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Abstract: Field emission is an important work mode for electron sources, and carbon nanotubes
(CNTs) have been extensively studied for their good emission properties. It is well known that the
parameters of the grid deeply influence the field emission performance of CNTs, a relationship that
requires further elucidation. Therefore, in this study, the relationship between the grid aperture ratio
and electron transmittance was studied through simulations and experiments. This study’s results
indicate that the electron transmittance improved as the grid aperture ratio increased. Meanwhile,
electron beam spot simulations and imaging experiments indicate that an increased grid aperture
ratio will expand the cathode electron divergence, leading to a larger electron beam spot size. These
results demonstrate that there is a trade-off in maintaining the grid aperture ratio between high
electron transmittance and relatively small electron beam spot size, and the optimum grid aperture
ratio is between 75% and 85%. These results will provide a reference for the design and optimization
of X-ray tubes and other electron sources.

Keywords: field emission; CNTs; grid aperture ratio; electron transmittance; electron beam spot

1. Introduction

The X-ray has been widely used in medical diagnosis, security checks, and drug
testing since Roentgen discovered it in 1895 [1]. It has made remarkable progress in
communication, material analysis, high-resolution imaging, and other fields [2–5]. X-ray
sources can be roughly classified into two types: thermal cathodes and cold cathodes.
Traditional thermal cathode X-ray sources exhibit limitations such as low current densities,
high operating temperatures, and long response times, which render them unsuitable for
miniaturization. Moreover, high-power operations can lead to material degradation and
shorten the working lifespans of devices [6–8]. On the contrary, cold cathode X-ray sources
are based on the principle of field emission; when the cathode surface is subjected to a
strong electric field, electrons can break through the potential barriers and escape, and
electrons bombard the anode metal to produce X-rays. This type of X-ray source exhibits
good real-time performance, low power consumption, and easy integration [9–14].

Many materials have been tried as cold cathodes. Specifically, carbon nanotubes
(CNTs) have attracted much attention due to their excellent thermal properties, large aspect
ratio, high electrical conductivity, and mechanical stability [15–19]. Compared to other
cathode materials, they can be easily made into various shapes of emitters by patterned
growth, making them a popular choice for cathodes in vacuum devices [20–24]. Some
reports have explored the applications of CNTs such as X-ray microscopes [25], portable
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X-ray systems [26], cathode ray tube type lighting elements, and vacuum fluorescence
display panels [27]. The field emission performance of CNTs is relatively stable, and their
manufacturing process has gradually developed.

It is well known that a gate electrode is necessary during CNT field emission processes
to control and modulate the emission current [28–31]. A change in the gate voltage alters
the distribution of the electric field between the gate and the cathode electrodes, causing
variations in the field emission current of CNTs. Many studies have been conducted on
gate electrodes to improve field emission performance. The effects of concave grids on
field emission properties were investigated in [32]. The effects of the grid aperture ratio
and the relative position between the cathode and gate on field emission performance
were explored in [33]. Achieving digital control of miniature X-ray tubes using a focusing-
functional gate was accomplished in [34]. The influence of the alignment and dislocation
relationship between the grid and cathode on electron transmittance was studied in [35].
A grid structure combining coarse and fine grids was designed to enhance the cathode
current in [36]. The leakage current was reduced and the transmission ratio was improved
through the self-aligned structure of the gate and CNTs in [37]. Based on point-like CNTs,
the focusing effect of the electron beam spot through indium tin oxides (ITOs) glass was
tested in [38]. Our team has previously reported on some papers in the field of CNT field
emission, including the production of CNTs of various morphologies, the enhancement of
the stability of CNTs, and the application and design of cold cathode X-ray tubes [39–41].
In the process of designing X-ray tubes based on CNTs, we found that the gate not only
affects the electron transmittance but also the divergence of the electron beam, which affects
the performance of the X-ray tube. However, previous reports have mainly focused on
improving the electron transmittance of the grid, and research on the influence of the grid
on the electron beam spot is lacking. Therefore, this paper presents a study on the grid
aperture ratio.

