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Abstract: Highway bridges are crucial civil constructions for the transport infrastructure, which
require proper attention from the corresponding institutions of each country and constant financing
for their adequate maintenance; this is important because different types of damage can be generated
within these structures, caused by natural disasters, among other sources, and the heavy loads they
transport every day. Therefore, the development of simple, efficient, and low-cost methods is of vital
importance, allowing us to identify damage in a timely manner and avoid bridges collapsing. As
reported in a previous work, the wavelet energy accumulation method (WEAM) and its corresponding
application in the Rio Papaloapan Bridge (RPB) represented an important advance within the field.
Despite identifying damage in bridges with precision and at a low cost, there are several aspects to
improve in that method. Therefore, in this work, that method was improved, eliminating several
steps, and meaningfully reducing the computational burden by implementing an algorithm based
on the Shannon entropy, thus giving way to the new entropy wavelet-based method (EWM). This
new method was applied directly with regard to the real-life RPB, in both its healthy and damaged
conditions. Also, its corresponding numerical model based on the finite element method in its healthy
condition and different damage scenarios were carried out. The results indicate that the new EWM
retains the advantages of WEAM, and it allows for damage identification to be completed more
efficiently, increasing the precision by approximately 0.11%, and significantly reducing the computing
time required to obtain results by 5.67 times.

Keywords: damage identification; efficiency increment; entropy; highway bridges; vibration signals;
wavelet

1. Introduction

Due to the accelerated population growth in recent decades, the construction of cities,
towns, and related infrastructures is essential for the adequate interaction of social, well-
being, political, and economic activities in every nation around the world [1–3]. One
of the most critical and expensive infrastructures that allows communication between
different regions are bridges, which tend to deteriorate and accumulate diverse types
of damage, produced by different environmental and human factors [4–6]. Therefore,
damage to bridges, as in any civil structure, is inherent; however, those constructions can
provide many years of surface with adequate maintenance programs and appropriate
damage identification processes [7–9]. Thus, a periodical monitoring of civil structures
called structural health monitoring (SHM) is fundamental for preserving the service life
of bridges, and avoiding tragic accidents resulting from damage not being detected in
time [10,11].
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The global monitoring of bridges offers vital information regarding the serviceability
and general integrity of the bridges; however, ensuring safety and continuous service
depends on the methodology applied to identify damage in all of the critical elements in a
timely, accurate, and efficient manner, as well as on the capacity to monitor the damage
propagation and the decisions made to correct the structural defects without significantly
affecting the operation of these structures. Bridge diagnosis comprises two levels being
included in a damage identification process: the detection and localization of damage. As
its name indicates, the damage detection alerts us about the existence of damage in the
inspected structure, while the damage localization determines the position of the defects
on the structure [12]. Failure to detect damage to bridges in a timely manner can cause
collapses with tragic consequences. In this regard, an example of this kind of accident
happening in the current century is the Entre-os-Rios tragedy, which was a disaster that
occurred on 4 March 2001 in Porto Portugal, where the fourth pillar of the Hintze Ribeiro
Bridge, which connected the towns of Castelo de Paiva and Eja over the Duero River, had
suffered damage that was not detected in time, causing the collapse of two sections of the
road and the death of 59 people in vehicles [13].

Similar to the bridge collapse described above, many catastrophic accidents have
occurred due to failures, deteriorations, or the accumulation of damage in different elements
of bridges, causing the collapse of entire structures and therefore devastating human
deaths and substantial economic losses [14–17]. Historically, the damage identification
process has been performed to visually monitor the condition of bridges. However, some
important limitations of this process are a lack of regular monitoring, inspection-dependent
monitoring, a delay in defect detection, and an inability to determine damage growth
stages [18]. As an alternative to visual monitoring, systems based on SHM are used. In a
typical SHM of bridges, sensors are dispersed throughout the structure, and the collected
data are used to analyze the condition of the bridge [19–21]. Different parameters can be
used to evaluate structures using SHM systems, such as corrosion, cracking, displacement,
fatigue, settlement, deformation, temperature, inclination, vibration, water level, etc. [22].
Therefore, it is of vital importance to develop and implement reliable and low-cost methods
for the detection and location of non-visible damage in bridges. In recent years, to address
the need to safeguard the structural integrity of bridges, SHM systems have been developed
worldwide, and different analysis methods for the detection, location, and evaluation of
damage in bridges are being investigated.

In recent decades, SHM techniques, based on the analysis and post-processing of
the vibration responses of bridges, have become the most promising alternatives used to
efficiently detect, locate, and evaluate the severity of damage in this type of civil structure,
guaranteeing its integrity and predicting its useful life [23,24]. Thus, vibration-based meth-
ods for identifying damage in structures subjected to moving loads, such as bridges, can be
broadly classified into parametric and non-parametric methods [25]. Parametric methods
work with data in the modal domain [26–31]. On the other hand, non-parametric methods
use data in the time or frequency domain; these include wavelet theory [32–35], empiri-
cal mode decomposition [36–38], time series analysis [39–41], multiple signal classifica-
tion [42,43], entropy [44–47], neural networks [48–50], fractals [51,52], principal component
analysis [53–56], etc.

In particular, the wavelet energy accumulation method (WEAM) is a non-parametric
method, previously developed in [1], with the objective of detecting and locating damage in
vehicular bridges. This method overcomes the limitations of the parametric methods, and
provides additional advantages from the previously developed non-parametric methods.
Despite the advantages of WEAM, which include its ability to detect and locate diverse
types of damage in bridges with high precision, in different locations, and of various
severities via the use of a few sensors distributed on the bridge deck, its main disadvantages
are that it involves a significant number of stages, as well as the requirement of a high
computing time.
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According to the aforementioned issues, in this article, a new method, called the
entropy wavelet-based method (EWM), is presented, which eliminates the drawbacks of
the WEAM via the implementation of an algorithm based on the Shannon entropy [57].
This method avoids the need of obtaining three-dimensional colored CWT (continuous
wavelet transform) diagrams with very good resolutions, a very wide initial scale range,
and the appropriate choice of the color map to begin investigating whether there has been
damage caused to the analyzed bridge via the use of monitoring data, as well as in which
area of those diagrams the damage identification is easier, which again requires a significant
computing time. With the entropy-based algorithm that is developed and implemented in
this study, it is possible to know the most convenient specific scale value or scale range in a
very timely manner, allowing for the identification of damage without a loss of precision in
the damage location, thus saving a significant amount of computational time; this will be
of great help for practical systematic applications on the bridges of the Federal Highway
Network of a specific country.

