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Abstract: Considering that the choice of loss function plays a significant role in the derivation of
Bayesian estimators, we propose a novel asymmetric loss function named the weighted Q-symmetric
entropy loss for computing the estimates of the parameter and reliability function of the Burr XII
distribution. This paper covers the classical maximum-likelihood, uniformly minimum-variance
unbiased, and Bayesian estimation methods under the squared error loss, general entropy loss,
Q-symmetric entropy loss, and new loss functions. Through Monte Carlo simulation, the respective
performances of the considered estimators for the reliability function are evaluated, indicating that
the Bayesian estimator under the new loss function is more efficient than those under other loss
functions. Finally, a real data set is used to demonstrate the practicality of the presented estimators.

Keywords: reliability function; Burr XII distribution; maximum-likelihood estimation; uniformly
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1. Introduction

A system’s reliability function, R(t), represents the probability that an object survives
longer than time t, which is also called the survival function. Reliability analyses are mainly
devoted to forecasting the probability of survival time for experimental systems, which can
help administrators control costs, plan maintenance actions, and assess system availability.
Based on the needs of practical applications, numerous scholars have investigated the
reliability of different distributions, making use of classical estimators and Bayesian esti-
mators under various loss functions and different priors. The authors of [1] provided the
maximum-likelihood and Bayesian estimates for the three-parameter exponential–Weibull
distribution with type-II censored samples. The authors of [2] analyzed the parameter
estimates and reliability features of the one-parameter Lindley distribution using classical
and Bayesian techniques with progressive type-II censored samples. A novel parameter
estimation method named the E-Bayesian method was introduced in [3], which was used
to estimate the reliability under a binomial distribution. Under a hybrid model with two
exponential distributions of certain mixing proportions, the authors of [4] investigated
the unbiased estimations of the reliability function. Furthermore, the equivalent unbi-
ased estimators of the reliability were also derived under the scenario where the negative
weighting of the components of the mixture distribution was allowed. The authors of [5]
considered an estimator of the reliability function of the power Lomax distribution in
stress–strength models. The authors of [6] obtained the classical reliability estimations
of a multi-component system, in which the stress and strength variables followed the
unit-generalized exponential distributions. The Bayesian estimations with Gamma and
weighted Lindley priors were also discussed. On account of the situation where the data of
torpedo loading tests were limited and included samples without failures, the authors of [7]
proposed a new Bayesian evaluation method based on fused information to estimate the
reliability of torpedo loading, for which the lifetime distribution and failure rate prior dis-
tribution were assumed to follow exponential and Gamma distributions, respectively. The
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authors of [8] calculated the estimators of the reliability for the adaptive, type-II progressive
censored data of the unit-Lindley distribution using frequentist and Bayesian methods.

In contrast to the limitations of classical estimation methods, which exclude prior
information, Bayesian estimates have been more abundantly researched by scholars in
recent years due to their consideration of prior distributions, allowing for the inclusion of
historical or subjective information. In Bayesian methods, estimates are obtained using
different loss functions. Therefore, one of the main challenges for researchers is choosing
the right loss functions according to the specific situation; that is, a well-designed loss
function yields a more accurate Bayesian estimator. Many scholars have investigated new
loss functions and compared the performance of Bayesian estimators under different loss
functions. The authors of [9] discussed the Bayesian parameter estimator of the Lindley
distribution and their corresponding posterior risks separately using seven different loss
functions. However, in response to the derivation error of the posterior risks under the
entropy loss function in the paper, a correct derivation was given in [10]. The authors of [11]
proposed a novel analysis method to evaluate potential loss in a process safety field. The
potential loss analysis was discussed in detail along with case studies. The authors of [12]
suggested defining a new loss function for use in Bayesian methods to decrease the effects
of outliers in crowd behavior analysis. The authors of [13] proposed a novel loss function
named the weighted composite Linex loss function and compared the performance of the
estimators under it with other estimators under the Linex loss, weighted Linex loss, and
composite Linex loss functions. The authors of [14] introduced a novel weighted general
entropy loss function and compared it with other loss functions. The authors of [15] derived
the parameter estimations of the exponential distribution with complete data, which were
comparatively analyzed using maximum-likelihood and Bayesian estimations with the
squared error loss, entropy loss, and composite Linex loss functions.

The Burr XII distribution is very flexible as a lifetime distribution, as its hazard rate
function can be either monotonic or unimodal, which means that it is much more suitable
for modeling different types of lifetime data. Thus, it is more compatible with the precise
situations of system reliability analysis and has been widely studied by scholars and applied
in practice.

The probability density function (PDF) and cumulative distribution functions are
expressed as

f (x; α, β) = αβxα−1(1 + xα)−β−1, x > 0, α, β > 0, (1)

F(x; α, β) = 1 − (1 + xα)−β, (2)

where α and β represent the shape parameters.
The hazard rate and reliability functions are expressed as

h(x; α, β) =
αβxα−1

1 + xα
, (3)

R(t; α, β) = (1 + tα)−β. (4)

As a vitally flexible distribution, the Burr XII distribution has many tight connections
with other well-known distributions. When α = 1, β = 1, and α = β, the Burr XII distri-
bution is equivalent to the Pareto, log-logistic, and paralogistic distributions, respectively,
with all their scale parameters equal to 1.

The PDF plots corresponding to the selected parameter values are shown in Figure 1.
Based on Figure 1, when α > 1, the PDF plots of the Burr XII distribution have a single

peak, which is skewed to the right. As β increases, the density plot becomes steeper. In
contrast to the case of α > 1, the function curve monotonically decreases when α ⩽ 1.

The hazard rate plots with different values of α are shown in Figure 2, indicating that
the hazard rate decreases monotonically for α ⩽ 1. However, when α > 1, the hazard rate
quickly reaches its peak and then decreases as the argument x increases. As x approaches
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∞, the hazard rate value converges to a constant value. Moreover, the hazard rate has
higher values when β is larger.
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Figure 1. PDF plots of the Burr XII distribution for varying parameter values.
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Figure 2. Hazard rate plots of the Burr XII distribution with different values of α.

The reliability plots are shown in Figure 3.
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Figure 3. Reliability plots of the Burr XII distribution with different values of α.

The Burr XII distribution has a broad range of applications in lifetime analysis due to
its excellent flexibility and practicality as a lifetime distribution. The Burr XII distribution
was adopted in [16] to investigate the reliability of a transit traffic control system with
medium loads. Using a progressive type-II censored scheme, the authors of [17] considered
estimates for the Burr XII distribution using E-Bayesian methods. The authors of [18]
discussed the Bayesian estimators of the parameters and reliability under the Burr XII
distribution, which were compared with classical maximum-likelihood estimation. For a
mixture system of three Burr XII distributions, the authors of [19] analyzed the Bayesian and
maximum-likelihood estimators, along with the elegant closed-form algebraic expressions



Appl. Sci. 2024, 14, 3308 4 of 20

of Bayesian estimators, as well as the posterior risks. Under the Burr XII distribution, the
authors of [20] introduced an improved adaptive type-II progressive censoring scheme, in
which the frequentist and Bayesian inferences were established.

