air quality
monitoring [38–40], and [41] presents the artificial intelligence method of a memory-based
precise calibration of a cost-efficient NO2 sensor, and data reliability and fault diagnostics
for an air quality monitoring station based on low-cost sensors and active redundancy,
studied in [42].

As a statistical model, nonlinear regression is the application of regression analysis,
where observational data are captured by a function that includes a nonlinear combination
of the model parameters and depends on one or more independent variables. The data
are tabulated and adjusted accordingly using a method of successive approximations. In
general, linear regression shows the correlation between two variables using a straight
line, while nonlinear regression shows the correlation between variables using a curve.
The authors of [43] show the results of nonlinear regression on low-cost microparticle data
from sensors. By applying probabilistic gradient boosted decision trees (GBDTs), direct
field calibration of raw PM2.5 sensor data is achieved. The use of probabilistic GBDTs
improves point accuracies and distribution compared to the linear model. In [44] the
application of calibration models using nonlinear machine learning boosting algorithms,
namely Stochastic Gradient Boosting Regressor, yielded better results than those obtained
using artificial neural networks and linear regression approaches.

In this research work, the degree of correction in low-cost sensor measurements is
investigated by applying nonlinear regression to data obtained by low-cost electrochemical
pollutant gas sensor measurement, aiming to identify a polynomial function that serves
as a correction factor in low-cost sensor measurements, with the final result being the
optimization of these measurements. In addition, the methodologies of time scaling and
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seasonality scale are investigated to evaluate the results using the nonlinear regression
approach. The choice of a polynomial function as a correction tool finds immediate applica-
tion for integration in IoT devices, as it does not require computational resources, unlike
other techniques, such as artificial neural networks, etc. The article is structured as follows:
Section 2 presents the Materials and Methods, Section 3 discusses the Results, Section 4
covers the Discussion and Section 5 covers the Conclusions.

2. Materials and Methods
2.1. Instrumentation

Three low-cost air quality monitoring stations [15] with unique identifiers (N1, N2,
N3) were used to conduct this experiment. The design and implementation of the low-cost
gas quality monitoring stations were carried out by the Electronic Devices and Materials
Research Laboratory (EDML) of the Department of Electrical and Electronics Engineering
of the University of West Attica in Greece. Details of the monitoring stations’ design
and implementation can be found in previous works [15,35]. The stations were installed
at the same place, near to official instrumentation from the Ministry of Environment
and Energy of Greece (PERPA) [45] at a height of 6–8 m. The monitoring stations were
installed in Athens city center and installation details regarding the locations, the sampling
rate and the official instrumentation used for the on-site measurements are presented
in [33]. The two locations are close to each other and show the same air quality conditions.
Commercial scientific instruments for monitoring air quality have been installed at the
Environmental Pollution Control Project of Athens (PERPA) facilities in the center of
Athens. Specifically, the installed devices for measuring air pollutants are the HORIBA
APOA-360 for ozone and the HORIBA APNA-360 for nitrogen dioxide. Pollutants are
measured continuously throughout the 24-h period. The response time of the automatic
analyzers is one minute, while the hourly average pollution values are calculated hourly.
The methods of measurement of air pollutants are carried out for nitrogen dioxide by
chemiluminescent science and for ozone by ultraviolet absorption. As for the automatic
analyzers, field calibration is carried out by dynamic dilution every month and after each
repair. The details that refer to the used NO2 and O3 electrochemical sensors (manufacturer
AlphaSense (Essex, UK) and models: NO2–NO2-B43F [46] and O3–OX-B431 [47]) as well as
the initial calibration of the sensors are presented in previous works [34]. The time period
of the measurements and evaluation was 14 April 2021 to 13 May 2021.

2.2. Data Elaboration

Nonlinear regression is a type of regression where, during analysis, observational
data are modelled according to a function that is a nonlinear combination of the model
parameters and depends on one or more independent variables. The data are fitted by a
method of successive approximations. The use of nonlinear regression may be made as
not all phenomena are described by linear models, as well as for cases of data where linear
regression is less accurate than nonlinear regression. In general, a function is nonlinear
with respect to its constituent parameters. For the purposes of this work a polynomial
equation of second degree was chosen. Polynomials offer a broader scope for representing
functions and relationships between variables than linear equations, enabling more complex
modeling and flexible curve fitting, and enhancing predictive accuracy. A second-degree
polynomial equation is expressed in Equation (1).

f (x) = ax2 + βx + γ (1)

where x is the independent variable, and a, β, γ, are the coefficients.
Nonlinear functions that can be used include logarithmic functions, exponential

functions, trigonometric functions, etc.
To ensure thorough analysis of the results, experiments were conducted on a weekly

and monthly basis. Polynomial functions were identified weekly for each sensor and gas
and the monthly function was derived from monthly data and refined by incorporating
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weekly polynomial functions. In addition, a comprehensive study was conducted on time
scaling and seasonality correction using the nonlinear regression approach.