Thus, in this work, an entropy wavelet analysis is carried out, which gives rise to the
new EWM, which improves the WEAM, making it more efficient for damage identification
in highway bridges via the use of the vibration data obtained from numerical simulations,
based on the finite element model of the Rio Papaloapan Bridge (RPB) in healthy conditions
and with diverse damage scenarios (different locations and damage severities), which
was calibrated by taking the vibration monitoring data of the real bridge in operation
as reference. Moreover, the vibration data acquired from the real-life RPB in its healthy
condition and with a removed cable are used to validate this new method in an experimental
manner. Therefore, with the implementation of the algorithm based on the Shannon entropy,
it is possible to optimize the WEAM in order to have a new, more efficient, and simple
method (EWM) for the identification of damage in highway bridges, allowing us to obtain
results for damage detection and localization with precision and with very low computing
time. This has allowed us to simplify the original method, which involves more stages and
analyses that require a high computational load and personnel with knowledge on the topic.
It was demonstrated that the EWM is capable of eliminating 36% of the steps required to
apply the WEAM, the damage location precision is increased 0.11%, and, above all, the
computing time required to provide results is reduced by 5.67 times. For both methods,
a Dell© Optiplex 980© computer with a 2.93 GHz Intel© Core© i7© processor, 1.81 TB of
hard drive capacity, 8.00 GB of RAM, and Windows 10 Pro© operating system were used;
whereas, the corresponding codes to post-process the signals were written in MATLAB©

(R2017a). Thus, the results of the EWM application, both numerically and experimentally,
were successful, and, therefore, this new method is presented as a promising alternative to
be implemented permanently in the most critical bridges of a specific country in order to
gain knowledge regarding their structural conditions, avoiding tragic collapses.

2. Description of the Rio Papaloapan Bridge (RPB)

The RPB is a cable-stayed bridge situated in Veracruz, Mexico, with 407.21 m of total
length and 203 m of main span. This bridge began operating in 1994, and has 8 semi-harps
(SH) with 14 cables for each one, making a total of 112 cables; the shortest cable is recognized
with the number 1, whereas the longest cable is recognized with the number 14. In Figure 1,
some pictures of the RPB are presented, while, in Figure 2, the corresponding layout of the
RPB is included, showing the general dimensions and identifications of semi-harps.
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Figure 2. Drawing of the RPB.

2.1. Finite Element Model

The numerical model of the RPB was developed via the finite element method (FEM),
using the software ANSYS© (V 14.0) for this purpose. The elements utilized to create the
model were SHELL181 for the deck; BEAM188 for pylons, main girders, and transverse
girders; and LINK180 for the stay-cables. All the dimensions, material properties, and
boundary conditions were carefully considered and assigned to each element of the model,
resulting in a final model of 7365 elements and 8053 nodes (see Figure 3). This model was
developed with the possibility of including damage in the deck by reducing the cross-
sectional area of any specific part of the deck, with different severities of damage (width
and depth).
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In order to obtain the vibration responses of the RPB numerical model under different
health conditions while a moving load (simulating a vehicle) crosses the bridge, a load was
implemented on the deck of the model at an initial defined node, moving from node to
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node (at a specific constant speed and in a straight line) through the deck until reaching
the final node, following the route that a vehicle would take along a certain lane of the
bridge. Lastly, the transient responses are obtained for the different scenarios simulated,
and the corresponding data series (time vs. acceleration/displacement) are exported to be
post-processed with the EWM to detect/localize damage.

2.2. Experimental Tests

After a major failure occurred in an upper anchoring element which was used to attach
a cable to the corresponding pylon of the RPB, a broad-scope remote monitoring system was
installed in this cable-stayed bridge in 2013, which was configured with three subsystems,
including sensors, local monitoring, and photovoltaic [1]. As part of the maintenance
program, the RPB was monitored in 2019 under two different integrity conditions as
follows: a healthy bridge, and a damaged bridge without cable No. 6 from SH3, which was
removed in order to inspect its corresponding upper anchoring element.

The respective vibration data of the RPB deck in vertical direction were measured
for both integrity conditions via the use of complementary instrumentation, consisting of
twelve ±2 g tri-axial MEMS wireless accelerometers model G-Link®-LXRS®, fabricated by
LORD MicroStrain®. The sensors were installed on both sides of the bridge (downstream
and upstream) on the deck of the semi-harps SH3, SH4, SH5, and SH6, as can be observed
in Figure 4 via the 12 blue dots (S1–S12). The date were acquired first for the healthy
condition and then for the damaged condition. The damage scenario is represented in
Figure 5, where the red line indicates the cable which was removed. For both scenarios, the
bridge was monitored for 1800 s, establishing a sampling frequency of 64 Hz, for a total of
115,200 samples per sensor. Moreover, the dynamic responses were divided into segments
of 1 min per one, thus generating 30 tests for each case.
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3. Damage Identification Methodology and Their Fundamentals

This section introduces the mathematical concepts underlying the proposed method,
named EWM, for identifying damage in bridges. Specifically, it describes the two theoretical
fundamentals of the algorithms on which this new method is based (the Shannon entropy
and the CWT).

3.1. Shannon Entropy

Entropy is commonly associated with the amount of disorder or order; the greater
the entropy, the greater the disorder or chaos [58]. The Shannon entropy index (SEI) is a
nonlinear measure developed by Claude E. Shannon [57], the father of the entropy theory,
and serves to quantify the complexity and uncertainty found in a time signal. In particular,
the SEI has demonstrated suitability for analyzing signals in the time domain with noise
and non-stationary properties, such as those measured in civil structures, especially large
ones [59]. This makes it a reliable tool with which to evaluate the health status of civil struc-
tures, largely since its value can vary depending on the alterations or changes measured in
the dynamic response [60].