Concentrating on the Burr XII distribution, this study covers the maximum-likelihood
estimation (MLE), uniformly minimum-variance unbiased estimation (UMVUE), and
Bayesian estimations of the shape parameter and the reliability function. For Bayesian
estimations, the squared error loss (SEL), general entropy loss (GEL), and Q-symmetric
entropy loss (QEL) functions, together with the new loss function proposed in this paper
named the weighted Q-symmetric entropy loss (WQEL), were applied. Our innovation
lies in providing UMVUE and Bayesian estimations under the new loss function for the
reliability of the Burr XII distribution. The evaluation of the given estimators, especially
the Bayesian estimators under the new WQEL function, is also discussed.

The remainder of this paper is structured as follows. In Section 2, the frequentist
methods of the MLE and UMVUE under the Burr XII distribution are investigated. Section 3
deals with the Bayesian estimators under the three pre-existing loss functions, namely the
SEL, GEL, and QEL functions. In Section 4, a novel loss function named the weighted
Q-symmetric entropy loss function is proposed and applied. The Monte Carlo simulation
is established in Section 5, which is conducted to assess the performance of the given
estimators. In Section 6, a remission time data set is used to demonstrate the utility of the
discussed estimators.

2. The Classical Estimators of the Parameters and Reliability

In this section, we focus on the calculation of the classical estimators, including the
MLE and UMVUE, for both the parameter β and the reliability function.

2.1. Maximum-Likelihood Estimation

Let x = (x1, x2, · · · , xn)
′ denote a sample of size n from the Burr XII distribution;

therefore, the likelihood function is computed as

L(α, β; x) =
n

∏
i=1

f (xi; α, β) = αnβn
n

∏
i=1

xi
α−1(1 + xi

α)−β−1, (5)

and the log-likelihood function is

ln L(α, β; x) = n ln α + n ln β + (α − 1)
n

∑
i=1

ln xi − (β + 1)
n

∑
i=1

(1 + xα
i ). (6)

Consequently, the derivative of Function (6) concerning β is

∂ ln L
∂β

=
n
β
−

n

∑
i=1

ln(1 + xi
α). (7)

The second-order derivative of Function (6) is expressed as

∂2 ln L
∂β2 = − n

β2 < 0, (8)

which means that β̂MLE exists and is unique.
We set Function (7) to zero in order to find the value of β that maximizes Function (6),

which is also the MLE of β. It is obtained as follows:

β̂MLE =
n

∑n
i=1 ln(1 + xi

α)
, (9)

where α is supposed to be known.
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According to the unique invariance property of the MLE, R̂MLE(t) is naturally com-
puted as

R̂MLE(t) = (1 + tα)−β̂MLE . (10)

2.2. Uniformly Minimum-Variance Unbiased Estimation

Suppose that X = (X1, X2, · · · , Xn)
′ represents a random sample of the Burr XII

distribution. Then, the statistic S = ∑n
i=1 ln(1 + Xi

α) has a Gamma
(

n, 1
β

)
distribution, for

which the PDF is structured as follows:

d(x; n, β) =
βn

Γ(n)
xn−1e−βx, x > 0,

where Γ(·) denotes the Gamma function.
The statistic S can be proved to be a sufficiently complete statistic for β. According to

the Lehmann–Scheffé theorem, given E
(

1
S

)
= β

n−1 , the UMVUE of the parameter β is

β̂UMVUE =
n − 1

S
, (11)

and the approximate UMVUE expression of R(t) is

R̃UMVUE(t) ∼= (1 + tα)β̂UMVUE . (12)

In order to obtain an accurate expression for the UMVUE of R(t), we present the
following theorems.

Theorem 1. When considering the random sample X = (X1, X2, · · · , Xn)
′ from the Burr XII

distribution, the UMVUE of the PDF f (x) at a given point, x, is expressed as

f̂UMVUE(x) =

 αxα−1(n−1)(1−s−1 ln(1+xα))
n−2

s(1+xα)
, s > ln(1 + xα)

0, o.w.
(13)

where s = ∑n
i=1 ln(1 + xi

α).

Proof. Based on the Lehmann–Scheffé theorem, as S is a completely sufficient statistic, we
can infer that f (Xn|S), which is the conditional PDF of Xn given S, is the UMVUE of f (x).

Let L denote ∑n−1
i=1 ln(1 + Xi

α), for which the PDF is structured as

φ(l) =
βn−1

Γ(n − 1)
ln−2e−βl , l > 0,

where l = ∑n−1
i=1 ln(1 + xi

α).
Then, considering the independence between L and Xn, the joint PDF of L and Xn is

written as φ(l, xn) = φ(l) · f (xn).
As S = L + ln(1 + Xα

n), we perform a variable transformation to obtain the joint PDF
of (S, Xn), which is

φ(s, xn) =
βn−1

Γ(n − 1)
(s − ln(1 + xα

n))
n−2e−β(s−ln(1+xα

n)) · αβxα−1
n (1 + xα

n)
−β−1, s > ln(1 + xα

n).

Additionally, the PDF of S is

g(s) =
βn

Γ(n)
sn−1e−βs.
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Thus, the conditional PDF of Xn given S is obtained as φ(s,xn)
g(s) . That is, the UMVUE of f (x)

is calculated as

f̂UMVUE(xn) =
αxα−1

n (n − 1)
(
1 − s−1 ln(1 + xα

n)
)n−2

s(1 + xα
n)

, s > ln(1 + xα
n).

Based on Theorem 1, the UMVUE of R(t) is presented in Theorem 2.

Theorem 2. Given the estimate f̂UMVUE(x) of the PDF f (x), the UMVUE of the reliability
function R(t) is derived as

R̂UMVUE(t) =
∫ ∞

t
f̂UMVUE(x)dx =

(
1 − s−1 ln(1 + tα)

)n−1
, s > ln(1 + tα). (14)

Proof. In order to prove the first equality of the theorem, we note that
∫ ∞

t f̂UMVUE(x)dx is
the function of S, which is sufficient and complete for β. Thus, we only need to prove that∫ ∞

t f̂UMVUE(x)dx is unbiased for R(t).

E
(∫ ∞

t
f̂UMVUE(x)dx

)
=
∫ ∞

0

∫ ∞

t
f̂UMVUE(x)dx·g(s)ds

=
∫ ∞

t

∫ ∞

0

φ(s, xn)

g(s)
g(s)dsdx

=
∫ ∞

t
f (xn)dx

= R(t),

where g(s) denotes the PDF of S.
Then, we can calculate the specific expression for R̂UMVUE(t) as follows:

R̂UMVUE(t) =
∫ ∞

t
f̂UMVUE(x)dx

=


∫ ∞

t
αxα−1(n−1)(1−s−1 ln(1+xα))

n−2

s(1+xα)
dx, s > ln(1 + tα)

0, o.w.

=


∫ 1

ln(1+tα)
s

(1 − u)n−2(n − 1)du, s > ln(1 + tα)

0, o.w.

=


(

1 − ln(1+tα)
s

)n−1
, s > ln(1 + tα)

0, o.w.

3. Bayesian Estimation under the SEL, GEL, and QEL Functions

The choice of loss function is an essential element of Bayesian methods. In this section,
we first compute the Bayesian estimators under three commonly applied loss functions,
including the squared error loss (SEL), general entropy loss (GEL), and Q-symmetric
entropy loss (QEL) functions, in order to compare the effects of the estimators under the
newly proposed loss function.

