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Abstract: This research introduces the PEnsemble 4 model, a weighted ensemble prediction model
that integrates multiple individual machine learning models to achieve accurate maize yield fore-
casting. The model incorporates unmanned aerial vehicle (UAV) imagery and Internet of Things
(IoT)-based environmental data, providing a comprehensive and data-driven approach to yield
prediction in maize cultivation. Considering the projected growth in global maize demand and
the vulnerability of maize crops to weather conditions, improved prediction capabilities are of
paramount importance. The PEnsemble 4 model addresses this need by leveraging comprehensive
datasets encompassing soil attributes, nutrient composition, weather conditions, and UAV-captured
vegetation imagery. By employing a combination of Huber and M estimates, the model effectively
analyzes temporal patterns in vegetation indices, in particular CIre and NDRE, which serve as reliable
indicators of canopy density and plant height. Notably, the PEnsemble 4 model demonstrates a
remarkable accuracy rate of 91%. It advances the timeline for yield prediction from the conven-
tional reproductive stage (R6) to the blister stage (R2), enabling earlier estimation and enhancing
decision-making processes in farming operations. Moreover, the model extends its benefits beyond
yield prediction, facilitating the detection of water and crop stress, as well as disease monitoring in
broader agricultural contexts. By synergistically integrating IoT and machine learning technologies,
the PEnsemble 4 model presents a novel and promising solution for maize yield prediction. Its
application holds the potential to revolutionize crop management and protection, contributing to
efficient and sustainable farming practices.

Keywords: ML-based precision agriculture; IoT-based precision agriculture; sustainable agriculture;
PEnsemble 4; maize yield prediction; spatial prediction; remote sensing

1. Introduction

Maize holds a crucial position in the global cereal markets, with its demand steadily
rising, especially for animal feed purposes. Major importers of maize include Mexico, the
European Union, Japan, Egypt, and Vietnam. Notably, Thailand also holds significance
as an importer of maize, primarily driven by the demands of the food industry [1]. The
productivity of maize production poses challenges due to several factors such as water
availability, seed quality, weather conditions, pests, diseases, soil management, and fertil-
izer nutrient content. Additionally, plant diseases [2] such as downy mildew and common
rust, as well as pests such as corn armyworm [3–5] can significantly affect maize yields,
leading to global supply and price fluctuations.

Accurately predicting grain yield is crucial for improving crop productivity [6]. This
can be accomplished through various methods, including statistical modeling, machine
learning (ML) algorithms, and crop simulation models. These prediction approaches rely
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on historical data related to crop yields, weather patterns, soil quality, and management
practices [7]. However, there is a notable research gap in the field of crop health prediction.
Existing studies primarily focus on optimizing algorithmic accuracy [8] while overlooking
the need for real-time applications. Therefore, there is an urgent need to develop a solution
that allows for real-time monitoring and detection of factors that directly affect crop health
throughout its life cycle [9]. Addressing this research gap would greatly benefit precision
agriculture and support informed decision making for farmers and stakeholders in the
agricultural sector [10].

Environmental remote sensing is of paramount importance in precision agriculture,
offering a wide array of technologies for long-term monitoring and management of agricul-
tural resources. Proximal remote sensing, which acquires high-resolution data from close
distances, provides valuable insights into crop health, soil conditions, and ecosystem dy-
namics, which are indispensable for precision agriculture and informed environmental de-
cision making [11,12]. Remote sensing technologies prove particularly advantageous in ad-
dressing water management challenges in irrigation systems, particularly in areas affected
by climate change, as they enable efficient data collection across extensive areas [13,14].
Additionally, the research conducted by [15,16] underscores the significance of utilizing
remote sensing big data and Artificial Intelligence (AI) in achieving agricultural precision.

The integration of Internet of Things (IoT) technologies enhances long-range monitor-
ing, addressing critical aspects of precision agriculture such as soil conditions, water usage,
and irrigation practices [13,17]. Utilizing diverse sensors for data analysis plays a pivotal
role in precision agriculture, providing valuable insights into crop management [18,19]. The
integration of unmanned aerial vehicles (UAVs) with remote charging capabilities offers
a promising solution for wide-area sensing on large-scale farms [20]. Furthermore, the
utilization of wireless sensors based on Narrowband IoT (NB-IoT) enables real-time and ac-
curate data collection, empowering farmers with information to optimize crop growth [21].
These advancements contribute to intelligent and sustainable crop production systems,
improving profitability, productivity, and environmental protection [22,23].

This research endeavors to address a critical gap in the field of crop health prediction
by presenting a groundbreaking approach that leverages the combined power of the IoT
and AI [24,25]. The innovative system proposed in this study stands as a pioneering
solution that has the potential to revolutionize the agricultural landscape. At its core, this
research aims to achieve the following primary objectives:

1. Continuous crop monitoring: Develop a comprehensive and continuous monitoring
system that provides real-time insights into a diverse range of environmental and
crop-specific parameters. By integrating IoT devices into agricultural practices, this
system enables the collection of dynamic data, empowering farmers and agronomists
with an unobstructed view of their crops’ health and growth.