To measure the complexity of a timing signal X, the SEI is calculated as follows:

SEI(X) = −∑K
i=1 p(xi)log2[p(xi)], (1)

where p(xi) represents the probability that a time signal X can take according to its results,
x1, x2, x3, . . ., xK.

As an illustrative example, the SEI can be obtained via a Bernoulli trial [61], which is a
randomized experiment named in honor of Jakob Bernoulli, in which only two results can
be obtained, being labeled as either a success or a failure, see Figure 6. From the point of
view of probability theory, these trials are modeled via a random variable x that can take
only two values, 0 and 1. Typically, 1 is used to represent success. Therefore, if p is the
probability of success, then the entropy depends on the probability p(x = 1) that x can take
the value 1. When p(x = 1) = 0.5, all possible outcomes are equally probable, meaning the
result is not very predictable, and that the entropy is maximum.
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In the last decade, the Shannon entropy has been applied for different purposes,
including the evaluation of the health condition of structures [44,45]. The Shannon entropy
measures the uncertainty in a random variable [57]. Therefore, this can be a reliable
indicator to identify damage in a civil construction, since the vibration signals change
according to the damage level, consequently generating a variation in the Shannon entropy
magnitude [44,45]. Therefore, since the Shannon entropy is associated with chaos, this
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helps to determine in which parts of a signal there is more or less chaos, associating high
levels of chaos or entropy with an important phenomena or critical situations in the signals.

3.2. Continuous Wavelet Transform

One of the most utilized wavelet transforms (WT) is the continuous wavelet transform
(CWT), which applies a variable-sized window method into a time-domain signal in order
to convert it to a time-frequency diagram (see Figure 7).
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First, a mother wavelet (MW) is selected, and this base signal is used to continuously
create a wavelets’ family by means of the translation and dilation of the MW itself along
the entire signal to be analyzed. Then, this process is implemented sequentially, and, in
this way, it is possible to assess the similarity between the MW chosen and each segment
of the complete signal to be examined throughout the entire time. As a consequence of
this process, the discontinuities contained in the analyzed signal will generate high CWT
coefficient magnitudes, which could be related to damage [62].

It is important to mention that there is a wide range of types of MWs, and the correct
selection depends on the application in which it is required to be used, following a trial-
and-error process to find the most convenient one.

Thus, if a MW is considered [63]

ψ(t) ∈ L2(R), (2)

its two fundamental properties are zero mean and its normalized nature. These properties
are mathematically represented as follows:∫ ∞

−∞
ψ(t)dt = 0 (3)

∥ ψ(t) ∥2 =
∫ ∞

−∞
ψ(t)ψ*(t)dt = 1. (4)

Then, considering that it can be translated and dilated, the MW can create a basis set,
as indicated below: {

ψs,u(t) =
1√

s
ψ

(
t − u

s

)}∣∣∣∣
u∈R,s∈R+

. (5)

where u is the translataion parameter and s is the scale parameter. Thus, the CWT is the
coefficient of the base ψs,u(t), that is

W f (s, u) = ⟨ f (t), ψs,u⟩ (6)

W f (s, u) =
∫ ∞

−∞
f (t)ψ*

s,u(t)dt (7)

W f (s, u) =
∫ ∞

−∞
f (t)

1√
s

ψ*
(

t − u
s

)
dt (8)
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In this way, by using this transform, a three-dimensional colored CWT diagram can be
obtained with good resolution for all the parameters (time, scale, and coefficients) from a
one-dimensional time signal; however, obtaining these diagrams with a high resolution
and with wide ranges of scale and time will require a high computational consumption
time, even more for long bridges and for vehicles crossing with low speed.

3.3. Entropy-Wavelet Based Method (EWM)

The EWM, as explained previously, was developed from the need to make the WEAM
more efficient for damage identification in highway bridges, in such a way that the neces-
sary stages and the computing time required to apply the WEAM could be significantly
reduced [1], but without losing its precision in the damage identification. Figure 8 illustrates
the steps of our proposed, the EWM method, and the WEAM method.
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Thus, the EWM was applied to evaluate the health condition of the RPM bridge is
presented in Figure 8, and this consisted of recording the vibration signals at different
points along the bridge deck while a vehicle crosses it. Subsequently, the average SEI
corresponding to the CWT coefficients of the current case to be analyzed is calculated
considering the different measurement points and a wide scale range. Next, starting from
the lowest point of the SEI, the useful scale range is defined to identify the damage, and the
average curve of the CWT coefficients is obtained considering the selected scale range and
the different measurement points. Finally, the curve obtained from the CWT coefficients
is compared with the corresponding curve of the healthy case (baseline), and, if there is
damage, a sudden increment in the amplitude of the CWT coefficients will be observed
in the position of the damage for the current case. This will not happen for the healthy
case, since the case without damage will exhibit a curve that will tend to be very flat and of
low amplitude.

The step-by-step application of the EWM for the detection and localization of damage
in bridges is as follows:

1. Instrument the bridge with vibration sensors distributed proportionally along the deck.
2. Obtain vibration responses for the healthy bridge (baseline) and for the current

condition of the bridge while a vehicle or vehicles cross the bridge.
3. Obtain the average SEI for the CWT coefficients of the current case to be analyzed,

considering the data from all the measurement points and a very wide scale range,
allowing SEI results outside of the effect zone of the structure natural frequencies.

4. Define the most useful CWT scale range for damage identification from the lowest point
of the SEI value (end of the effect of the structure natural frequencies) and upwards.

5. Apply a suitable filter to remove as much noise in the signals (Savitzky–Golay filter;
order: 2, window length: 19) and eliminate any edge effects by extending the signals
on both sides. It should be noted that this step is not entirely necessary, since in
the results presented in Section 4, it can be observed that even without filtering
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or extending the signals, the identification of damage is possible and very evident.
However, it is recommended to filter and extend the signals, so that the detection and
location of damage is even clearer. Likewise, the most appropriate MW must be used
throughout the application of the EWM, which corresponds with the one previously
defined via the WEAM (Mexican hat for the RPB).

6. Obtain the average value of the CWT coefficients for the selected scale range and for
the different measurement points.