Suppose θ̂ is the estimate for the parameter θ to be estimated. Then, the SEL, GEL, and
QEL functions are defined as follows:

LSEL
(
θ̂, θ
)
=
(
θ̂ − θ

)2
, (15)
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LGEL
(
θ̂, θ
)
=

(
θ̂

θ

)p

− p ln
θ̂

θ
− 1, p ̸= 0, (16)

LQEL
(
θ̂, θ
)
=

(
θ̂

θ

)q

+

(
θ̂

θ

)−q

− 2, q ̸= 0. (17)

In order to evaluate the performance of different Bayesian estimators in multiple
scenarios, we consider both informative and non-informative priors.

3.1. Bayesian Estimation under the Informative Prior

Assume that β follows the informative Gamma prior distribution with the hyperpa-
rameters (a, 1

b ), which is expressed as

π1(β) =
ba

Γ(a)
βa−1e−bβ, a > 0, b > 0, β > 0. (18)

Therefore, the posterior distribution function of β is

π1(β|X) =
(b + S)a

Γ(n + a)
βn+a−1e−(b+S)β. (19)

The Bayesian estimations of the parameter β under the above loss functions are,
respectively, computed as

β̂SEL = E(β|X) =
n + a
b + S

, (20)

β̂GEL =
[
E
(

β−p|X
)]− 1

p =
1

b + S

[
Γ(n + a − p)

Γ(n + a)

]− 1
p
, (21)

β̂QEL =

[
E(βq|X)

E(β−q|X)

] 1
2q

=
1

b + S

[
Γ(n + a + q)
Γ(n + a − q)

] 1
2q

. (22)

Furthermore, the Bayesian estimations of R(t) under the SEL, GEL, and QEL functions
are calculated separately as

R̂SEL(t) = E(R(t)|X) =

[
b + S

b + S + ln(1 + tα)

]n+a
, (23)

R̂GEL(t) =
[

E
(

R(t)−p|X
)]− 1

p
=

[
b + S

b + S − p ln(1 + tα)

]− n+a
p

, (24)

R̂QEL(t) =

 E
(

R(t)q|X
)

E
(

R(t)−q|X
)
 1

2q

=

[
b + S − q ln(1 + tα)

b + S + q ln(1 + tα)

] n+a
2q

. (25)

3.2. Bayesian Estimation under the Non-Informative Prior

The non-informative prior utilized is the quasi-density prior. It has broad applications,
such as its employment in [21] for the calculation of the Bayesian and Bayesian shrinkage
estimators. The quasi-density prior of β is defined as

π2(β) =
1

βm , m > 0, β > 0. (26)

Based on the quasi-density prior, the posterior distribution function follows
Gamma

(
n − m + 1, 1

S

)
. Due to the positivity of the hyperparameters of the Gamma distri-
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bution, it is important to ensure that n − m + 1 is greater than 0. The Bayesian estimations
of the parameter β are given as

β̂SEL = E(β|X) =
n − m + 1

S
, (27)

β̂GEL =
[
E
(

β−p|X
)]− 1

p =
1
S

[
Γ(n − m − p + 1)

Γ(n − m + 1)

]− 1
p
, (28)

β̂QEL =

[
E(βq|X)

E(β−q|X)

] 1
2q

=
1
S

[
Γ(n − m + q + 1)
Γ(n − m − q + 1)

] 1
2q

. (29)

The Bayesian estimators of R(t) are expressed as follows

R̂SEL(t) = E(R(t)|X) =

[
S

S + ln(1 + tα)

]n−m+1
, (30)

R̂GEL(t) =
[

E
(

R(t)−p|X
)]− 1

p
=

[
1 − p ln(1 + tα)

S

] n−m+1
p

, (31)

R̂QEL(t) =

 E
(

R(t)q|X
)

E
(

R(t)−q|X
)
 1

2q

=

[
S − q ln(1 + tα)

S + q ln(1 + tα)

] n−m+1
2q

. (32)

4. A Novel Loss Function: The Weighted Q-Symmetric Entropy Loss (WQEL) Function

Inspired by the weighted general entropy loss function introduced in [14], the pro-
posed novel loss function, WQEL, is defined based on the QEL function. In this section, we
present the definition and a brief description of the WQEL function. The relevant Bayesian
estimators under it are also included.

4.1. The Definition of the WQEL Function

The WQEL function is derived from the QEL function and is defined as

LWQEL
(
θ̂, θ
)
=

1
θz

( θ̂

θ

)q

+

(
θ̂

θ

)−q

− 2

, z ∈ R, q ̸= 0, (33)

where 1
θz denotes the weighted function imposed on the expression of the QEL function. Ob-

viously, the WQEL function is a generalized form of the QEL function, and it is asymmetric.
When z = 0, the WQEL devolves into the QEL.

For symmetric loss functions, such as the QEL function, overestimates and under-
estimates have the same effects on its function value. Thus, the estimates obtained from
the QEL are inaccurate in cases where there is a bias toward overestimated or underesti-
mated values. In contrast to the symmetry of the QEL function, the new WQEL function is
asymmetric, which means that it is more practical and flexible than the QEL function.

Specifically, when z = 0, the WQEL function degrades into the QEL function, the
estimator of which has no preference for overestimation or underestimation. When z > 0,
the estimator under the WQEL function is more biased toward the case of θ̂

θ < 1, and vice

versa for the case of θ̂
θ > 1.

Figure 4 provides a graphical representation of the WQEL function with the given
parameter values θ = 1, 2 and the chosen values of q and z.
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Figure 4. The plots of the WQEL function.

From Figure 4, we can conclude that the WQEL function is strictly convex and non-
negative. Moreover, regardless of the values of the parameters q and z, as the deviation
of θ̂

θ from 1 increases, the value of the WQEL function grows larger, fulfilling the require-
ments for a loss function. However, when θ = 1, the WQEL is equivalent to the QEL
function, which means that the value of z has no effect on the value of the WQEL func-
tion. Additionally, increasing the value of q or decreasing the value of z leads to a larger
function value.

Theorem 3. Under the WQEL function LWQEL
(
θ̂, θ
)
= 1

θz

[(
θ̂
θ

)q
+
(

θ̂
θ

)−q
− 2
]

, z ∈ R, q ̸= 0,

the Bayesian estimate θ̂ of θ to be estimated is derived as

θ̂WQEL =

[
E(θq−z|X)

E(θ−q−z|X)

] 1
2q

. (34)

Proof. The Bayesian estimation θ̂ for θ is the estimate used to minimize the posterior risk,
which is expressed as

RiskL
(
θ̂, θ
)
= E

(
LWQEL

(
θ̂, θ
))

=
∫
∀θ

1
θz

( θ̂

θ

)q

+

(
θ̂

θ

)−q

− 2

 · π(θ|X)dθ

=
∫
∀θ

θ̂qθ−q−zπ(θ|X)dθ +
∫
∀θ

θ̂−qθq−zπ(θ|X)dθ − 2
∫
∀θ

1
θz π(θ|X)dθ

= θ̂qE
(
θ−q−z|X

)
+ θ̂−qE

(
θq−z|X

)
− 2E

(
θ−z|X

)
,

where π(θ|X) refers to the given posterior distribution. Considering that the parameter
estimate under the WQEL function aims to minimize the posterior risk, we find

∂RiskL

∂θ̂
= qθ̂q−1E

(
θ−q−z|X

)
− qθ̂−q−1E

(
θq−z|X

)
.
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It is worth clarifying that RiskL
(
θ̂, θ
)

is a convex function; thus, we can straightfor-
wardly obtain the minima of the posterior risk by setting ∂RiskL

∂θ̂
= 0. Consequently, the

Bayesian estimation of θ under the WQEL function is

θ̂WQEL =

[
E(θq−z|X)

E(θ−q−z|X)

] 1
2q

.