The methodology for applying nonlinear regression to low-cost electrochemical sensor
data is described in four steps:

1. Hourly measurements of low-cost sensors of the same type were averaged.
2. The averaged values were correlated with the reference values and the degree of

correlation was expressed by a second-order polynomial function.

In the same way, the hourly measurements of each sensor were correlated with the
reference measurements and the degree of correlation was expressed by a second-degree
polynomial function.

For the purpose of evaluating the results, this procedure was carried out on a weekly
basis for one month’s measurements.

3. From the monthly polynomial correlations, the coefficients of the polynomial correc-
tion function were estimated.

4. The monthly polynomial correction function was applied to the low-cost sensor
measurements and the results were re-evaluated.

Finally, the Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD), and
Mean Absolute Error (MAE) methods were used to evaluate the nonlinear method results,
both for weekly and monthly data.

The measurements analyzed below relate to gaseous pollutants, such as nitrogen
dioxide and ozone. The data from both the low-cost and reference gas sensors have been
taken on an hourly basis. Simple nonlinear regression is applied to the data to identify
a polynomial function that can be used as a correction factor for the data from the low-
cost sensors. The measurements (primary and corrected by nonlinear regression (NLR))
analyzed below relate to gaseous pollutants, such as nitrogen dioxide and ozone. The
data from both the low-cost (N1, N2, N3) and reference gas sensors have been taken on an
hourly basis. Simple nonlinear regression is applied to the data to identify a polynomial
function that can be used as a correction factor for the data from the low-cost sensors.

For the needs of the experiment, one month’s data (14 April 2021 to 13 May 2021) are
studied, since according to [37], the ageing of the sensors has an effect on the measurements.
To establish a more generalized study, nonlinear regression is applied on a daily basis,
weekly basis, and monthly basis, for both types of sensors.

A series of replicated experiments were performed to determine the degree of the
polynomial function. The results showed that a polynomial function of 2nd degree is
sufficient to give satisfactory results in terms of the degree of correlation. The polynomial
function of a higher degree, especially on one month’s data, shows a further improvement
of up to 1% in relation to the polynomial function of 2nd degree.

3. Results

The results of nonlinear regression as a correction factor in ozone (O3) and nitrogen
dioxide (NO2) concentration measurements are presented here.

Given that low-cost electrochemical gas quality sensors consisting of four electrodes
(working electrode, auxiliary electrode, counter electrode, and reference electrode) were
used, the procedure during the initial calibration and normalization of the primary mea-
surements is then presented [34]. The first step is to correct the working electrode value
according to manufacturer by the specific properties of each sensor (electronic zero value)
and the temperature coefficient. An Individual Sensor Board (ISB) circuit, as reported by
Alphasense, provides both working electrode and auxiliary electrode measurements in mV.
The conversion of the working and auxiliary electrode voltages to target gas concentration
is suggested by Alphasense’s Equation (2) [48], which includes the ambient temperature

WEc = (WEu − WEe)− nT ∗ (AEu − AEe) (2)
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where WEc represents the corrected value of the working electrode, WEu represents the
measured value of the working electrode, AEu represents the measured value of the
auxiliary electrode, nT represents the ambient temperature coefficient, WEe represents
the electronic zero value of the working electrode, and AEe represents the electronic zero
value of the auxiliary electrode. The values of WEe and AEe are given by the manufacturer
for each sensor. The second step is to calculate the concentration (ppb) of gas pollutant.
The GasMeasurement concentration measurement is given by dividing the corrected output
voltage WEc, by SensorSensitivity, as shown in Equation (3), the sensor sensitivity is also
given for each sensor by the manufacturer

GasMeasurement =
WEc

SensorSensitivity
(3)

where GasMeasurement is the concentration measurement of the gas pollutant, WEc is the cor-
rected working electrode value of the target gas given by Equation (2), and SensorSensitivity
is given by the sensor manufacturer.

The third step is to calculate a calibration function. According to the manufacturer,
a function must be applied when calibrating the sensors so that the corrected values of
the measurements with this function are close to the reference values. Two correction
factors [15] are calculated during the calibration period when co-locating the low-cost
monitoring station close to official instruments. The formula that yields the final corrected
values by combining the two correction factors and the sensor measurements is shown in
Equation (4)

GAS_correctedMeasurement =

(
(GASMeasurement + A)

B

)
(4)

where GAS_correctedMeasurement is the calibrated gas sensor value, GasMeasurement is the
corrected measurement concentration value of the gas pollutant by Equation (3), where
A represents the level factor, which increases or decreases the measurement values to
be corrected, and B represents the scaling factor, from which the corrected values of
measurement are derived. The last step of the procedure is the conversion of ppb to µg/m3.
The initial calibration period was carried out in February 2021, in the field, by co-installing
low-cost sensors next to a reference instrument. This process resulted in the determination
of the A and B coefficients for each low-cost gas sensor.