7. Compare the curve obtained in the previous point with the corresponding curve of the
healthy case. If there is damage, the magnitude of the CWT coefficients will increase
suddenly at the location of the damage, which will not happen for the healthy case,
since the healthy case will demonstrate a curve of low amplitude without significant
increments at specific positions.

Thus, comparing this new methodology, EWM, with the WEAM presented in [1], the
simplification of steps achieved with the EWM is evident (from 11 to 7 stages); however,
it should be noted that the steps that were eliminated with the EWM are the ones that
consume the most computing time with the WEAM. Therefore, damage identification
becomes faster and more efficient with the EWM and without sacrificing the precision in
damage detection/localization, as will be demonstrated in the next section of this article.

4. Numerical Results and Analysis

In this section, the EWM is numerically validated through simulations with the finite
element model previously described. For this purpose, the EWM is applied in the FEM
model of the RPB in its healthy condition, as well as with different damage scenarios. The
results indicate that the detection and localization of all the damage cases is possible with
the EWM in a quick, accurate, and efficient manner.

Since, in this article, the EWM is presented for the first time, in this section, several
diagrams will be shown and analyzed in detail, which will allow for the sequential ob-
servations of how the idea of making the WEAM more efficient arose, by implementing
an algorithm based on the Shannon entropy in order to give way to the EWM. Moreover,
the EWM was applied to identify diverse damage conditions, and the corresponding
results/diagrams will be also presented.

The most important challenges that led to the development of the EWM were the
reduction of the steps required to apply the WEAM and the reduction of the computing
time necessary to obtain the results, which allow for the detection and localization of
damage without losing any precision. Therefore, since these are processes that involve a
significant computational burden which are related to other stages, it was identified that
the definition of the CWT scale range, useful for identifying damage with the WEAM via
the use of colored 3D CWT diagrams, is the most critical stage of that method (stage 5
in [1]), along with the generation of new colored 3D CWT diagrams to identify damage in
the area of interest (stage 8 in [1]).

Thus, considering the stages of the WEAM, which were described in detail in [1],
seven of those steps were eliminated via the EWM (steps 4, 5, 7, 8, 9, 10, and 11); that is,
64% of the WEAM stages were eliminated and replaced with a few steps requiring low
computing time consumption. It should be noted that around 95% of the computing time
needed to obtain the results via the application of the WEAM and determine the health
condition of the analyzed structure relates to the stages 5, 7, 8, 9, and 10, and all of them
were eliminated with the EWM. Consequently, the EWM began to be designed, processing
the corresponding data from the numerical simulations with the scenario of the damaged
bridge, with an intermediate severity damage on the deck at 25% of the length (simulated
by reducing 30% the area of the cross-section at 25% of the 203 m length of the bridge deck
between towers), and the CWT coefficients were obtained for each scale value, from 1 to
1000, measuring at 25% of L. In the corresponding diagram that was obtained (see Figure 9),
it can be observed that it is difficult to detect damage due to the large number of curves.
However, it can be noted that there are certain curves with magnitude increments of CTW
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coefficients around 25% of L. Therefore, it is necessary to define what scales these curves
correspond to, discarding those that are not useful.
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Figure 9. CWT coefficients for each scale value from 1 to 1000, corresponding to the scenario with
damage at 25% of L and measuring at 25% of L.

To clarify the diagram shown in Figure 9, the CWT coefficients were obtained again
for the scale range from 1 to 1000, but now with increments of 50, and the corresponding
results are presented in Figure 10. Thus, in Figure 10, it is possible to observe that most of
the curves that are not useful for detecting damage no longer appear, while a significant
number of the useful curves that suggest the existence of damage at 25% of L are preserved.
Therefore, for this analyzed scenario, there are more useful curves than there are curves
that do not reveal the presence of damage.
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Figure 10. CWT coefficients for the scale range from 1 to 1000 with increments of 50, corresponding
to the scenario with damage at 25% of L and measuring at 25% of L.

Therefore, in order to have a reliable parameter that allows for the systematic defining
of the useful scale range to identify damage without the need of obtaining CTW coefficient
curves for different ranges and increments of scale, an algorithm based on the Shannon
entropy was implemented (see Section 3.1, Equation (1)). In this way, the average SEI for
the CWT coefficients (entropy–CWT diagram) considering all of the measurement points
(25%, 50%, and 75% of L) of the current scenario and the same wide scale range (1 to 1000)
and scale increment used for the diagram in Figure 9 is obtained. Thus, in Figure 11, the
respective results of the average SEI can be observed, where three zones are clearly noticed.
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Figure 11. Entropy–CWT diagram, plotting the average SEI for the CWT coefficients considering all
measurement points (25%, 50%, and 75% of L) for the case of a bridge with a deck damaged at 0.25 L
and a scale range from 1 to 1000.

SEI zone 1: This has a scale range from 1 to 52, and the maximum SEI value can be
located. In this zone, the effects of the natural frequencies of the system are present (if
the WEAM were used, they would correspond to the reddish spots, indicating high CWT
coefficients, as presented in the lower part of the colored 3D CWT diagrams, see Figure 12).
Therefore, the high levels of chaos or entropy in this zone are due to the effect of natural
frequencies, and not the effects of damage. Therefore, this zone is not useful and should
not be considered to define the scale range in the EWM.
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SEI zone 2: This has a scale range from 53 to 98, where the average SEI value falls from
its maximum value to its minimum value. This zone indicates that the effects of natural
frequencies begin to decrease until they are completely eliminated, and, on the other hand,
the effects of damage have not yet appeared yet. Consequently, the chaos decreases sharply,
and the minimum entropy value is due to the edge effects of the signals. This area should
also not be considered to establish the scale range to detect damage.

SEI zone 3: This has a scale range from 99 to 1000, where the average SEI value grad-
ually increases from its minimum value to a very high value close to its maximum. This
zone indicates that the effect of the natural frequencies no longer exists, and the entropy in-
crement is mainly due to the manifestation of the effects of the damage presence. Therefore,
the chaos generated in this area is useful to define the scale range to identify damage.