Moreover, it is worth mentioning that when q = 0.5 and z = −0.5, the estimators
under the WQEL function are equivalent to the estimators under the SEL function; that is,
the WQEL function is an extension of the SEL function.

4.2. Bayesian Estimations under the WQEL Function

According to Theorem 3, the Bayesian estimator of β under the informative Gamma
prior distribution with the hyperparameters (a, 1

b ) is given as

β̂WQEL =

[
E(βq−z|X)

E(β−q−z|X)

] 1
2q

=
1

b + S

[
Γ(n + a + q − z)
Γ(n + a − q − z)

] 1
2q

. (35)

Furthermore, the reliability function’s Bayesian estimator for the Burr XII distribution
is represented as follows:

R̂WQEL(t) =

 E
(

R(t)q−z|X
)

E
(

R(t)−q−z|X
)


1
2q

=

[
b + S − (q + z) ln(1 + tα)

b + S + (q − z) ln(1 + tα)

] n+a
2q

. (36)

Regarding the non-informative quasi-density prior, as π2(β) = 1
βm , the Bayesian

estimations of β and R(t) under the new loss function are expressed separately as

β̂WQEL =

[
E(βq−z|X)

E(β−q−z|X)

] 1
2q

=
1
S

[
Γ(n − m + q − z + 1)
Γ(n − m − q − z + 1)

] 1
2q

, (37)

R̂WQEL(t) =

 E
(

R(t)q−z|X
)

E
(

R(t)−q−z|X
)


1
2q

=

[
S − (q + z) ln(1 + tα)

S + (q − z) ln(1 + tα)

] n−m+1
2q

. (38)

5. Simulation

Monte Carlo simulation is widely employed in the literature to assess the performance
of different models. For example, the authors of [22] employed it to estimate the reliability of
logistics and supply chain networks. This section concentrates on a graphical demonstration
of the performance under the applied reliability estimators for comparison and assessment
purposes using Monte Carlo simulation. The simulation program was operated using the
statistical software R, version 4.2.2. We conducted the simulation using a Windows 10
system with an 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.42 GHz CPU.

Different estimation methods were evaluated by comparing the mean squared error
(MSE), which is defined as

MSE
(

R̂(t)
)
=

1
N

N

∑
i=1

(
R̂i(t)− R(t)

)2, (39)

where N represents the number of iterations.
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Given that the MSE acts on a given value t for R(t), we then adopted the Mean
Integrated Squared Error (MISE) to measure the performance of the discussed estimators
for the reliability function globally. The MISE is defined as

MISE
(

R̂(t)
)
=

1
N

N

∑
i=1

(
1
T

T

∑
j=1

(
R̂i
(
tj
)
− R

(
tj
))2
)

=
1
T

T

∑
j=1

MSE
(

R̂
(
tj
))

, (40)

where tj refers to the particular values of t selected from the reliability function R(t) and T
is the number of the selected values denoted by tj.

The simulation involved the following procedures:

(1) Before proceeding with the simulation, we initially determined the values of each
known parameter in the model. The parameters α and β appeared in the Burr XII
distribution and were set as α = 2 and β = 0.5. We employed sample sizes of
n = 10, n = 30, and n = 100. In the Bayesian estimators, the hyperparameters of
the informative Gamma prior were (2, 1), and the values of m in the quasi-density
prior were m = 0.5, 1. As for the value p, which occurred in the GEL function, it was
set as p = 0.5 and p = 2. We considered q = 0.5, 2 for the QEL function, as well
as z = −0.5, q = 0.5 and z = −1, q = 2 for the WQEL function. For the choice of
z = −0.5, q = 0.5, we aimed to verify that the WQEL estimator for z = −0.5, q = 0.5
was equivalent to the estimator under the SEL function. For the latter, it represented
a choice of parameters for the WQEL estimator that exhibited the best performance,
which we determined after many attempts.

(2) We obtained n samples randomly selected from the Burr XII distribution using the
inverse transforming sampling method with the given values of α and β.

(3) We repeated step (2) N = 1000 times and calculated the MISE values. When N was
large enough, the effects of random errors occurring each time we obtained the random
sample in step (2) diminished, resulting in more informative simulation results.

As observed in Figure 1, significant variations emerged with small values of t in the
probability density plots. Thus, it should be noted that when computing the MISE, we took
the argument of the reliability function as t = (0.5, 1, 1.5, 2, 3, 4). The simulation records are
presented in Tables 1–5.

The estimates were evaluated with varying values of α, n, m, p, q, and z.
From the Monte Carlo simulation results, we can conclude the following:

(1) By comparing Tables 2–5, it is evident the estimators under the WQEL function for
the parameter q = 2, z = −1 exceeded the estimators under other loss functions from
a comprehensive point of view due to their smaller MISE values. This result is better
visualized in Figure 5.

(2) Based on the results in Tables 2 and 5, a Wilcoxon signed-rank test was conducted
for the corresponding estimates under different priors in order to determine whether
the estimates under the SEL and the WQEL with q = 0.5, z = −0.5 were significantly
different. The null hypothesis for the test was that there was no significant difference
between the two sets of data. The significance level was set at 0.05. Based on the
results in Tables 2 and 5, the p-value of the Wilcoxon signed-rank test was calculated
as p = 0.7829 > 0.05, indicating that the estimates under the SEL and WQEL function
with q = 0.5, z = −0.5 had similar values. Thus, when q = 0.5, z = −0.5, the
estimators under the WQEL function were equivalent to those under the SEL function.
This demonstrates the flexibility and advantages of the new WQEL function.

(3) As seen in Table 1, the classical estimators under the Burr XII distribution with
parameter α = 2 were more efficient than the estimators when α = 1.

(4) As seen in Tables 2–5, regardless of the loss function used, the estimates under the
informative Gamma prior were more efficient than those under the non-informative
quasi-density prior, which demonstrates the benefit of an appropriate informative
prior distribution for Bayesian estimators.
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(5) Meanwhile, as seen in Tables 3 and 4, the estimates under the GEL and QEL functions
with q = 0.5 yielded better results than those with q = 2, which implies that the GEL
and QEL values are sensitive to the values of the parameter q.

(6) As seen in Tables 1–5, as the sample size n increased, the MISEs of almost all the
estimators decreased.

Table 1. The MLE and UMVUE of R(t), with their MSEs shown in brackets.