In actual experiments, different grid aperture ratios can change the electric field
distribution on both sides of the grid, impacting the current of each electrode, electron
transmittance, and electron beam spot size. Therefore, in this study changes in electrode
current, electron transmittance, and electron beam spot size caused by variations in the
grid aperture ratio were analyzed through simulations and field emission experiments. In
addition, fluorescence imaging experiments were performed on the grid, and the simulation
results were combined to explore the influence of different voltages and grid aperture ratios
on the size of the electron beam spot. The conclusions in this paper will be useful for the
design of cold cathode electron sources such as X-ray tubes and travelling-wave tubes.

2. Experimental Section
2.1. Simulation of the Field Emission Model

The field emission model was simulated using CST Studio Suite 2020 (CST). CST is
an electromagnetic simulation software developed by the French Dassault Systemes. The
trajectory and distribution of electrons under the action of the electric field in all space can
be obtained by CST simulation [42]. Figure 1a shows the electron emission process based
on CNTs cathode. A metal grid mesh with square grid holes was set between the anode
and cathode. The width of the grid wire is represented by W, and the distance between the
wires is represented by Wd, as depicted in Figure 1c. Electrons emitted from the cathode
could traverse the grid holes and reach the anode plate, constituting the anode current.
The ratio of anode current to cathode current was defined as electron transmittance. The
formula for defining the aperture ratio is as follows:

Aperture Ratio =
Wd2 × 100%

(Wd + W)2 (1)
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tion number, relative accuracy, and other parameters can fully make the simulation results 
have a high simulation accuracy. The cathode–gate distance and gate–anode distance val-
ues of the current model can enlarge the area of the electron beam spot. The voltages and 
the distance between the grid wires are the key parameters that were varied in the simu-
lation. Initially, the anode voltage was held constant at 7.0 kV, and the gate voltage was 
set to 3.0 kV to simulate and test the grid with various aperture ratios. The grid wire width 
was fixed at 20 µm, while the distance between the wires was incrementally increased to 
achieve an aperture ratio ranging from 11% to 94%. In the simulation, we mainly investi-
gated the current change for each electrode under different conditions, changes in electron 
transmittance, and the size of the electron beam spot. 

Figure 1. Measurement setup and the grids. (a) Electron emission process based on CNT cathode.
(b) Experimental setup for electron emission measurement of CNT cathode. (c) Grid wire width and
grid wire distance diagram. (d) Metal grids and their 50× magnified images. (e) SEM of multi-walled
CNT cathode. (f) Raman spectrum of the CNTs.

The initial parameter values of the specific structure in the CST model are presented in
Table 1. According to the system parameter values in Table 1, the size of the cell, iteration
number, relative accuracy, and other parameters can fully make the simulation results have
a high simulation accuracy. The cathode–gate distance and gate–anode distance values
of the current model can enlarge the area of the electron beam spot. The voltages and the
distance between the grid wires are the key parameters that were varied in the simulation.
Initially, the anode voltage was held constant at 7.0 kV, and the gate voltage was set to
3.0 kV to simulate and test the grid with various aperture ratios. The grid wire width
was fixed at 20 µm, while the distance between the wires was incrementally increased
to achieve an aperture ratio ranging from 11% to 94%. In the simulation, we mainly
investigated the current change for each electrode under different conditions, changes in
electron transmittance, and the size of the electron beam spot.
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Table 1. Parameters of the simulation mode.

System Parameters Initial Value Structure Parameters of
the Model Initial Value

Smallest cell 0.005 mm Cathode–Gate distance 700 µm
Largest cell 0.43 mm Anode–Gate distance 2 cm

Number of iterations 4 Height of cathode 500 µm
Relative accuracy −20 dB Gate Voltage 3000 V

Relaxation parameter 0.3 Anode voltage 7000 V
Number of emission points 52,934 Distance between the grid wires 0.01 mm