According to the manufacturer, to avoid incorrect gas measurements due to the cross-
sensitivity of the Alphasense OX-B431 sensor, Equation (5) must be applied to the mea-
surements in order to obtain the O3 and NO2 concentrations, since the O3 electrochemical
sensors are also triggered by NO2,

O3 ppb = O3 All − NO2 ppb (5)

where O3 ppb is the ozone concentration measurement, NO2 ppb is the NO2 concentration
value measured by the nitrogen dioxide sensor and O3 All is the concentration value
measured by the ozone sensor.

3.1. O3 Weekly and Monthly Study

The obtained ozone concentration primary measurements, after the application of the
correction equations, for all three low-cost ozone electrochemical sensors, relative to the
reference measurements (PERPA), are shown in Figure 1.

Figure 2 shows the scatterplots between the primary measurements of each ozone low-
cost sensor and reference. The corresponding degree of correlation between the reference
measurements and the primary measurements of the low-cost sensors is also presented.
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Figure 3 shows the average of the hourly ozone primary concentration measurements
of the three low-cost sensors in relation to the reference measurements. Figure 4 shows both
the simple linear regression scatter plot with the correlation coefficient and the nonlinear
regression scatter plot with the polynomial equation of the correlation and the correlation
degree of the ozone concentration measurements. Simple linear regression was used to
show the dispersion and degree of correlation between the primary O3 concentration
measurements from the low-cost sensors and the reference measurements.

In order to evaluate the proposed methodology, the NLR was applied for each week
of the selected period and the extracted coefficients were compared. This was conducted
to ensure the time stability of the NLR methodology. To investigate the behavior and
variability of the coefficients of the linearity and the error, the application of the rolling
regression took place for four weeks data on an hourly basis. Conclusively, to estimate the
polynomial function, the experiment was performed on a weekly basis. From the data for
each week, both a polynomial function and the degree of correlation of the data emerged.

The parameters of the rolling calibration, such as Alpha and Beta coefficients, Error,
Correlation, and degree of correlation, are shown for the ozone concentrations, for the
mean value of the primary data of the three ozone sensors with the reference data in Table 1,
and for the mean value of the corrected data of the three ozone sensors with the reference
data in Table 2.
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Table 1. Parameters of rolling regression between primary and reference measurements of O3 for
four weeks.

Alpha Beta Error Correlation R2

Week1 17.01 0.596428 13.13 0.81 0.65
Week2 19.99 0.570468 16.80 0.72 0.52
Week3 22.43 0.783826 18.35 0.84 0.71
Week4 22.07 0.734221 18.90 0.72 0.51

Table 2. Parameters of rolling regression between corrected and reference measurements of O3 for
four weeks.

Alpha Beta Error Correlation R2

Week1 22.52 0.607 11.98 0.84 0.70
Week2 22.08 0.629 12.50 0.84 0.71
Week3 28.86 0.721 14.24 0.88 0.78
Week4 28.18 0.700 13.60 0.80 0.65

Figure 5 shows the coefficients (Alpha, Beta, Error, R2) both of the rolling regression of
the average of the primary measurements of three ozone sensors and the reference, and the
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coefficients of the rolling regression of the average of the corrected by nonlinear regression
measurements of three ozone sensors and the reference.
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The observations extracted from Figure 5 in relation to the corrected data, in terms of
the coefficients of the rolling regression for a four-week period for ozone, show an increase
in the Alpha coefficient, while the Beta coefficient shows a slight shift, the Error shows an
average improvement of 30%, and the correlation coefficient (R2) shows an improvement.

The expression of the nonlinear regression of the primary measurements of each
low-cost O3 sensor in respect to the reference measurements is shown in Figure 6.

The extraction of the coefficients of the nonlinear correction function for ozone (O3)
was carried out as follows. From Figure 6 the square root of the average of the coefficients
(a) of x2 of N1, N2, N3, determines the value of the coefficient (a) of x2 in the nonlinear
correction equation. The value of the coefficient (β) of x of the nonlinear correction equation
can range from the maximum value that each coefficient (β) of x shows in the scatter plots
of the Figure 6 to their average value; the most appropriate value (β) of x was chosen which
gives the optimum effect on all sensors. The coefficient (γ) of the nonlinear correction
equation is obtained by taking the square root of the average of the coefficients (γ) shown
in the scatter plots of Figure 6.

According to the above data and the correlations of measurements, as shown in
Figures 5 and 6, the calculation of the polynomial function for the correction at the monthly
level was carried out by the correctness, evaluation, and reliability of the results in respect to
the reference data. The polynomial function acting on the sensor data as a correction factor
to the ozone gas pollutant concentration measurements of low-cost sensors is described in
Equation (6).