2. Precise predictive modeling: Utilize advanced AI models to analyze the data de-
rived from IoT devices with precision. These models are specifically designed to
provide timely and accurate information about crop health and growth trajectories.
By leveraging the power of predictive modeling, stakeholders can implement targeted
interventions, optimizing resource allocation and enhancing crop quality.

In summary, this research demonstrates the transformative potential of combining IoT
and AI technologies in agriculture. By closing the gap in crop health prediction, it paves the
way for precision agriculture. Continuous crop monitoring and precise predictive modeling
enable informed decisions that enhance crop growth, sustainability, and productivity.

Our Main Contribution

To the best of the authors’ knowledge, this paper presents a novel and comprehensive
approach that significantly differs from existing works in predicting crop yields. While
previous studies have explored various methodologies, such as statistical modeling [26],
and deep learning techniques [27,28], they have yet to integrate multi-temporal images and
ML algorithms in the manner proposed here.
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By integrating remote sensing data with ML techniques, our study offers a practical
and innovative framework for forecasting crop yields. The incorporation of multi-temporal
images allows for a holistic understanding of crop growth patterns and their response to
changing environmental conditions over time, enabling more precise predictions.

By harnessing the power of various vegetation indices and employing ML algo-
rithms, our research achieves remarkable accuracy in forecasting crop yields. This advance-
ment holds significant implications for enhancing global food security and optimizing
crop management practices, as it empowers farmers with valuable insights for making
informed decisions.

Moreover, our study contributes to the expanding body of research on the integra-
tion of ML and remote sensing in agriculture, emphasizing the importance of interdisci-
plinary collaborations between the fields of agriculture and technology. This interdisci-
plinary synergy has the potential to revolutionize agricultural practices and pave the way
for a more sustainable and productive future in the face of increasing challenges in the
agricultural sector.

The objectives of our study can be summarized as follows:

• To study factors impacting the life cycle of maize, including the pre-planting stage,
growth stage, and post-production stage in maize fields.

• To collect and analyze environmental factors, including evapotranspiration, rain rate,
wind speed, temperature, humidity, NPK nutrients, and pH.

• To calculate 12 vegetation indices, including the Chlorophyll Index green (CIgr),
Chlorophyll Index red edge (CIre), Enhanced Vegetation Index 2 (EVI2), Green Nor-
malized Difference Vegetation Index (GNDVI), Modified Chlorophyll Absorption
Ratio Index 2 (MCARI2), Modified Triangular Vegetation Index 2 (MTVI2), Normal-
ized Difference Red Edge (NDRE), Normalized Difference Vegetation Index (NDVI),
Normalized Difference Water Index (NDWI), Optimized Soil-Adjusted Vegetation In-
dex (OSAVI), Renormalized Difference Vegetation Index (RDVI), and Red–Green–Blue
Vegetation Index (RGBVI) with multispectral (MS) imagery from the UAVs equipped
with MS cameras.

• To predict the growth stage and productivity of maize using ML regression tech-
niques [29,30] including CatBoost regression, decision tree regression, ElasticNet
regression, gradient boosting regression, Huber regression, K-Nearest Neighbors
(KNN) regression, LASSO regression, linear regression, M estimators, passive ag-
gressive regression, random forest (RF) regression, ridge regression, Support Vector
Regression (SVR), and XGBoost regression algorithms.

The paper is structured as follows: Section 2 provides a comprehensive description
of the materials and methods used in the study, including the study locations, climate
conditions, soil characteristics, and agricultural practices. Section 3 details the specific
approaches and techniques employed. Section 4 presents the key findings, addressing the
strengths and limitations of the proposed approach. Finally, in Section 5, the principal con-
clusions are summarized, highlighting the practical implications for precision agriculture
and sustainable crop management.

2. Materials and Methods
2.1. Study Area

This study conducted research in the Manorom District, Chai Nat, Thailand, specifi-
cally focusing on a designated planting area. The study area, depicted in Figure 1, is located
at Lat: 15.270978 and Long: 100.174656, encompassing a total area of 88,000 m2. The plant-
ing area is divided into three plots, namely Plot 1, Plot 2, and Plot 3, with respective areas
of 24,000 m2, 33,600 m2, and 30,400 m2, as illustrated in Figure 1a. The Region of Interest
(ROI), referring to a designated area of analysis within each plot measuring 4.5 × 4.5 square
meters, was determined. A total of 270 ROIs were selected for analysis, with each plot
containing 90 ROIs, as depicted in Figure 1b. The plant began sowing on 11 January 2023
and was harvested on 5 May 2023, totaling 115 days for this crop. Each plot was sown



Appl. Sci. 2024, 14, 3313 4 of 29

with the CP303 maize variety [31] with the distinctive features of a robust root and stem
system, harvest age of 110–120 days, and good for planting in flat and sloped areas. A
drip-tape irrigation system is employed in Plot 1, Plot 2, and Plot 3 as 364.02 m3/dunam,
330.21 m3/dunam, and 308.54 m3/dunam, respectively. Weather data for maize growth
were collected with the Vantage Pro2 weather station [32], which provided the following
data over the experimental period: rainfall, average temperature (TempAvg), max tem-
perature (TempMax), min temperature (TempMin), relative humidity, and wind speed, as
shown in Table 1.