Boundary conditions open Width of the grid wire 0.02 mm

2.2. Field Emission Measurements with Triode Structures

The experiments were conducted using triode field emission structures under a vac-
uum degree of 5 × 10−8 mbar. The field emission experimental setup is shown in Figure 1b,
which includes the carbon nanotube cathode and substrate, a metal gate, and an anode plate.
Compared to most diode measurement structures, the experimental setup in Figure 1b can
measure both the electron transmittance and the size of the electron beam spot. Figure 1d
shows some of the metal grids used in the experiments, and these stainless-steel grids had
been laser machined. The grids are smooth and flat. As shown in Figure 1e, the cathode
used in the experiment is a multi-walled CNT film. Figure 1f shows the Raman spectrum
of the cathode, indicating that the CNTs contain very few defects. The distance between
each electrode was adjusted by insulating ceramic pads of different thicknesses. Firstly, to
maintain good insulation, a 20 µm wide grid wire was used, and the distance between grid
wires was increased from 40 µm to 370 µm while maintaining the anode voltage at 7.0 kV
and the gate voltage at 3.0 kV. Secondly, a width of 30 µm, a wire distance of 275 µm, and a
grid with an aperture ratio of 81.3% was used. The gate voltage was maintained at 3.7 kV,
and the anode voltage was gradually raised from 0 V to 7.0 kV. Finally, the anode voltage
was kept at 7.0 kV, while the gate voltage was kept at 3.6 kV, and the grid wire width and
grid wire distance were varied to achieve a grid aperture ratio of 70%.

2.3. Fluorescence Imaging Experiments

In addition, fluorescence imaging experiments of electron beam spots were conducted.
The experimental setup used in the fluorescence imaging experiment is shown in Figure 1b.
The metal anode was replaced with an ITO anode, while the other structures remained
unchanged. To explore the changing pattern of the electron beam spot, an ITO rectangular
conductive glass plate was utilized as the anode, and CNTs were used as the cathode
emitter. The gate was composed of a metal grid with a grid wire width of 20 µm and a grid
wire distance of 50 µm. The lower surface of the glass plate was uniformly coated with
fluorescent powder for imaging. Fluorescence imaging experiments were performed at
different anode voltages, different gate voltages, and different aperture ratios.

3. Results and Discussion
3.1. The Results of the Triode Field Emission Structure Simulation

In this section, the electron transmittance simulation results are discussed. Figure 2 is
a schematic diagram of the CST simulation results. Figure 2a shows the flight trajectory
of the electrons. Figure 2b shows the electron distribution on the anode plate. The red
part in Figure 2b shows the distribution of electrons, while the white part indicates that
some electrons have been intercepted by gate. Figure 2c shows the electric field intensity
distribution of the model in space, and Figure 2d shows the electric field direction at the
emission tip of the cathode. The electric field intensity on the surface of the cathode tip is
the highest. The flight trajectory of electrons only depends on the electric field intensity
in space.
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Figure 2. The simulation results of the model in CST. (a) The trajectory of the electron beam. (b) The
anode electron beam spot. (c) The electric field intensity distribution of the entire model. (d) The
electric field distribution at the cathode tip.

Figure 3a illustrates the variation in electrode current at different grid wire distances.
Figure 3b displays the trends in electron transmittance and grid aperture ratio at varying
grid wire distances. The simulation results revealed that as the aperture ratio increased,
the cathode current initially decreased, followed by an increase and then another decrease.
When the distance between the grid wires was between 10 µm and 30 µm, the cathode
current gradually decreased due to the broader grid wires, resulting in the grid wire
intercepting most of the electrons. From 30 µm to 147 µm, the cathode current increased
gradually because the electric field distribution between the cathode and grid altered with
increasing grid wire distance, enhancing the tunneling ability of electrons and enabling
more significant emission from the cathode. However, from 147 µm to 600 µm, the cathode
current gradually declined as the effective projection area of the grid wire on the cathode
decreased rapidly, weakening the cathode surface electric field and diminishing the field
emission capacity, so the cathode current gradually tended to decrease. Due to the reduction
in the number of electrons intercepted by the grid wire, the gate current decreased gradually
while the anode current increased, ultimately approaching saturation. The trends in electron
transmittance correspond to the variation in grid aperture ratio, increasing gradually with
an increase in the grid aperture ratio.