O3NLR = −0.068·O3
2 + 1.45·O3 − 2.65 (6)

where O3NLR, is the corrected concentration measurement of ozone and the O3 is the
primary concentration measurement of the ozone low-cost sensor.
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The polynomial function of Equation (6) was applied to the primary data of each
low-cost ozone (O3) sensor. Figure 7 shows the time series and scatter plot of the average
of corrected measurements in respects to reference measurements. The scatter plots of cor-
rected measurements in comparison with reference measurements for ozone concentrations,
are shown in Figure 8 for nodes N1, N2, N3, respectively.
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Figure 6. Scatterplot of all O3 primary measurements in respect to the reference measurements of
nonlinear (NLR), (polynomial function 2nd degree) regression. (a) Scatterplot between primary of N1
and reference measurements of O3 of nonlinear (NLR) regression, (b) Scatterplot between primary of
N2 and reference measurements O3 of nonlinear (NLR) regression, (c) Scatterplot between primary of
N3 and reference measurements O3 of nonlinear (NLR) regression.
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Figure 7. Time-series and scatterplot of average of corrected O3 measurements of N1, N2, N3, and
reference measurements, (a) Time-series of average of corrected O3 measurements of N1, N2, N3, and
reference measurements, (b) Scatterplot of average of corrected O3 measurements of N1, N2, N3, and
reference measurements.
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Figure 8. Scatterplots of O3 corrected measurements of N1, N2, N3 and reference measurements,
(a) Scatterplot of O3 corrected measurements of N1 and reference measurements, (b) Scatterplot
of O3 corrected measurements of N2 and reference measurements, (c) Scatterplot of O3 corrected
measurements of N3 and reference measurements.
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3.2. NO2 Weekly and Monthly Study

The obtained nitrogen dioxide concentration primary measurements, after application
of the correction equations, for all three low-cost nitrogen dioxide electrochemical sensors,
relative to the reference measurements, are shown in Figure 9.
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Figure 9. Time-series of primary NO2 concentration measurements of low-cost monitoring stations
and reference instruments.

Figure 10 shows the scatterplots between the measurements of each nitrogen dioxide
low-cost sensor and reference. The corresponding degree of correlation between the
reference measurements and the measurements of the low-cost sensors is also presented.
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Figure 10. Scatterplots of NO2 primary measurements of N1, N2, N3 and reference measurements,
(a) Scatterplot of NO2 primary measurements of N1 and reference measurements, (b) Scatterplot
of NO2 primary measurements of N3 and reference measurements, (c) Scatterplot of NO2 primary
measurements of N3 and reference measurements.

Figure 11 shows the average of the hourly nitrogen dioxide concentration measure-
ments of the three low-cost sensors in relation to the reference measurements. Figure 12
shows both the simple linear regression scatter plot with the correlation degree and the
nonlinear regression scatter plot with the polynomial equation of the correlation and the
correlation degree, of the nitrogen dioxide concentration measurements.
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Figure 11. Time-series of the average of primary NO2 concentration measurements of the three nodes
(N1, N2, N3) low-cost monitoring stations and reference instruments.
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Figure 12. Scatterplots of NO2 primary measurements. (a) Scatterplot of NO2 primary measurements
of linear regression (LR) of average measurements (N1, N2, N3), (b) Scatterplot of NO2 primary mea-
surements of nonlinear (NLR), (polynomial function 2nd degree) regression of average measurements
(N1, N2, N3).

In order to evaluate the proposed methodology, the NLR was applied for each week
of the selected period and the extracted coefficients were compared. This was conducted to
ensure the time stability of the NLR methodology. Conclusively, to estimate the polynomial
function the experiment was performed on a weekly basis. From the data of each week, both
a polynomial function and the degree of correlation of the data emerged. The parameters
of the rolling regression such as Alpha and Beta coefficients, Error, Correlation, and degree
of correlation are shown, for the nitrogen dioxide concentrations, for the average value of
the primary data of the three nitrogen dioxide sensors with the reference data in Table 3,
and for the average value of the corrected data of the three nitrogen dioxide sensors with
the reference data in Table 4.

Table 3. Parameters of rolling regression between primary and reference measurements of NO2 for
four weeks.

Alpha Beta Error Correlation R2

Week 1 9.65 0.565 9.76 0.63 0.40
Week 2 2.19 0.935 12.75 0.78 0.60
Week 3 9.98 0.720 19.56 0.53 0.28
Week 4 5.72 0.732 10.59 0.69 0.48
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Table 4. Parameters of rolling regression between corrected and reference measurements of NO2 for
four weeks.