It is important to mention that the presence of any kind of defect in any type of
bridge will be clearly detectable just via the use of the SEI zone 3, since it is only in
this zone that the effect of the natural frequencies, which is the most hostile and makes
damage detection impossible, does not exist anymore, and the damage manifestation will
be clearer. However, the CWT scale values of this zone, as well as the other two zones, will
change according to the analyzed structure, and must then be determined, since the natural
frequencies are an intrinsic parameter of any structure, with specific values according to its
properties/geometry.

Thus, the entropy–CWT diagram presented in Figure 11 was obtained in less than
21 s (less than 7 s for each measurement point), and this is the diagram that allows for
the elimination of the most critical stage of the WEAM (stage 5: generation colored 3D
CWT diagrams to establish the useful scale range, which implies about 3 min and 8 s
of computing time, as in Figure 12 [1], but with a scale range from 1 to 1000) and the
subsequent stages that are related to this critical stage, and which consume around 95%
of the WEAM post-processing time, as mentioned above. In Figure 12, the yellow dotted
ellipses indicate where energy differences can be observed according to the measurement
point and the damage point.

Continuing with the development of the bases that gave rise to the EWM, and taking
into account the entropy–CWT diagram presented in Figure 11, the usefulness of the SEI
zone 3 to detect damage is verified. To do this, the average of the CWT coefficients is
obtained considering the measurement position of 25% of L and the scale range from 1 to
100 (Figure 13). This scale range includes the complete SEI zone 1 and SEI zone 2, as well
as the beginning of the SEI zone 3, where the SEI is just beginning to increase due to the
damage. In this way, looking at Figure 13, as expected, there is no indication of damage.
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On the other hand, if the scale ranges from 101 to 181 is considered, that is, a scale
range that is already completely in SEI zone 3 but still at the beginning of this zone, and
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the average of the CWT coefficients is obtained considering the measurement position of
25% of L, then, in Figure 14, it can be seen that the identification of the damage is already
possible due to the magnitude increment of CWT coefficients around 25% of L. However,
since the damage manifestation is just beginning in this zone, the edge effects of the signals
still predominate, which is why the largest magnitude CWT coefficients are found at the
extremes of the diagram.
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Figure 14. Average CWT coefficients for the scale range from 101 to 181, corresponding to the scenario
with damage at 25% of L and measuring at 25% of L.

Now, if the scale ranges from 181 to 500 is considered, that is, from the last scale value
of the previous figure (Figure 14) and up to half of the maximum scale value considered,
then the entropy increment in this range is already very significant (see Figure 11), and,
therefore, the effects of the damage presence are of great significance, which can be verified
by generating the corresponding diagram of the average CWT coefficients (see Figure 15).
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with damage at 25% of L and measuring at 25% of L.

In Figure 15, it can be noted that, for this scale range of 181 to 500, the sudden increase
in the magnitude of the average CWT coefficients around the damage zone is very evident,
reaching its maximum value practically at the exact damage position (at 25.13% of L).
Additionally, it is important to highlight that the damage effect in this region of SEI zone
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3 is already very important, meaning that even the maximum value of the average CWT
coefficients at the damage zone exceeds the maximum values of the CWT coefficients
generated at the ends of the diagram due to the signal edge effects.

On the other hand, since it was found that the scale range, from 181 to 500, which is
located in SEI zone 3, is very useful for identifying damage, this scale range is extended
up to the maximum value considered in Figure 11, taking advantage of the influence of
more damage effects. Then, the scale range, from 181 to 1000, is now considered, and the
respective average CWT coefficients are obtained (see Figure 16). In Figure 16, it can be
observed that the curve of the average CWT coefficients increased its magnitude even more
in the damage region because a larger damage influence zone is considered and, therefore,
the chaos or entropy of the CWT coefficients is also higher. Likewise, the precision in
locating the damage is the same as in Figure 15 (99.48% precision).
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Figure 16. Average CWT coefficients for the scale range from 181 to 1000, corresponding to the
scenario with damage at 25% of L and measuring at 25% of L.

The other situation that must be highlighted in Figure 16 is the reduction of edge
effects, even though the signal has not yet been treated/conditioned for this purpose. This
is because, by expanding the scale range, the damage effect is “strengthened”, and the edge
effects of the signal are “dimmed”, so, as expected, the edge effect that is most inhibited is
the closest one to the damage position; that is, the one on the left side of the diagram.

Both the diagrams in Figures 15 and 16 are generated very quickly (4 s required for the
one in Figure 15 and 10 s for the one in Figure 16). Therefore, the time difference between
them is very small, but, with the diagram presented in Figure 16 with a wider scale range,
more noticeable evidence of damage and the inhibition of signal edge effects is gained
without the need of conditioning the signal (signal extension at both ends). Nevertheless,
the diagram shown in Figure 15 is also very useful for identifying damage.

Thus, it is recommended to define the scale range using SEI zone 3 of the entropy-CWT
diagram, locating the lowest entropy value first, and then establishing the minimum value
of the scale range after the lowest entropy value in order to allow the damage to begin to
manifest. The maximum value of the scale range should be defined when the SEI value of
the entropy–CWT diagram practically no longer increases and remains constant. For the
case currently analyzed, the scale range, from 181 to 1000, is excellent, as demonstrated in
Figures 11, 15 and 16.

On the other hand, in order to demonstrate the reliability, efficiency, quickness, and
precision of the EWM, the average CWT coefficients for the current case of damage at 25%
of L is obtained for the scale range from 181 to 1000, but now considering the corresponding
average of the CWT coefficients for the three measurement points (25%, 50%, and 75% of L)
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instead of just one measurement point at 25% of L. In this way, it is possible to verify that
the EWM, like the WEAM, does not require a measurement point at the damage position,
and the average of a few measurement points proportionally distributed is sufficient to
identify damage.

Figure 17 shows the diagram with the corresponding curve to the case mentioned in the
previous paragraph, and, additionally, the respective curve of the healthy case considering
the three measurement points is also included. In this figure, it can be clearly observed that
the curve of the healthy case looks very flat, without any magnitude increments of CWT
coefficients in specific positions; however, the curve of the damaged case, similar to the one
presented in Figure 16, exhibits an evident sudden increase in the damage area, locating
this defect with 99.44% precision.
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Figure 17. Average CWT coefficients for the scale range from 181 to 1000 from the respective average
of 3 measurement points (25%, 50%, and 75% of L), corresponding to the scenarios of the healthy
bridge and the bridge with damage at 25% of L.