Figure 3c depicts the current variations in each electrode at varying grid wire distances.
Figure 3d shows the changes in electron transmittance at different grid wire distances. The
grid wire width was set to 20 µm, while the anode voltage, gate voltage, distance between
the grid and cathode, and distance between the grid and anode were fixed at 7.0 kV, 3.0 kV,
700 µm, and 2.0 cm, respectively. The gate voltage and anode voltage were kept constant,
while the width of the grid wire and the distance between the grid wires were adjusted to
achieve an aperture ratio of 70%. The anode current decreased from 0.0434 A to 0.0422 A,
the gate current decreased from 0.0228 A to 0.0185 A, and the cathode current decreased
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from 0.0664 A to 0.0607 A. As shown in Figure 3c, linear function fitting was performed,
and these results showed that the current of each electrode decreased with increasing grid
wire distance. The linear fitting curve in Figure 3d revealed that the electron transmittance
remained between 65% and 70% with a slight increase. The simulation results indicate that
although the aperture ratio remained constant, the current in each electrode decreased, and
the electron transmittance slightly increased.
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Figure 3. Simulation results of cathode currents, gate currents, anode currents, and electron trans-
mittance with different grid wire distances. (a) Cathode currents, gate currents, and anode currents
as the grid wire distance increases from 10 µm to 600 µm. (b) Variations in electron transmittance
as the grid wire distance increases from 10 µm to 600 µm. (c) Cathode currents, gate currents, and
anode currents for different grid wire distances at an aperture ratio of 75%. (d) Variations in electron
transmittance at an aperture ratio of 75%.

In addition, the simulation results of the electron beam spot were analyzed. Figure 4a
shows the simulation results. The voltage was kept constant, and the width of the grid
wire was set at 20 µm. The distance between the grid wires was gradually increased, and
grids with different aperture ratios were simulated. A particle monitor was set up on the
gate surface near the cathode, which then calculated the electron beam spot size in the x
and y directions. When the aperture ratio increased from 44% to 90%, the electron beam
spot size in both the x and y directions increased. Specifically, the electron beam spot size
in the x direction increased from 1.9413 mm to 2.0042 mm, while the electron beam spot
size in the y direction increased from 1.9405 mm to 2.0134 mm. As the aperture ratio of the
grid increased, the size of the electron beam spot gradually increased. The electric field
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intensity on the tip of the cathode was higher, and the ability of electrons to emit from the
side was enhanced, increasing the electron beam spot size.
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Figure 4. Simulation results of electron beam spot size for different aperture ratios, gate voltages, and
anode voltages. (a) Electron beam spot widths in the x and y directions as the aperture ratio increases
from 44% to 90%. (b) Electron beam spot widths in the x and y directions as the gate voltage increases
from 1.4 kV to 2.2 kV. (c) Electron beam spot widths in the x and y directions as the anode voltage
increases from 1.5 kV to 8.0 kV.

At last, the width of the grid wire was set to 20 µm, and the distance between the
grid wires was set to 50 µm. We set up a particle monitor on the surface of the anode.
Figure 4b,c show the relationship between the size of electron beam spots and voltage
when only increasing the gate voltage and anode voltage. The simulation results showed
that when the gate voltage increased from 1.4 kV to 2.2 kV, the width of the electron beam
spot in the x direction increased from 11.5686 mm to 13.6816 mm and the width of the
electron beam spot in the y direction increased from 11.5973 mm to 13.7069 mm. As the
gate voltage increased, the field emission capability of the cathode increased and more
electrons were emitted, leading to an increase in the electron beam spot size. When the
anode voltage increased from 1.5 kV to 8.0 kV, the width of the electron beam spot in the x
direction decreased from 19.3699 mm to 12.6113 mm and the width of the electron beam
spot in the y direction decreased from 21.37351 mm to 12.7133 mm. The variation trend of
the electron beam spot in the x and y directions remained consistent. An increase in anode
voltage shortened the time of flight of the electrons, thereby reducing the electron beam
spot size. Therefore, changing the gate voltage and anode voltage affected the size of the
electron beam spot.