α = 1 α = 2

n t R(t) R̂MLE(t) R̃U MVUE(t) R(t) R̂MLE(t) R̃U MVUE(t)

10

0.5 0.81649658 0.79830820 0.81626338 0.89442719 0.88565190 0.89639883
(0.01797478) (0.01155408) (0.00047127) (0.00088616)

1.0 0.70710678 0.68291247 0.70890501 0.70710678 0.68966910 0.71525862
(0.03486863) (0.02298424) (0.00299053) (0.00573007)

1.5 0.63245553 0.60618792 0.63646654 0.55470020 0.53649463 0.56986806
(0.04442302) (0.02983809) (0.00561123) (0.01096665)

2.0 0.57735027 0.55058731 0.58337646 0.44721360 0.43166353 0.46792616
(0.04938721) (0.03367085) (0.00713106) (0.01418885)

3.0 0.50000000 0.47399620 0.50932171 0.31622777 0.30713612 0.34348456
(0.05253700) (0.03664100) (0.00788300) (0.01615392)

4.0 0.44721360 0.42268128 0.45903381 0.24253563 0.23835455 0.27271242
(0.05188266) (0.03680236) (0.00745202) (0.01562739)

MISE 0.04184555 0.02858177 0.00525652 0.01059218

30

0.5 0.81649658 0.80893908 0.81465544 0.89442719 0.89052256 0.89396449
(0.00072124) (0.00100228) (0.00006955) (0.00002266)

1.0 0.70710678 0.69663229 0.70502461 0.70710678 0.69858304 0.70693723
(0.00161781) (0.00225745) (0.00041127) (0.00013514)

1.5 0.63245553 0.62070971 0.63057413 0.55470020 0.54474965 0.55578332
(0.00230277) (0.00322353) (0.00071715) (0.00023770)

2.0 0.57735027 0.56505489 0.57580377 0.44721360 0.43760598 0.44966745
(0.00279960) (0.00392933) (0.00085372) (0.00028515)

3.0 0.50000000 0.48750994 0.49918223 0.31622777 0.30863208 0.32073713
(0.00342229) (0.00482337) (0.00084900) (0.00028707)

4.0 0.44721360 0.43498953 0.44705740 0.24253563 0.23685588 0.24824119
(0.00375780) (0.00531353) (0.00073975) (0.00025247)

MISE 0.00243692 0.00342492 0.00060674 0.00020337

100

0.5 0.81649658 0.81482589 0.81649446 0.89442719 0.89330715 0.89431505
(0.00008583) (0.00011766) (0.00000028) (0.00000231)

1.0 0.70710678 0.70481881 0.70728430 0.70710678 0.70464073 0.70710766
(0.00018964) (0.00026032) (0.00000167) (0.00001398)

1.5 0.63245553 0.62991930 0.63283046 0.55470020 0.55179898 0.55508032
(0.00026678) (0.00036658) (0.00000298) (0.00002496)

2.0 0.57735027 0.57472474 0.57790782 0.44721360 0.44439590 0.44800089
(0.00032122) (0.00044178) (0.00000361) (0.00003035)

3.0 0.50000000 0.49738876 0.50086232 0.31622777 0.31398420 0.31762257
(0.00038671) (0.00053258) (0.00000370) (0.00003123)

4.0 0.44721360 0.44470870 0.44831221 0.24253563 0.24085309 0.24428314
(0.00041959) (0.00057848) (0.00000330) (0.00002793)

MISE 0.00027830 0.00038290 0.00000259 0.00002179



Appl. Sci. 2024, 14, 3308 13 of 20

Table 2. The Bayesian estimates under the SEL function and α = 2 and β = 0.5, with their MSEs
shown in brackets.

Gamma Prior Quasi-Density Prior (m = 0.5) Quasi-Density Prior (m = 1)
n t R(t) R̂SEL(t) R̂SEL(t) R̂SEL(t)

10

0.5 0.89442719 0.87280694 0.87876107 0.88414680
(0.00005850) (0.00281316) (0.00212439)

1.0 0.70710678 0.66263949 0.67697393 0.68941180
(0.00044212) (0.01368563) (0.01039924)

1.5 0.55470020 0.50540811 0.52430887 0.54016925
(0.00097336) (0.01977326) (0.01509506)

2.0 0.44721360 0.40146574 0.42221176 0.43920878
(0.00140592) (0.02012684) (0.01540660)

3.0 0.31622777 0.28199122 0.30315901 0.31998567
(0.00186986) (0.01583332) (0.01214019)

4.0 0.24253563 0.21790019 0.23821225 0.25407353
(0.00200895) (0.01167751) (0.00894554)

MISE 0.00112645 0.01398495 0.01068517

30

0.5 0.89442719 0.88797084 0.89003636 0.89173440
(0.00016410) (0.00349479) (0.00320910)

1.0 0.70710678 0.69349769 0.69843747 0.70253490
(0.00089375) (0.01778125) (0.01640886)

1.5 0.55470020 0.53946625 0.54590884 0.55130046
(0.00143191) (0.02675688) (0.02480931)

2.0 0.44721360 0.43315695 0.44013600 0.44602126
(0.00158133) (0.02812639) (0.02618147)

3.0 0.31622777 0.30620266 0.31313071 0.31904293
(0.00139320) (0.02316576) (0.02168828)

4.0 0.24253563 0.23596620 0.24244581 0.24802471
(0.00110573) (0.01763246) (0.01657375)

MISE 0.00109500 0.01949292 0.01814513

100

0.5 0.89442719 0.89185526 0.89300322 0.89350584
(0.00012076) (0.00032429) (0.00033945)

1.0 0.70710678 0.70139532 0.70421845 0.70544587
(0.00069190) (0.00205874) (0.00215655)

1.5 0.55470020 0.54789939 0.55167397 0.55330387
(0.00116836) (0.00386530) (0.00405207)

2.0 0.44721360 0.44051295 0.44467979 0.44646880
(0.00135234) (0.00491583) (0.00515697)

3.0 0.31622777 0.31070706 0.31494691 0.31675174
(0.00128635) (0.00544252) (0.00571607)

4.0 0.24253563 0.23821968 0.24224326 0.24394571
(0.00108394) (0.00515261) (0.00541648)

MISE 0.00095061 0.00362655 0.00380627

Table 3. The Bayesian estimates under the GEL function and α = 2 and β = 0.5, with their MSEs
shown in brackets.

Gamma Prior Quasi-Density Prior (m = 0.5) Quasi-Density Prior (m = 1)

p = 0.5 p = 2 p = 0.5 p = 2 p = 0.5 p = 2
n t R(t) R̂GEL(t) R̂GEL(t) R̂GEL(t) R̂GEL(t) R̂GEL(t) R̂GEL(t)

10

0.5 0.89442719 0.87140372 0.87026485 0.87612504 0.87922039 0.88161397 0.88458424
(0.00106033) (0.00114039) (0.00088713) (0.00248670) (0.00110622) (0.00185289)

1.0 0.70710678 0.65434913 0.64627825 0.66598801 0.66730555 0.67868420 0.67996289
(0.00621832) (0.00768797) (0.00562169) (0.01599278) (0.00708721) (0.01237333)

1.5 0.55470020 0.48900975 0.47207264 0.50452769 0.49865813 0.52056621 0.51473525
(0.01071165) (0.01499681) (0.01051735) (0.02964375) (0.01341461) (0.02379694)

2.0 0.44721360 0.37904214 0.35530830 0.39607007 0.38304555 0.41299112 0.39988712
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Table 3. Cont.