Finally, in order to have a diagram that makes the presence of the damage even more
noticeable, the same diagram presented in the previous figure (Figure 17) is obtained, now
eliminating the edge effects, for which, before obtaining the average CWT coefficients for
the chosen scale range and considering the three measurement points, the original signals
(time vs. acceleration) provided by the numerical simulations with the FEM model are
extended at both ends. That is, the first and last cycles of the signals are repeated on the left
and on the right sides, respectively; smoothing, in this way, the beginnings and ends of
the signals in order to avoid the generation of discontinuities, which produce high CWT
coefficients. The process of eliminating edge effects via signal extensions is the same as the
one used for the WEAM, which is very simple, quick, and can be consulted in [1].

Therefore, the corresponding diagram without edge effects is shown in Figure 18.
Comparing this latest diagram without edge effects with the corresponding diagram with
edge effects (Figure 17), the benefit of eliminating edge effects is very evident, since the
curve of the healthy case becomes even flatter because it does not contain effects that
increase the CWT coefficients; there are only residual edge effects, which are almost
negligible. On the other hand, for the damaged case curve, the high values of CWT
coefficients in the regions where there is no damage are eliminated, and the sudden increase
in the CWT coefficients is further concentrated in the damage area. In fact, the maximum
value of CWT coefficients is further adjusted with the exact damage position, since the
damage was located with 99.44% accuracy with edge effects, while, without edge effects,
the localization precision was 99.68%.
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Figure 18. Average CWT coefficients for the scale range from 181 to 1000 from the respective average
of 3 measurement points (25%, 50%, and 75% of L) with signals previously extended to eliminate
edge effects. Scenarios shown: healthy bridge and bridge with damage at 25% L.

Taking into account that these results are obtained numerically, in order to apply the
EWM using signals more similar to those acquired from real-life bridges, 15% of Gaussian
noise was added to the numerical signals obtained from the FEM simulations. In order to
closely simulate reality, the percentage of added noise is a very high value according to
what is usually considered in the literature [64].

Figure 19 shows the equivalent diagram to the one presented in Figure 18, now adding
Gaussian noise to the signals before being processed. As it can be observed, despite the
noise effect, damage detection is still clearly possible, and is located with 98.12% accuracy,
which is an excellent percentage, especially considering the large amount of noise that was
added to the signals and the extensive length of the bridge considered.
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Figure 19. Average CWT coefficients for the scale range from 181 to 1000 from the respective average
of 3 measurement points (25%, 50%, and 75% of L) with noisy signals (15% Gaussian noise), extended
to remove edge effects. Scenarios shown: healthy bridge and bridge with damage at 25% L.

Finally, as it would occur in the practice of signal processing acquired in real-life
bridges, the noisy signals are filtered to try to eliminate as much noise as possible and
ensure that they are as similar as possible to the signals obtained directly from the FEM
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simulations before adding noise. To do this, a Savitzky–Golay filter of order 2 and window
length 19 is used, in the same way that it was used for the case presented in [1] when
applying the WEAM. The corresponding CWT coefficients diagram from filtered signals is
shown in Figure 20, and it is possible to see that the curves are smoothed and the damage
identification becomes clearer and more precise with respect to the noisy case, locating the
damage with an accuracy of 98.76%, thus improving the accuracy in damage identification
with signal filtering, and maintaining similarity to the original case before adding Gaussian
noise (Figure 18 localizing the damage with 99.68% accuracy).
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Figure 20. Average CWT coefficients for the scale range from 181 to 1000 from the respective average
of 3 measurement points (25%, 50%, and 75% of L) with signals filtered from noisy signals (15%
Gaussian noise), extended to remove edge effects. Scenarios shown: healthy bridge and bridge with
intermediate severity damage (30% intensity) at 25% L.

Additionally, to demonstrate the usefulness of the entropy–CWT diagram, particularly
in SEI zone 3, instead of graphing the average of the CWT coefficients for the selected useful
scale range (181 to 1000), the CWT coefficients for the damaged case analyzed are obtained
for a single scale value that is within SEI zone 3, where the chaos increment caused by the
damage is already evident. Thus, the scale value of 300 is chosen, and the CWT coefficients
are plotted for this damaged case (measuring only at 25% of L) both with and without edge
effects; see Figures 21 and 22, respectively.
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Figure 22. CWT coefficients for the scale value of 300, corresponding to the scenario with damage at
25% of L and measuring at 25% of L. Edge effects eliminated via signal extension.

As it can be seen in both diagrams, the increase in the CWT coefficients in the damage
zone is noticeable, even more so for the case without edge effects. Therefore, Figure 22
shows that the damage can be identified clearly and very accurately (99.92% accuracy in
locating the damage), even with the CWT coefficients corresponding to a single scale value;
however, this scale must be very well chosen based on the entropy–CWT diagram.

On the other hand, the EWM is applied again, as shown in Section 3.3 of this article, to
demonstrate the capacity of the EWM in order to identify damage of different severities and
in different positions, taking as reference the diagram shown in Figure 20, which is the final
diagram obtained by applying the EWM to identify damage for the case of a bridge with
intermediate level damage (30% reduction in cross-sectional area) at 25% of L. This was
completed to obtain the two corresponding diagrams for the case of low severity damage
(10% reduction in cross-sectional area) at 50% of L (Figure 23) and high severity damage
(50% reduction in cross-sectional area) at 75% of L (Figure 24).
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Figure 23. Average CWT coefficients for the scale range from 181 to 1000 from the respective average
of 3 measurement points (25%, 50%, and 75% of L) with signals filtered from noisy signals (15%
Gaussian noise), extended to remove edge effects. Scenarios shown: healthy bridge and bridge with
low severity damage (10% intensity) at 50% L.



Appl. Sci. 2024, 14, 3298 19 of 27Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 27 
 

 

Figure 24. Average CWT coefficients for the scale range from 181 to 1000 from the respective average 

of 3 measurement points (25%, 50%, and 75% of L) with signals filtered from noisy signals (15% 

Gaussian noise), extended to remove edge effects. Scenarios shown: healthy bridge and bridge with 

high severity damage (50% intensity) at 75% L. 