Alpha Beta Error Correlation R2

Week 1 10.87 0.449 7.75 0.63 0.40
Week 2 4.96 0.742 10.13 0.78 0.60
Week 3 11.14 0.5724 15.52 0.53 0.28
Week 4 7.74 0.582 8.42 0.69 0.48

Figure 13 shows the coefficients (Alpha, Beta, Error, R2) both of the rolling regression
of the average of the primary measurements of three nitrogen dioxide sensors and the
reference, and the coefficients of the rolling regression of the average of the corrected by
nonlinear regression measurements of three nitrogen dioxide sensors and the reference.
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done by co-estimating both the polynomial correlations from Figures 13 and 14 and the 
correctness, evaluation, and reliability of the results with respect to the reference data. The 

Figure 13. Rolling regression coefficients of average of primary and average of corrected measure-
ments (4 weeks) in respect to reference measurements of NO2, (a) Alpha coefficient of average of
primary and average of corrected measurements in respect to reference measurements, (b) Beta
coefficient of average of primary and average of corrected measurements in respect to reference
measurements, (c) Error of average of primary and average of corrected measurements in respect to
reference measurements, (d) Correlation degree (R2) coefficient of average of primary and average of
corrected measurements in respect to reference measurements.

The observations extracted from Figure 13 in relation to the corrected data, in terms of
the coefficients of the rolling regression for a four-week period for nitrogen dioxide, show a
slight increase in the Alpha coefficient, while the Beta coefficient shows a decrease, the Error
shows aν average improvement of 20%, and the correlation coefficient (R2) remains stable.

The extraction of the coefficients of the nonlinear correction function for nitrogen
dioxide (NO2) was carried out as follows. From Figure 14 the square root of the average of
the coefficients (a) of x2 of N1, N2, N3 determines the value of the coefficient (a) of x2 in
the correction equation. The value of the coefficient (β) of x of the correction equation can
range from the maximum value that each coefficient (β) of x shows in the scatter plots of
the Figure 14 to their average value; the most appropriate value (β) of x was chosen which
gives the optimum effect on all three sensors. The coefficient (γ) of the correction equation
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is obtained by taking the square root of the average of the coefficients (γ) shown in the
scatter plots of Figure 14.
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Figure 14. Scatterplot of all NO2 primary measurements in respect to the reference measurements of
nonlinear (NLR), (polynomial function 2nd degree) regression. (a) Scatterplot between primary of N1
and reference measurements of NO2 of nonlinear (NLR) regression, (b) Scatterplot between primary
of N2 and reference measurements NO2 of nonlinear (NLR) regression, (c) Scatterplot between
primary of N3 and reference measurements NO2 of nonlinear (NLR) regression.

The calculation of the polynomial function for the correction at the monthly level was
done by co-estimating both the polynomial correlations from Figures 13 and 14 and the
correctness, evaluation, and reliability of the results with respect to the reference data. The
polynomial function acting on the sensor data as a correction factor to the nitrogen dioxide
gas pollutant concentration measurements of low-cost sensors is described in Equation (7)

NO2NLR = −0.038·NO2
2 + 0.68·NO2 (7)

where, NO2NLR, is the corrected concentration measurement of nitrogen dioxide and NO2
is the primary concentration measurement of nitrogen dioxide low-cost sensor.

The polynomial function of Equation (7) was applied to the primary data of each
low-cost nitrogen dioxide (NO2) sensor. Figure 15 shows the time series and scatter plot of
the average of corrected measurements in respects to reference measurements. The scatter
plots of corrected measurements in comparison with reference measurements for nitrogen
dioxide concentrations are shown in Figure 16 for nodes N1, N2, N3, respectively.
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3.3. Comparisson Results of RMSE, MAD, MAE Methods Evaluation 
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Figure 15. Time-series and scatterplot of average of corrected NO2 measurements of N1, N2, N3, and
reference measurements, (a) Time-series of average of corrected NO2 measurements of N1, N2, N3,
and reference measurements, (b) Scatterplot of average of corrected NO2 measurements of N1, N2,
N3 and reference measurements.
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3.3. Comparisson Results of RMSE, MAD, MAE Methods Evaluation

For evaluation of the results of the application of nonlinear regression to measurements
of air pollutant concentration from low-cost sensors, the methods of Root Mean Square
Error (RMSE), Mean Absolute Deviation (MAD), and Mean Absolute Error (MAE) were
applied to both weekly and monthly measurement data. Data are reported for the primary
and corrected (nonlinear regression) measurements for each low-cost sensor (ozone and
nitrogen dioxide) relative to reference measurements.

Tables 5 and 6 show the RMSE, MAD, and MAE results of both primary and cor-
rected measurements for the three low-cost ozone (O3) sensors, in monthly and weekly
measurements, respectively.

Table 5. Monthly evaluation of O3 measurements via RMSE, MAD, MAE methods.

O3

Sensors N1 N2 N3 N1 N2 N3 N1 N2 N3

Method RMSE MAD MAE

Primary 1.52 1.74 0.10 16.21 19.30 16.16 19.95 23.19 21.38
Corrected 1.83 2.04 0.16 14.72 16.75 12.99 18.65 21.20 18.52

Table 6. Weekly evaluation of O3 measurements via RMSE, MAD, MAE methods.