3.2. The Electron Transmittance Measurements

The results of electron transmittance field emission experiments are analyzed in this
section. The change trend of the electrode current is shown in Figure 5a, and the change
trend of electron transmittance is shown in Figure 5b. As shown in Figure 5a, when the grid
aperture ratio increased from 44% to 56%, there was a slight increase in cathode current. The
increase in the aperture ratio enhanced the electric field at the cathode surface. However,
the cathode current decreased continuously as the aperture ratio increased from 56% to 90%.
As the distance between the gate filaments increased, the number of electrons intercepted
by the gate filaments decreased, the gate current decreased, and the projected area of the
gate filaments on the cathode decreased. As a result, the excitation ability of the electric
field to the electrons was weakened, leading to a reduction in the field emission current. As
the gate current decreased, the anode current increased, resulting in a continuous increase
in electron transmittance. When the grid aperture ratio reached 60%, the anode current
decreased and gradually became saturated. After the grid aperture ratio was greater
than 75%, the current intercepted by the gate also gradually became saturated, and the
electron transmittance increased significantly. Figure 5b shows the trend of the electron
transmittance with the grid aperture ratio in both the experiments and simulation. The
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error of electron transmittance between simulation and actual testing was due to the actual
grid aperture ratio being greater than the design value. The grid wire may melt during
laser processing, causing the actual width of the grid wire to be smaller than the design
value, resulting in an actual grid aperture ratio greater than the design value. Therefore,
the experimental electron transmittance was higher than that in simulation. Although
there were some differences between experiment and simulation, the linear fitting curves
revealed that the electron transmittance and the grid aperture ratio approximate a linearly
increasing relationship.
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Figure 5. Measurement results of cathode currents, gate currents, anode currents, and electron
transmittance. (a) Cathode currents, gate currents, and anode currents as the grid aperture ratio
increases from 44% to 90%. (b) Electron transmittance as the grid aperture ratio increases from
44% to 90%. (c) Cathode currents, gate currents, and anode currents as the anode voltage increases.
(d) Results of electron transmittance as the anode voltage increases. (e) When the aperture ratio
remains constant, the variations in the current of each electrode and electron transmittance as the
grid wire distance increases.

The currents of three electrodes at different anode voltages are shown in Figure 5c,
and the corresponding electron transmittance is plotted in Figure 5d. The grid aperture
ratio and gate voltage were kept constant. As shown in Figure 5c, both anode current
and electron transmittance were minimal at a low anode voltage. The cathode current
remained essentially constant as the anode voltage increased. However, as the anode
voltage approached the gate voltage, a significant number of electrons were propelled
through the grid hole by the high-voltage electric field and reached the anode, rapidly
increasing both the electron transmittance and anode current. Upon reaching 3.7 kV, the
anode current approached saturation, indicating that further increases in voltage had
little impact on the field emission current of the cathode. Nevertheless, an increase in the
anode voltage resulted in a higher anode current and electron transmittance. Overall, these
findings demonstrated that when the gate voltage was held constant, the anode voltage
had minimal influence on the emission current of the cathode field. However, a higher
anode voltage could enhance the electron transmittance and anode current.
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Although the aperture ratio was unchanged, the increase in grid wire distance was
more significant than the increase in grid wire width. Figure 5e shows the variation in
the currents and electron transmittance as the grid wire distance increased. Figure 5e
indicated that the currents at all electrodes decreased slightly as the grid wire distance
increased. Figure 5e also showed that as the grid wire distance increased from 103 µm to
618 µm, the electron transmittance only slightly increased from 74.6% to 78.5%, with the
electron transmittance essentially remaining around 76%. This minimal increase in electron
transmittance was attributed to the reduced number of electrons captured by the grid wire.
Thus, the electron transmittance remained essentially constant despite the increase in grid
wire distance. The grid aperture ratio determined the electron transmittance. When the
grid aperture ratio increased, electron transmittance also increased, and when the grid
aperture ratio remained constant, electron transmittance also remained almost constant.
Therefore, the grid aperture ratio determined the electron transmittance.

3.3. The Electron Beam Fluorescence Imaging Experiments

To study the variation in electron beam spot size at different aperture ratios, fluores-
cence imaging experiments were conducted. The gate voltage was maintained at 1.6 kV
while the anode voltage was increased from 1.5 kV to 8.0 kV. The fluorescence images
obtained are shown in Figure 6a. Figure 6b illustrates the relationship between the electron
beam spot size and the anode voltage. The y-axis of Figure 6b represents the area of the
electron beam spot. As the voltage increased, the area gradually decreased, and the electron
beam spot narrowed inward. This phenomenon was attributed to the enhancement of the
anode electric field, which reduced the time for electrons to reach the anode. It took less
time for the electrons to spread around, and the electron beam became more concentrated.
As a result, the electron beam spot on the anode was reduced.