As it can be seen in both Figures 23 and 24, the EWM is capable of clearly identifying 

damage of different severities in different positions with efficiency, low computing time 

consumption, and high precision. To obtain each of those diagrams, as well as the diagram 

in Figure 20, about 51 s were required, while, in terms of the precision of damage location, 

the damage established at 50% of L was located with 99.04% accuracy (Figure 23), the 

damage established at 75% of L was identified with 99.97% accuracy (Figure 24), and, pre-

viously, the damage defined at 25% of L was located with 98.76% precision (Figure 20). 

In the same way as was completed for the case shown in Figure 22, the respective 

CWT coefficients diagram is obtained for a single scale value (300), but now for a case with 

damage at 75% of L and measuring only at 25% of L. The results are shown in Figure 25, 

and it is possible to see that the damage was identified with high precision (99.40% accu-

racy) with a single scale value and with a single measurement point, which is the furthest 

from the damage position. 

 

Figure 25. CWT coefficients for the scale value of 300, corresponding to the scenario with damage 

at 75% of L and measuring at 25% of L. Edge effects eliminated by signal extension. 

  

Figure 24. Average CWT coefficients for the scale range from 181 to 1000 from the respective average
of 3 measurement points (25%, 50%, and 75% of L) with signals filtered from noisy signals (15%
Gaussian noise), extended to remove edge effects. Scenarios shown: healthy bridge and bridge with
high severity damage (50% intensity) at 75% L.

As it can be seen in both Figures 23 and 24, the EWM is capable of clearly identifying
damage of different severities in different positions with efficiency, low computing time
consumption, and high precision. To obtain each of those diagrams, as well as the diagram
in Figure 20, about 51 s were required, while, in terms of the precision of damage location,
the damage established at 50% of L was located with 99.04% accuracy (Figure 23), the
damage established at 75% of L was identified with 99.97% accuracy (Figure 24), and,
previously, the damage defined at 25% of L was located with 98.76% precision (Figure 20).

In the same way as was completed for the case shown in Figure 22, the respective
CWT coefficients diagram is obtained for a single scale value (300), but now for a case with
damage at 75% of L and measuring only at 25% of L. The results are shown in Figure 25, and
it is possible to see that the damage was identified with high precision (99.40% accuracy)
with a single scale value and with a single measurement point, which is the furthest from
the damage position.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 19 of 27 
 

 

Figure 24. Average CWT coefficients for the scale range from 181 to 1000 from the respective average 

of 3 measurement points (25%, 50%, and 75% of L) with signals filtered from noisy signals (15% 

Gaussian noise), extended to remove edge effects. Scenarios shown: healthy bridge and bridge with 

high severity damage (50% intensity) at 75% L. 

As it can be seen in both Figures 23 and 24, the EWM is capable of clearly identifying 

damage of different severities in different positions with efficiency, low computing time 

consumption, and high precision. To obtain each of those diagrams, as well as the diagram 

in Figure 20, about 51 s were required, while, in terms of the precision of damage location, 

the damage established at 50% of L was located with 99.04% accuracy (Figure 23), the 

damage established at 75% of L was identified with 99.97% accuracy (Figure 24), and, pre-

viously, the damage defined at 25% of L was located with 98.76% precision (Figure 20). 

In the same way as was completed for the case shown in Figure 22, the respective 

CWT coefficients diagram is obtained for a single scale value (300), but now for a case with 

damage at 75% of L and measuring only at 25% of L. The results are shown in Figure 25, 

and it is possible to see that the damage was identified with high precision (99.40% accu-

racy) with a single scale value and with a single measurement point, which is the furthest 

from the damage position. 

 

Figure 25. CWT coefficients for the scale value of 300, corresponding to the scenario with damage 

at 75% of L and measuring at 25% of L. Edge effects eliminated by signal extension. 

  

Figure 25. CWT coefficients for the scale value of 300, corresponding to the scenario with damage at
75% of L and measuring at 25% of L. Edge effects eliminated by signal extension.

Finally, for a comparison of identical cases applying the WEAM and the EWM, the
scenario presented in the last diagram of Figure 12 obtained from [1] applying the MAEW
to the bridge with intermediate intensity damage (30%) at 75% of L using filtered signals
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is used to apply the EWM, and the corresponding diagram is presented in Figure 26.
Comparing both diagrams, it is concluded that the damage located at 75% of L was
identified with the WEAM with 99.68% precision (Figure 12), requiring a processing time
for the signals provided by the FEM simulations of 4 min and 49 s; while, on the other
hand, the EWM identified the damage with 99.79% accuracy, requiring a computation time
of 51 s. In this way, the important benefits of the EWM are verified and justified, since, for
the same case of the damage analyzed, the EWM identified the damage with 0.11% greater
precision, obtaining results 5.67 times faster.
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Figure 26. Average CWT coefficients for the scale range from 181 to 1000 from the respective average
of 3 measurement points (25%, 50%, and 75% of L) with signals filtered from noisy signals (15%
Gaussian noise), extended to remove edge effects. Scenarios shown: healthy bridge and bridge with
intermediate severity damage (30% intensity) at 75% L.

5. Experimental Results and Analysis

Following the experimental procedure described in Section 2.2, as well as the dam-
age detection methodology presented in Section 3.3, the entropy–CWT diagram is ob-
tained for the analyzed damaged case (removed cable) and compared with the healthy
scenario. Thus, the average SEI for the CWT coefficients considering all measurement
points (sensors S1–S12 in Figure 4) is plotted in just a few seconds. In order to provide
some examples of the type of experimental signals acquired/analyzed, in Figure 27, the
experimental time-domain signals acquired from the RPB considering the total time dura-
tion of 1800 s for each sensor of the two scenarios (healthy and damaged RPB) are shown,
whereas, in Figure 28, the corresponding entropy–CWT diagram for the damaged case
is presented.

As can be observed in Figure 28, the useful scale range, used to conduct the analysis
and identify damage, is similar to the numerical cases. Therefore, for this experimental
case, the scale range considered is from 200 onwards (200 to 1000).