O3

Sensors N1 N2 N3 N1 N2 N3 N1 N2 N3

Method RMSE MAD MAE

Primary 3.14 3.60 0.21 12.34 18.28 12.61 16.16 20.02 18.19
Corrected 3.79 4.24 0.46 11.31 16.19 11.01 16.02 19.50 17.69

Tables 7 and 8 show the RMSE, MAD, and MAE results of both primary and corrected
measurements for the three low-cost nitrogen dioxide (NO2) sensors, in monthly and
weekly measurements, respectively.

Observing Tables 5 and 6 for ozone and Tables 7 and 8 for nitrogen dioxide, on a
weekly and monthly basis, as corrected data compared to the primary data, the following
can be concluded. The degree of correlation decreases slightly, while an improvement is
evident in both the MAD and MAE methods, as they show less divergence and error, which
means that the corrected measurements are more realistic and reliable. Specifically, the
improvements in the corrected measurements by nonlinear regression, according to the
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RMSE, MAD and MAE methods is shown for ozone, the monthly measurements (Table 5),
the RMSE of 20% to 60%, the MAD of 10% to 24% and the MAE of 7% to 15%. The weekly
measurements (Table 6), the RMSE of 17% to 86%, the MAD of 9% to 14% and the MAE of
3% to 9%. For nitrogen dioxide, the monthly measurements (Table 7) show RMSE of 3% to
28%, MAD of 9% to 60% and MAE of 4% to 25%. The weekly measurements (Table 8) show
RMSE of 1% to 3%, MAD of 1% to 3% and MAE of 3% to 4%.

Table 7. Monthly evaluation of NO2 measurements via RMSE, MAD, and MAE methods.

NO2

Sensors N1 N2 N3 N1 N2 N3 N1 N2 N3

Method RMSE MAD MAE

Primary 0.90 1.04 1.45 2.29 3.47 2.57 11.78 12.89 10.16
Corrected 1.16 1.12 1.50 1.43 3.18 2.36 12.28 12.36 12.77

Table 8. Weekly evaluation of NO2 measurements via RMSE, MAD, and MAE methods.

NO2

Sensors N1 N2 N3 N1 N2 N3 N1 N2 N3

Method RMSE MAD MAE

Primary 1.87 2.15 3.01 1.46 3.47 1.34 7.52 10.28 4.70
Corrected 1.93 2.20 3.04 1.42 3.38 1.33 7.33 10.00 4.54

4. Discussion

The improvements in the methodology of nonlinear regression as correction factor
show satisfactory results. In general, simple nonlinear regression models as correction
factors in low-cost sensor measurements are not commonly found in the literature. Instead,
many research papers have been published on correction models using random forest
(RF), artificial neural networks (ANN), support vector machine (SVM), and support vector
regression (SVR) techniques. These techniques have shown excellent results in improving
measurements. As the platform presented here belongs to IoT devices, it is understood that
such technologies are not typically supported by IoT devices. Given that the correction
of the measurements has to be carried out at the monitoring station, which is based on
an IoT device, with limited computing power, the application of correction by nonlinear
regression is feasible, compared to other methods which require high processing power
and cannot be underestimated by such devices.

The application of simple nonlinear regression (NLR) to measurement data from low-
cost sensors, in particular electrochemical nitrogen dioxide and ozone sensors, shows that
it can improve the measurements from these sensors to a certain extent.

The experiment was conducted using both weekly and monthly data. Concerning
ozone, the weekly corrected data exhibited an improvement in the degree of correlation
of up to 5% compared to the primary data, while the monthly corrected data showed an
enhancement in the correlation coefficient of up to 4%. For nitrogen dioxide, the weekly
corrected data demonstrated an increase in the correlation coefficient of up to 9% compared
to the primary data, while the monthly corrected data indicated an improvement in the
correlation coefficient of up to 2.5%.

The validation of the improvements are shows by the comparison results of the RMSE,
MAD and MAE methods, According to Tables 5 and 6 comparing the primary and corrected
measurements in respect to reference measurements, for the monthly measurements of
ozone, the RMSE shows an improvement of up to 60%, the MAD shows an improvement
or up to 24% and the MAE shows an improvement of up to 15%. For the weekly mea-
surements of ozone, the RMSE shows an improvement of up to 86%, the MAD shows an
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improvement of up to 14% and the MAE shows an improvement of up to 9%. According
to the Tables 7 and 8 comparing the primary and corrected measurements in respect to
reference measurements, for the monthly measurements of nitrogen dioxide, the RMSE
shows an improvement of up to 28%, MAD shows an improvement of up to 60% and MAE
shows an improvement of up to 25%. For the weekly measurements for ozone, the RMSE
shows an improvement of up to 3%, the MAD shows an improvement of up to 3% and the
MAE shows an improvement pf up to 4%.

In addition, methodology scaling was followed to investigate the reliability of the
corrected measurements through the nonlinear regression approach, which encompasses
both time scaling and the seasonality scale.