Gamma Prior Quasi-Density Prior (m = 0.5) Quasi-Density Prior (m = 1)

p = 0.5 p = 2 p = 0.5 p = 2 p = 0.5 p = 2
n t R(t) R̂GEL(t) R̂GEL(t) R̂GEL(t) R̂GEL(t) R̂GEL(t) R̂GEL(t)

(0.01257647) (0.01933857) (0.01331347) (0.03643286) (0.01716271) (0.03017420)
3.0 0.31622777 0.25327911 0.22265381 0.27034802 0.24807910 0.28649631 0.26363066

(0.01216126) (0.02104647) (0.01458305) (0.03646115) (0.01913548) (0.03165639)
4.0 0.24253563 0.18698475 0.15444508 0.20294492 0.17647134 0.21762876 0.19003693

(0.01032390) (0.01903242) (0.01365523) (0.03073922) (0.01817177) (0.02759084)
MISE 0.00884199 0.01387377 0.00976299 0.02529274 0.01267967 0.02124077

30

0.5 0.89442719 0.88766716 0.88736115 0.89011987 0.88942071 0.89181649 0.89112759
(0.00017263) (0.00018145) (0.00035683) (0.00365531) (0.00041000) (0.00336090)

1.0 0.70710678 0.69125993 0.68897494 0.69716673 0.69384270 0.70127555 0.69798682
(0.00104473) (0.00121108) (0.00221791) (0.02023757) (0.00255941) (0.01875387)

1.5 0.55470020 0.53455143 0.52948226 0.54228481 0.53570474 0.54769448 0.54115605
(0.00186306) (0.00236742) (0.00406974) (0.03277765) (0.00471768) (0.03061345)

2.0 0.44721360 0.42595670 0.41848646 0.43434034 0.42506486 0.44023337 0.43098113
(0.00225965) (0.00309198) (0.00506667) (0.03637781) (0.00589735) (0.03420434)

3.0 0.31622777 0.29615197 0.28568462 0.30444455 0.29188496 0.31031786 0.29771262
(0.00231005) (0.00351199) (0.00540968) (0.03205038) (0.00633896) (0.03044504)

4.0 0.24253563 0.22456720 0.21271462 0.23227316 0.21823016 0.23776179 0.22360194
(0.00205173) (0.00334479) (0.00497283) (0.02530012) (0.00585770) (0.02420882)

MISE 0.00161698 0.00228478 0.00368228 0.02506647 0.00429685 0.02359774

100

0.5 0.89442719 0.89191557 0.89182890 0.89252575 0.89283063 0.89303047 0.89333401
(0.00000000) (0.00000002) (0.00000585) (0.00032018) (0.00000365) (0.00033527)

1.0 0.70710678 0.70110758 0.70045100 0.70260600 0.70291078 0.70383863 0.70414238
(0.00000007) (0.00000078) (0.00003684) (0.00197680) (0.00002333) (0.00207297)

1.5 0.55470020 0.54692685 0.54544847 0.54892510 0.54872742 0.55056053 0.55036310
(0.00000029) (0.00000385) (0.00006851) (0.00360110) (0.00004398) (0.00378215)

2.0 0.44721360 0.43887700 0.43666933 0.44107582 0.44027511 0.44286817 0.44206792
(0.00000061) (0.00000858) (0.00008623) (0.00445328) (0.00005600) (0.00468372)

3.0 0.31622777 0.30814837 0.30498792 0.31037011 0.30862551 0.31217125 0.31042468
(0.00000121) (0.00001777) (0.00009358) (0.00470124) (0.00006186) (0.00495591)

4.0 0.24253563 0.23516280 0.23152431 0.23725680 0.23494691 0.23894864 0.23663301
(0.00000159) (0.00002381) (0.00008700) (0.00428232) (0.00005825) (0.00452247)

MISE 0.00000063 0.00000914 0.00006300 0.00322249 0.00004118 0.00339208

Table 4. The Bayesian estimates under the QEL function and α = 2 and β = 0.5, with their MSEs
shown in brackets.

Gamma Prior Quasi-Density Prior (m = 0.5) Quasi-Density Prior (m = 1)

q = 0.5 q = 2 q = 0.5 q = 2 q = 0.5 q = 2
n t R(t) R̂QEL(t) R̂QEL(t) R̂QEL(t) R̂QEL(t) R̂QEL(t) R̂QEL(t)

10

0.5 0.89442719 0.87177507 0.87174935 0.87652719 0.88071209 0.88457977 0.88601588
(0.00103479) (0.00103636) (0.00089526) (0.00226954) (0.00024260) (0.00167339)

1.0 0.70710678 0.65688460 0.65635514 0.66872637 0.67756936 0.68713813 0.68996808
(0.00578756) (0.00586942) (0.00578980) (0.01242161) (0.00151643) (0.00932654)

1.5 0.55470020 0.49419175 0.49239579 0.51012950 0.51968885 0.53318154 0.53555167
(0.00954473) (0.00992351) (0.01108011) (0.02033247) (0.00279849) (0.01558087)

2.0 0.44721360 0.38620110 0.38287256 0.40383561 0.41200643 0.42802265 0.42892594
(0.01082966) (0.01161192) (0.01433154) (0.02315430) (0.00350127) (0.01809230)

3.0 0.31622777 0.26245327 0.25649611 0.28039597 0.28457583 0.30337980 0.30095278
(0.00999489) (0.01142056) (0.01630101) (0.02182261) (0.00376708) (0.01763912)

4.0 0.24253563 0.19679374 0.18908714 0.21379666 0.21461880 0.23470551 0.22960587
(0.00824171) (0.00997375) (0.01575132) (0.01843233) (0.00348225) (0.01531750)

MISE 0.00757222 0.00830592 0.01069151 0.01640548 0.00255135 0.01293829
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Table 4. Cont.

Gamma Prior Quasi-Density Prior (m = 0.5) Quasi-Density Prior (m = 1)

q = 0.5 q = 2 q = 0.5 q = 2 q = 0.5 q = 2
n t R(t) R̂QEL(t) R̂QEL(t) R̂QEL(t) R̂QEL(t) R̂QEL(t) R̂QEL(t)

30

0.5 0.89442719 0.88776850 0.88776648 0.89022165 0.88982998 0.89191680 0.89153098
(0.00016976) (0.00016982) (0.00035915) (0.00354834) (0.00041245) (0.00325973)

1.0 0.70710678 0.69200795 0.69196205 0.69792246 0.69687672 0.70202359 0.70099008
(0.00099295) (0.00099609) (0.00226429) (0.01860601) (0.00260862) (0.01719563)

1.5 0.55470020 0.53619511 0.53602508 0.54395560 0.54238930 0.54935541 0.54780186
(0.00171254) (0.00172797) (0.00421938) (0.02880555) (0.00487729) (0.02678139)

2.0 0.44721360 0.42836343 0.42802580 0.43679984 0.43485953 0.44268760 0.44075660
(0.00201945) (0.00205296) (0.00532877) (0.03098345) (0.00617821) (0.02895350)

3.0 0.31622777 0.29950277 0.29883663 0.30789776 0.30549234 0.31378419 0.31137683
(0.00197875) (0.00204472) (0.00582987) (0.02636404) (0.00679263) (0.02483017)

4.0 0.24253563 0.22835483 0.22743407 0.23620124 0.23354352 0.24172242 0.23905083
(0.00170532) (0.00179024) (0.00546613) (0.02050066) (0.00639343) (0.01941772)

MISE 0.00142980 0.00146363 0.00391127 0.02146801 0.00454377 0.02007302

100

0.5 0.89442719 0.89245776 0.89245759 0.89255470 0.89294560 0.89305929 0.89344847
(0.00000287) (0.00000287) (0.00000571) (0.00032292) (0.00000354) (0.00033805)

1.0 0.70710678 0.70256609 0.70256229 0.70282482 0.70378022 0.70405675 0.70500904
(0.00001726) (0.00001729) (0.00003423) (0.00203113) (0.00002126) (0.00212839)