When the anode voltage was kept constant at 7.0 kV and the gate voltage was increased
from 1.7 kV to 2.2 kV, a fluorescence image was produced, as shown in Figure 6c. The
relationship between the electron beam spot size and the gate voltage is illustrated in
Figure 6d. With an increase in the gate voltage, the area of the electron beam spot on the
fluorescent plate gradually expands. This indicates that, under fixed anode voltages, an
increase in gate voltage leads to a more significant emission of electrons from the cathode,
resulting in an expansion of the electron beam’s divergence angle.

Figure 6e shows the fluorescent images at different aperture ratios. Figure 6f shows
the area of the electron beam spot at different aperture ratios. The voltage of each electrode
is unchanged, and it can be observed that an increase in the aperture ratio intensifies the
divergence of cathode electrons, thus increasing the size of the electron beam spot, which is
not conducive to subsequent focusing. Therefore, it is only possible to increase the aperture
ratio of the grid with limitations.

To summarize the work described above, from the simulation and experiment results,
with an increase in the grid aperture ratio, the cathode current increased first and then
decreased, the gate current decreased continuously, and the anode current increased until
saturation when the anode voltage and the gate voltage remained constant. The electron
transmittance increased as the aperture ratio increased. When the gate voltage was fixed
and the grid aperture ratio remained constant, the cathode current remained stable. The
higher the anode voltage, the greater the anode current and electron transmittance. Further-
more, if the anode voltage and gate voltage remained constant, the current of each electrode
decreased as the gate distance increased, while the electron transmittance remained stable.
Increasing the anode voltage could reduce the electron beam spot size, enhancing the
electron transmittance. While increasing the gate voltage increased the cathode current, it
also enlarged the size of the electron beam spot. Increasing the grid aperture ratio elevated
the electron transmittance. However, it also caused a reduction in the field emission current
of the cathode, and the electron divergence of the cathode increased. The electron transmit-
tance was still low when the grid aperture ratio was less than 75%. When the aperture ratio
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was greater than 85%, the electron transmittance was saturated but exacerbated the electron
beam dispersion, and the size of the anode electron beam spot also gradually increased.
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Figure 6. Fluorescence images of the electron beam spot and their variations at different voltages and
aperture ratios. (a) Fluorescence images at anode voltages (Va) of 1.5 kV, 2.0 kV, 3.0 kV, 4.0 kV, 5.0 kV,
6.0 kV, 7.0 kV, and 8.0 kV. (b) Variations in electron beam spot area when the anode voltage increases
from 1.5 kV to 8.0 kV. (c) Fluorescence images at gate voltages (Vg) of 1.5 kV, 1.6 kV, 1.7 kV, 1.8 kV,
1.9 kV, 2.0 kV, 2.1 kV, and 2.2 kV. (d) Variations in electron beam spot area when the gate voltage
increases from 1.5 kV to 2.2 kV. (e) Fluorescence images at aperture ratios of 51%, 61%, 65%, 70%, and
85%. (f) Variations in electron beam spot area when the aperture ratio increases from 51% to 85%.

4. Conclusions

These results indicated that the electron transmittance of CNT triode field emission
structures was determined by the aperture ratio of the grid. A larger aperture ratio of the
grid resulted in higher electron transmittance; however, it also caused the cathode electron
divergence to increase, resulting in an enlarged electron beam spot size. It was necessary to
strike a balance between electron transmittance and the size of the electron beam spot rather
than barely increase the grid aperture ratio. For the CNT triode field emission structure
described in this work, to obtain a large anode current and small electron beam divergence,
achieving a trade-off between high electron transmittance and small electron beam spot
size, the aperture ratio of the grid can be kept between 75% and 85%. Compared with
existing reports, this study not only presents high electron transmittance but also achieved
a balance between electron transmittance and electron beam spot size. This study, which
focused on determining the optimal grid aperture ratio for achieving a balance between
transmittance and electron divergence, could provide a reliable reference for applications
related to cold cathode X-ray tubes.
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