The evaluation of the time scaling of the experiment involved applying the nonlinear
regression approach for a period of one and a half months following the main experiment
(i.e., from 14 May 2021 to 31 June 2021) to all low-cost sensors. Indicative results are
presented in the figures below. For simplicity and given that all nodes show high correlation
with each other. Figure 17 shows the time-series and scatter plots of non-corrected NO2
measurements from node N1 and reference measurements, during the time period from 14
May 2021 to 31 June 2021. Correspondingly, Figure 18 shows the time-series and scatter
plots of NO2 corrected measurements from N1 and reference measurements, for the time
period of 14 May 2021 to 31 June 2021.

In fully compliance and correspondence, Figure 19 shows the time-series and scatter
plots of O3 non-corrected measurements of node N1 and reference measurements, during
the time period from 14 May 2021 to 31 June 2021. Respectively, Figure 20 shows the
time-series and scatter plots of O3 corrected measurements of node N1 and reference
measurements, during time period from 14 May 2021 to 31 June 2021.

In order to determine whether seasonality affects the results, the nonlinear regression
approach was applied during the winter month of December 2021 (i.e., from 1 December
2021 to 31 December 2021), to all low-cost sensors, where indicative results are shown in
the figures below. Figure 21 shows the time-series and scatter plots of NO2 non-corrected
measurements of node N1 and reference measurements, for the time period of 1 December
2021 to 31 December 2021. Figure 22 shows the corresponding time-series and scatter plots
of NO2 corrected measurements for node N1 and reference measurements, for the time
period from 1 December 2021 to 31 December 2021.
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Figure 17. Time-series and scatter plots of NO2 non-corrected measurements of node N1 and
reference measurements, for the time period of 14 May 2021 to 31 June 2021. (a) Time series of N1
(NO2) non-corrected and reference measurements, (b) Scatterplot of N1 (NO2) non-corrected and
reference measurements.
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Figure 18. Time-series and scatter plots of NO2 corrected measurements of node N1 and reference mea-
surements, for the time period of 14 May 2021 to 31 June 2021. (a) Time series of N1 (NO2) corrected
and reference measurements, (b) Scatterplot of N1 (NO2) corrected and reference measurements.
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Figure 19. Time-series and scatter plots of O3 non-corrected measurements of node N1 and ref-
erence measurements, for the time period of 14 May 2021 to 31 June 2021. (a) Time series of
N1 (O3) non-corrected and reference measurements, (b) Scatterplot of N1 (O3) non-corrected and
reference measurements.
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Figure 21. Time-series and scatter plots of NO2 non-corrected measurements of node N1 and refer-
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reference measurements. 

Figure 20. Time-series and scatter plots of O3 corrected measurements of node N1 and reference mea-
surements, for the time period from 14 May 2021 to 31 June 2021. (a) Time series of N1 (O3) corrected
and reference measurements, (b) Scatterplot of N1 (O3) corrected and reference measurements.
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Figure 21. Time-series and scatter plots of NO2 non-corrected measurements of node N1 and reference
measurements, for the time period of 1 December 2021 to 31 December 2021. (a) Time series of N1
(NO2) non-corrected and reference measurements, (b) Scatterplot of N1 (NO2) non-corrected and
reference measurements.
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Figure 22. Time-series and scatter plots of NO2 corrected measurements of node N1 and reference
measurements, for the time period from 1 December 2021 to 31 December 2021. (a) Time series
of N1 (NO2) corrected and reference measurements, (b) Scatterplot of N1 (NO2) corrected and
reference measurements.

Figure 23 shows the time-series and scatter plots of O3 non-corrected measurements
of node N1 and reference measurements for the time period of 1 December 2021 to
31 December 2021. Figure 24 shows the time-series and scatter plots of O3 corrected mea-
surements of node N1 and reference measurements for the time period from 1 December
2021 to 31 December 2021.

For reasons of completeness, Table 9 summarizes the above presented results and
specifically the R2 and the a, b coefficients (of linear equation y = ax + b) behavior before
and after the application of the nonlinear regression model for all Nodes, N1, N2 and N3,
in order to make clear the similar behavior of all sensing devices.
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Figure 23. Time-series and scatter plots of O3 non-corrected measurements of node N1 and reference
measurements for the time period from 1 December 2021 to 31 December 2021. (a) Time series of
N1 (O3) non-corrected and reference measurements, (b) Scatterplot of N1 (O3) non-corrected and
reference measurements.
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Figure 24. Time-series and scatter plots of O3 corrected measurements of node N1 and refer-
ence measurements for the time period from 1 December 2021 to 31 December 2021. (a) Time
series of N1 (O3) corrected and reference measurements, (b) Scatterplot of N1 (O3) corrected and
reference measurements.