1.5 0.55470020 0.54904411 0.54902961 0.54941704 0.55068211 0.55105151 0.55231396
(0.00003059) (0.00003075) (0.00006056) (0.00377552) (0.00003767) (0.00396038)

2.0 0.44721360 0.44137270 0.44134319 0.44180982 0.44319053 0.44360155 0.44498085
(0.00003695) (0.00003730) (0.00007303) (0.00475742) (0.00004548) (0.00499496)

3.0 0.31622777 0.31093628 0.31087603 0.31142063 0.31279238 0.31322272 0.31459535
(0.00003762) (0.00003836) (0.00007416) (0.00518517) (0.00004627) (0.00545234)

4.0 0.24253563 0.23798035 0.23789508 0.23846706 0.23973927 0.24016162 0.24143623
(0.00003337) (0.00003437) (0.00006566) (0.00484708) (0.00004103) (0.00510286)

MISE 0.00002644 0.00002682 0.00005223 0.00348654 0.00003254 0.00366283

Table 5. The Bayesian estimates under the WQEL function and α = 2 and β = 0.5, with their MSEs
shown in brackets.

Gamma Prior Quasi-Density Prior (m = 0.5) Quasi-Density Prior (m = 1)

q = 0.5,
z = −0.5

q = 2,
z = −1

q = 0.5,
z = −0.5

q = 2,
z = −1

q = 0.5,
z = −0.5

q = 2,
z = −1

n t R(t) R̂WQEL(t) R̂WQEL(t) R̂WQEL(t) R̂WQEL(t) R̂WQEL(t) R̂WQEL(t)

10

0.5 0.89442719 0.87376774 0.87293922 0.88242325 0.88164069 0.88765776 0.88690989
(0.00099839) (0.00025586) (0.00078656) (0.00057576) (0.00041115) (0.00076863)

1.0 0.70710678 0.66478387 0.66556646 0.68533967 0.68619447 0.69753618 0.69838503
(0.00672769) (0.00188499) (0.00529014) (0.00407983) (0.00276852) (0.00539957)

1.5 0.55470020 0.50807962 0.51178672 0.53486249 0.53867859 0.55054483 0.55433461
(0.01345666) (0.00405720) (0.01055567) (0.00852333) (0.00552254) (0.01120973)

2.0 0.44721360 0.40428351 0.41025985 0.43341208 0.43956737 0.45033312 0.45649534
(0.01812998) (0.00575999) (0.01418586) (0.01186492) (0.00741095) (0.01554604)

3.0 0.31622777 0.28471883 0.29297788 0.31406839 0.32266024 0.33098870 0.33970285
(0.02209363) (0.00748622) (0.01720594) (0.01509382) (0.00894798) (0.01971436)

4.0 0.24253563 0.22042779 0.22937850 0.24836561 0.25776191 0.26442722 0.27404581
(0.02257293) (0.00792845) (0.01750654) (0.01582995) (0.00905742) (0.02066649)

MISE 0.00568643 0.00456212 0.01092179 0.00932793 0.01399655 0.01221747

30

0.5 0.89442719 0.88647113 0.88708482 0.88967207 0.89028613 0.89137522 0.89198074
(0.00005335) (0.00000596) (0.00010764) (0.00000058) (0.00014066) (0.00000570)

1.0 0.70710678 0.68988168 0.69221200 0.69761121 0.69995153 0.70171613 0.70403454
(0.00035648) (0.00001726) (0.00070611) (0.00001361) (0.00091851) (0.00005896)

1.5 0.55470020 0.53471978 0.53884082 0.54489540 0.54905715 0.55029080 0.55443160
(0.00070331) (0.00000963) (0.00136968) (0.00005421) (0.00177420) (0.00016120)
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Table 5. Cont.

Gamma Prior Quasi-Density Prior (m = 0.5) Quasi-Density Prior (m = 1)

q = 0.5,
z = −0.5

q = 2,
z = −1

q = 0.5,
z = −0.5

q = 2,
z = −1

q = 0.5,
z = −0.5

q = 2,
z = −1

n t R(t) R̂WQEL(t) R̂WQEL(t) R̂WQEL(t) R̂WQEL(t) R̂WQEL(t) R̂WQEL(t)

2.0 0.44721360 0.42799303 0.43343099 0.43910275 0.44462419 0.44498681 0.45050074
(0.00093228) (0.00000124) (0.00179131) (0.00010908) (0.00231264) (0.00026719)

3.0 0.31622777 0.30105184 0.30789165 0.31221297 0.31922085 0.31811647 0.32515463
(0.00109837) (0.00000623) (0.00207088) (0.00020471) (0.00266126) (0.00041458)

4.0 0.24253563 0.23113783 0.23848864 0.24166793 0.24925245 0.24723402 0.25488318
(0.00108700) (0.00002396) (0.00202404) (0.00026166) (0.00259335) (0.00048287)

MISE 0.00070513 0.00001071 0.00134494 0.00010731 0.00173344 0.00023175

100

0.5 0.89442719 0.89179149 0.89205948 0.89277982 0.89304674 0.89328344 0.89354917
(0.00000816) (0.00000001) (0.00001466) (0.00000115) (0.00001856) (0.00000245)

1.0 0.70710678 0.70124072 0.70218992 0.70365364 0.70460130 0.70488303 0.70582759
(0.00005338) (0.00000061) (0.00009432) (0.00001022) (0.00011881) (0.00001942)

1.5 0.55470020 0.54769407 0.54934912 0.55089714 0.55255347 0.55252894 0.55418184
(0.00010308) (0.00000326) (0.00017927) (0.00002536) (0.00022469) (0.00004428)

2.0 0.44721360 0.44028615 0.44247847 0.44380069 0.44599930 0.44559104 0.44778744
(0.00013408) (0.00000744) (0.00023014) (0.00003964) (0.00028725) (0.00006534)

3.0 0.31622777 0.31047327 0.31327885 0.31401656 0.31683959 0.31582143 0.31864643
(0.00015322) (0.00001568) (0.00025796) (0.00005764) (0.00031996) (0.00008862)

4.0 0.24253563 0.23799360 0.24105707 0.24133394 0.24442428 0.24303539 0.24613188
(0.00014809) (0.00002117) (0.00024599) (0.00006480) (0.00030378) (0.00009567)

MISE 0.00010000 0.00000803 0.00017039 0.00003314 0.00021218 0.00005263

In order to provide an intuitive overview of the estimated reliability function under
different estimators, Figures 5 and 6 illustrate the differences between the Bayesian and
classical estimators of the Burr XII distribution with the parameters α = 2 and β = 0.5,
assuming a sample size of n = 10. In Figure 5, the Gamma prior is set as Gamma(2, 1),
while the parameter in the quasi-density prior is set to m = 0.5. Meanwhile, the estimates
under the SEL, GEL, QEL, and WQEL functions are compared for p = 2, q = 2, and z = −1.

In Figure 5, it can be observed that the reliability functions estimated using the WQEL
function are closer to the real value of R(t), which indicates the superiority of the estimators
under the WQEL function when compared with other estimators.
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Figure 5. Plots of the Bayesian estimators under the SEL, GEL, QEL, and WQEL functions.
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Figure 6. The MLE and UMVUE of the Burr XII distribution reliability function.