Subsequently, all the signals for the healthy and damaged cases are filtered and
extended, taking into account the same type of filter and the parameters used for the
numerical cases. After that, the average CWT coefficients for the scale range from 200 to
1000 are calculated for each of the 30 segments of 1 min for each sensor of the healthy bridge
(12 sensors) and the damaged bridge (12 sensors). Lastly, the maximum value of the average
CWT coefficients for the 720 files are registered; finally, for each sensor of each condition
(healthy and damaged), a unique value of the maximum CWT coefficient is obtained
considering the average of the 30 respective maximum values of each sensor/condition.
These final maximum average values are indicated in Figure 29 thought solid circles, while
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the corresponding minimum and maximum values obtained for the respective 30 tests of
each case are indicated with horizontal solid lines.
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RPB, and (b) damaged RPB with a removed cable.
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Figure 28. Entropy–CWT diagram, plotting the average SEI for the CWT coefficients considering all
measurement points (sensors S1–S12 in Figure 4) for the experimental case of the real-life RPB with a
removed cable and a scale range from 1 to 1000. The below plot focuses on the above plot, showing
the entropy increments resulting from damage.

Thus, in the corresponding results presented in Figure 29, it is possible to observe
that, for the damage case, the maximum value of the average CWT coefficients (solid circle)
corresponds clearly with sensor S5, whose position on the bridge deck is the same as that
of the lower anchoring of the removed cable. On the other hand, if the respective results of
the healthy case are compared with the ones of the damaged cases, it is evident that the
maximum values of the average CWT coefficients are always higher for the damaged cases.
Moreover, there is also a clear tendency that, even when considering the minimum and
maximum values obtained for each set of 30 tests, the CWT coefficients are much higher for
the damaged RPB, and particularly for the sensor located in the position of damage (S5).

Regardless of whether the experimental validation of a controlled test was not possible
with the same conditions as the numerical simulations (just one vehicle crossing the bridge
with a specific weight and a specific constant speed) or, conversely, whether the transit was
random, the experimental results show good agreement with the numerical results, and they
were obtained as fast as the numerical results were, thus validating and highlighting the
advantages of this new method, focused mainly on the good precision, low computational
burden, efficient obtaining of results, and low cost.
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Figure 29. Values of maximum CWT coefficient considering the average of the 30 respective maximum
values of each sensor/condition with a scale range from 200 to 1000 (solid circles) for (a,c) healthy
RPB and (b,d) damaged RPB with a removed cable. For the first two plots (a,b), the same vertical
scale is considered for identifying damage quickly. Fore the last two plots (c,d), the vertical scale is
auto-adjusted for both scenarios (healthy and damage) to visualize the corresponding minimum and
maximum values obtained for the respective 30 tests of each case (horizontal solid lines).

Even though promising results have been achieved in this specific scenario, further
research is necessary in order to enhance the robustness of the proposed method. In this
regard, it is important to explore other case studies that address the following scenarios:
(i) sensor placement does not align with or is far away from the damage zone, (ii) varying
quantities of sensors are to be employed, and (iii) a wider range of damages, such as
additional cable removal, corrosion, loosened bolts, among others, are present. This
calibration of the proposal under these circumstances will allow for the investigation of
diverse scenarios where sensor triggering may occur. Currently, the performance of the
proposed method can be compromised in these scenarios, as its accuracy in both damage
detection and localization heavily relies on the quantity and positioning of the sensors.
For instance, a limited number of sensors diminishes the system’s capability of detecting
vibrations associated with damage across the entire bridge, and reduces the resolution for
determining or identifying the damage location, especially in the context of a large bridge,
such as the one analyzed in this work.

Hence, real-world experiments, considering other conditions (additional types of
damage and alternative sensor orientations or directions), are essential for validating
and calibrating structural health monitoring strategies, but conducting analyses on ac-
tual bridges under both healthy and damaged conditions poses significant challenges in
terms of human resources, infrastructure, and financial constraints. In addition to the
previously mentioned issues, the obtaining of the vibrational signature of a new bridge,
through considering all available vibration sensors and their locations, will play a crucial
role in assessing the accuracy and sensitivity of the proposed method for detecting and
locating various types of damage. This effort will be always supported by modeling and
computational simulations.
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6. Conclusions

This article presents, in detail, the development of the EWM, which is an improved
version of the WEAM presented in [1], and whose main objective is to detect and locate
damage in highway bridges more efficiently. In particular, the EWM eliminates a large
number of steps from the WEAM, providing a simpler, faster, and more accurate method of
damage identification.

To give way to this new method, an algorithm based on the Shannon entropy was
implemented, which allows us to know, from the vibration signals acquired on a bridge,
the level of chaos produced by the respective CWT coefficients of the signals, and what
CWT scale they correspond to. In a similar way to the entropy–CWT diagram, three zones
are established for different CWT scale ranges according to the level of chaos of the CWT
coefficients and the causes that generate those levels of chaos (effects of natural frequencies,
edge effects, and effects of structural damage).

In this way, the entropy–CWT diagram allows for the defining of the useful CWT scale
range in order to identify damage by averaging the CWT coefficients, and is obtained in
a few seconds (less than 7 s for each measurement point analyzed in this article). This
is dissimilar to the WEAM, which, for the same purpose of establishing the useful CWT
scale range, requires the generation of colored 3D CWT diagrams that require a high
computational load.

For validation, the EWM was applied in a finite element model of the RPB, considering
the healthy case and different damage scenarios. The results indicate that the EWM is
capable of identifying the diverse damage conditions successfully, detecting damage clearly,
with localization precision between 98.76% and 99.97% and with results obtained quickly
(around 51 s).

Therefore, the numerical results of the application of the EWM are promising, since,
when compared to the WEAM, the precision in locating the damage is further increased,
which was already very good with the WEAM (increase of approximately 0.11%). Above
all, the disadvantages of the WEAM related to the number of stages required to apply the
method are eliminated (going from 11 to 7 stages), thus reducing the computing time by
5.67 times.

Furthermore, the experimental validation shows that the EWM was able to identify
damage in the real-life RPB (removed cable), even when using random transit, thus re-
inforcing the advantages of this method. In future works, this method will be applied
considering diverse severities of damage in different cables of the numerical model, as well
as in the real real-life RPB with removed cables in different positions.
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