Table 9. The behavior of R2 before and after the application of NLR during all periods of study,
namely (14 April–13 May 2021, 14 May–30 July 2021, 1–31 December 2021).

Period 14 April–13 May 2021 14 May–30 July 2021 1–31 December 2021

Status
Plain NLR Plain NLR Plain NLR

a b R2 a b R2 a b R2 a b R2 a b R2 a b R2

NO2

N1 0.56 13.2 0.43 1.02 7.4 0.43 0.55 13.3 0.20 0.65 13.5 0.20 0.71 13.6 0.30 0.79 11.2 0.30
N2 0.54 13.2 0.43 0.98 7.8 0.42 0.46 11.8 0.19 0.56 12.1 0.12 0.74 5.7 0.38 0.83 3.2 0.38
N3 0.50 16.4 0.33 0.92 11.2 0.33 0.55 13.0 0.17 0.64 13.3 0.17 0.67 14.9 0.36 0.77 12.5 0.36

O3

N1 0.96 5.4 0.61 1.05 4.8 0.65 0.61 16.4 0.61 0.73 4.8 0.65 0.82 6.1 0.33 0.80 6.3 0.33
N2 0.88 7.8 0.65 0.97 1.3 0.68 0.52 17.7 0.56 0.65 5.1 0.58 1.34 32.3 0.64 1.40 38.3 0.63
N3 0.86 3.6 0.57 0.97 6.8 0.59 0.59 14.9 0.64 0.70 4.5 0.66 1.37 29.2 0.57 1.41 34.8 0.56

Observing the results, the improvement does not appear directly from the degree of
correlation between the corrected data and the reference data, but from the shift of the
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linear coefficients, after the application of nonlinear regression, which influence the effect
of the correction. As a validation of the reliability of the correction, it is worth mentioning
the results in the evaluation of the nonlinear regression method through the RMSE, MAD
and MAE methods. The RMSE method showed small deviation between the primary and
corrected values for both nitrogen dioxide and ozone sensors, as indicated by the tables
for the monthly and weekly analysis of the results. In the MAD and MAE methods, the
improvement is evident according to the results table. This correction achieved by the
application of nonlinear regression has a direct effect on refining the measurements to be
closer to the actual ones, which is achieved as demonstrated, for weekly measurements in
particular, by Tables 1 and 2, and Figure 5 for ozone, and Tables 3 and 4, and Figure 13 for
nitrogen dioxide, as well as by Figures 7 and 8 for ozone and Figures 15 and 16 for nitrogen
dioxide, on a monthly basis. According to scaling methods, both time and seasonality
(Table 9), the application of nonlinear regression, while not improving the correlation
coefficient (R2), improves the linear coefficients. For both types of low-cost gas sensors
(ozone and nitrogen dioxide), the analysis of the corrected measurements is carried out in
accordance with, Table 2 and Figure 7 for ozone, and Table 4 and Figure 16 for nitrogen
dioxide. This improvement affects the corrected measurements, making them closer to the
reference measurements, indicating that the corrected measurements are more reliable.

5. Conclusions

In this work, the methodology of nonlinear regression as a correction factor in mea-
surements from low-cost air pollutant sensors was presented. The advantage of this
methodology is that it can be implemented in IoT devices, as it does not require high
computational power. The proposed methodology proves excellent results, as the results
indicate that a second-degree polynomial is adequate to show an improvement in the
degree of correlation (R2) of up to 9% for ozone and up to 4% for nitrogen dioxide, while
experiments with a higher degree polynomial were not adopted due to increased system
complexity. The results of both scale methods demonstrate satisfactory performance, with
corrected measurements closely aligning with reference measurements.

For the purpose of evaluating the results, the RMSE, MAD, and MAE methods were
employed for both primary and corrected data. The RMSE method indicated a deviation
between the primary and corrected results, suggesting the correction impact on the data.
However, both the MAD and MAE methods showed an improvement in the corrected
results, since for both types of air pollutant sensors both the mean absolute deviation and
the mean absolute error show a smaller value in the corrected values compared to the
reference values. In summary, Table 10 shows the improvements of average degree per
method was used.

Table 10. Average degree of improvements per method: RMSE, MAD, and MAE.

RMSE MAD MAE

O3 32% 16% 10%
NO2 13% 26% 5%

This means that the correction by the nonlinear regression method, although not
directly improving the correlation degree, accelerates the results through the linear coeffi-
cients, with the final effect of reducing the occurrence of the reduction in both the MAD
and MAE methods. In line with the previous values, the corrected values indicate closer
alignment with the reference data and, therefore, increased reliability.

Nonlinear regression serves as an effective correction factor for data from low-cost
sensors, feasible on both weekly and monthly bases. Notably, weekly correction demon-
strates slightly superior performance in the corrected results, as evidenced by the RMSE,
MAD, and MAE tables.

Given the global concern regarding air quality, expanding spatial coverage, especially
in large urban areas, through air quality monitoring networks is crucial.
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