Figure 6 shows that as t increases, the estimated R̂MLE(t) progressively approaches
the true value of R(t), whereas the UMVUE of R(t) progressively deviates.

6. Real Data Analysis

A real data set was employed in this section to illustrate the utility of the Burr XII
distribution and its corresponding estimators. The data set comprises 128 observations
recording the remission time (in years) of bladder cancer patients, as studied in [23].
An effective and accurate estimator of the reliability functions can greatly assist doctors
in understanding the remission time of bladder patients globally and in managing the
therapeutic interventions for these patients.

Before estimating the reliability of this data set, we initially calculated the Bayesian in-
formation criterion (BIC) for this data set for various commonly used lifetime distributions,
including the Burr XII, Gamma, Weibull, Lindley, log-logistic, and linear–exponential distri-
butions, to determine whether it is plausible to fit this data set with the Burr XII distribution.

The PDFs of the considered candidate distributions are structured as follows:

Gamma: f (x; λ, ω) =
ωλ

Γ(λ)
xλ−1e−ωx, x > 0, λ > 0, ω > 0,

Weibull: f (x; λ, ω) =
λ

ω

( x
ω

)λ−1
e−(

x
ω )

λ

, x > 0, λ > 0, ω > 0,

Lindley: f (x; η) =
η2

1 + η
(1 + x)e−ηx, x > 0, η > 0,

Log-logistic: f (x; λ, ω) =
λωxω−1

(1 + λxω)2 , x > 0, λ > 0, ω > 0,

Linear–exponential: f (x; λ, ω) = (λ + ωx)e−(λx+ 1
2 ωx2), λ + ωx > 0.

The goodness-of-fit results are shown in Table 6.
The results in Table 6 show that the Burr XII distribution should be selected over the

other candidate distributions due to its smaller BIC values.
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Table 6. MLEs of the candidate models and their BICs on the data set.

Model Parameter Estimates BIC

Burr XII distribution α̂=1.428458, β̂=2.064648 193.0478
Gamma distribution λ̂=1.172510, ω̂=1.502313 200.3035
Weibull distribution λ̂=1.047834, ω̂=0.796724 201.7417
Lindley distribution η̂=1.747608 198.9121

Log-logistic distribution λ̂=3.222481, ω̂=1.725157 196.4830
Linear–exponential distribution λ̂=1.381229, ω̂=-0.113880 201.0009

In order to enhance the persuasive power of this study, a Kolmogorov–Smirnov
test was conducted as a validation supplement. Let F0, F̂, and Fn denote the underlying
distribution of the data, the estimated Burr XII distribution, and the empirical distribution,
respectively. The test statistic for the null hypothesis H0 : F0 = F̂ versus the alternative
hypothesis H1 : F0 ̸= F̂ is shown below:

Dn = sup
−∞<x<∞

∣∣F̂(x)− Fn(x)
∣∣.

The Kolmogorov–Smirnov distance between the estimated Burr XII distribution and
the empirical distribution was calculated as Dn = 0.035015 < Dn(0.05). This suggests
that under a significance level of 0.05, there are no significant discrepancies between the
estimated Burr XII distribution and the empirical distribution of the data. Moreover, the
p-value of the test was calculated as p = 0.9976 > 0.05. A high p-value indicates a high prob-
ability of obtaining the observed results, thus we cannot reject the null hypothesis, which
verifies the correctness of choosing the Burr XII distribution as the best-fitting distribution.

In order to visualize this data set more intuitively and compare it with the fitted Burr
XII distribution, the histogram of the remission time data and the corresponding Burr XII
distribution are shown in Figure 7. This suggests that both the histogram of the real data
and the PDF of the underlying distribution exhibit similar patterns.
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Figure 7. Histogram of the remission time and its fitted Burr XII distribution.

Table 6 indicates that for the Burr XII distribution, the MLE of α is α̂ = 1.428458. In
order to verify that the real data are consistent with the case of a fixed α and unknown β as
studied in this paper, we carried out a likelihood ratio test for the integrity of our studies
using the Burr XII distribution. Let the null and alternative hypotheses be H0 : α = 1.428458
and H1 : α ̸= 1.428458, respectively. The test statistic is
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Λ =

sup
α=1.428458,β>0

L(α, β; x)

sup
α>0,β>0

L(α, β; x)
.

Considering that −2 ln Λ approximately obeys a chi-square distribution with 1 degree
of freedom, the p-value was calculated as 0.9999952 > 0.05, which indicates that under a
significance level of 0.05, we cannot reject the null hypothesis. Therefore, we determined
that the real data set obeys the Burr XII distribution with α = 1.428458 and β unknown.

Consequently, the classical and Bayesian estimates for selected points of the reliability
function of the remission time data are presented in Table 7. For the Bayesian estimates, we
adopted the non-informative quasi-density prior with m = 0.5, and the parameters in the
GEL, QEL, and WQEL functions were considered as p = 2, q = 2, and z = −1, respectively.

Table 7. The estimates of the reliability for selected points of the data set along with the corresponding
running times.

t = 0.5 t = 1 t = 1.5 t = 2 t = 3 t = 4 Running Time (s)

R̂MLE(t) 0.520860 0.239044 0.120704 0.067438 0.026501 0.012836 0.192488
R̂UMVUE(t) 0.523521 0.241732 0.122715 0.068874 0.027264 0.013280 0.185871

R̂SEL(t) 0.520399 0.239615 0.121806 0.068634 0.027488 0.013572 0.189641
R̂GEL(t) 0.517792 0.233867 0.115495 0.062928 0.023466 0.010798 0.187371
R̂QEL(t) 0.519522 0.237655 0.119619 0.066624 0.026026 0.012534 0.198095

R̂WQEL(t) 0.521250 0.241462 0.123822 0.070458 0.028787 0.014483 0.212756

In Table 7, it is evident that the running time of the estimator under the WQEL function
was slightly longer than that of the other estimators, but the difference was not significant.
Considering that the accuracy of the estimator under the WQEL function was better than
that of the other estimators, such a time cost is acceptable.

7. Conclusions

Originating from the QEL function, we have proposed a new loss function called the
WQEL and discuss the corresponding parameter and reliability function estimators of the
Burr XII distribution under it. Classical estimators, including the maximum-likelihood and
uniformly minimum-variance unbiased estimations, were also derived comprehensively.
Considering Gamma and quasi-density priors, we discussed the estimators under the SEL,
GEL, and QEL functions for Bayesian procedures and compared them with the estimators
under the new loss function. Through Monte Carlo simulation, the estimator under the
WQEL function was found to be superior to the other estimators, as can be seen in the tables
and plots depicting the discussed estimators of the reliability function. Then, a remission
time data set was analyzed to verify the applicability of the estimators introduced in
this study. Before handling the data set with different estimators, we carried out BIC,
Kolmogorov–Smirnov testing, and histogram procedures to confirm that the distribution
underlying the real data was a Burr XII distribution. Finally, we presented the estimators of
the reliability for the adopted data set.

We investigated frequentist and Bayesian inferences of the reliability function under
the Burr XII distribution with a single unknown parameter and complete samples in this
study. In future research, we expect to explore the corresponding estimators of the Burr
XII distribution with double unknown parameters, as well as various censored schemes.
We will also investigate the performance and provide specific guidance regarding the
parameters of the new loss function in more cases and models.

Author Contributions: Investigation, K.H.; Supervision, W.G. All authors have read and agreed to
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