Table 1. Climate data for maize growth in the period of study of 11 January to 5 May 2013.

Month Rainfall (mm) TempAvg (◦C) TempMax (◦C) TempMin (◦C) Humidity (%) Wind Speed (km/h)

January 0.45 24.59 36.37 14.23 66.50 4.10
February 0.00 27.53 38.25 18.67 69.98 3.59

March 0.13 29.47 41.57 24.17 68.32 3.98
April 0.52 31.02 42.14 25.14 68.15 3.78

The primary objective of this study is to rigorously examine the productivity of crop
yield within the three designated plots. By analyzing and assessing the agricultural output
achieved in each plot, this investigation aims to provide valuable insights into the crop
yield performance.

Figure 1. Area of study located in (a) Manorom District, Chai Nat, Thailand, with Latitude: 15.270978,
Longitude: 100.174656. (b) A total of 270 blocks of ROIs in Plots 1, 2, and 3 were selected for analysis.

2.2. Unmanned Aerial Vehicle (UAV) Data Acquisition

The study employs the DJI Phantom 4 Multispectral (P4M) quadcopter, which is
a drone equipped with multispectral imaging capabilities [33], for capturing aerial im-
ages. The P4M quadcopter is equipped with six sensors, including an RGB sensor with
2.08 megapixels, a blue sensor (450 nm ± 16 nm), a green sensor (560 nm ± 16 nm), a
red sensor (650 nm ± 16 nm), a red edge sensor (730 nm ± 16 nm), and a near-infrared
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sensor (840 nm ± 26 nm). These sensors enable the acquisition of comprehensive spectral
information. The flight missions were conducted using the DJI GS Pro software version
2.0.17, with specific settings applied. The settings included a speed of 3.2 milliseconds, a
shutter interval of 2 seconds, a front overlap ratio of 75%, a side overlap ratio of 75%, and a
course angle of 119 degrees. The UAV was flown at altitudes of 30 m and 100 m to capture
data from different perspectives. In order to mitigate the influence of varying sunlight
angles, the UAV flights were scheduled between 10:00 a.m. and 12:00 p.m.

It is noteworthy that the maize growth stages are commonly delineated using a
standardized system developed by the Food and Agriculture Organization (FAO). In
the context of our research, it is of paramount importance to investigate and ascertain
the potential correlations between specific growth stages and the width of maize seeds,
employing an innovative and novel approach. To achieve this objective, we meticulously
conducted weekly monitoring of maize growth utilizing UAVs. A total of 17 UAV flights
were conducted over a comprehensive 113-day period, encompassing the entire growth
cycle of the maize plants. The detailed data obtained from these flights are meticulously
presented in Table 2, providing valuable insights for further analysis and interpretation.

During the Vegetative Stage (VE) of maize growth, which signifies the emergence of
the first leaves, our UAV observation campaign was initiated on 11 January 2023. RGB and
multispectral images were acquired during this phase, utilizing UAV flights conducted at
altitudes of 30 m and 100 m. The purpose of these flights was to capture comprehensive
data encompassing both standard RGB imagery and multispectral information regarding
the early growth patterns of maize plants. Furthermore, on day 8 of maize growth, the
emergence of leaves begins. By day 56, the plant typically reaches the stage where ten
leaves have appeared.

Table 2. Image acquisition by UAV flights.

Flight
Number

Maize
Growth Days Date of Flight Growth

Stage
Flight

Altitude (m)

1 1 11 January 2023 VE 30 and 100
2 8 18 January 2023 VE 30 and 100
3 15 25 January 2023 V2 30 and 100
4 22 1 February 2023 V2 30 and 100
5 29 8 February 2023 V4 30 and 100
6 36 15 February 2023 V6 30 and 100
7 43 22 February 2023 V6 30 and 100
8 51 2 March 2023 V8 30 and 100
9 56 7 March 2023 V10 30 and 100

10 65 16 March 2023 R1 30 and 100
11 72 23 March 2023 R1 30 and 100
12 79 30 March 2023 R2 30 and 100
13 85 5 April 2023 R3 30 and 100
14 92 12 April 2023 R4 30 and 100
15 99 19 April 2023 R5 30 and 100
16 106 26 April 2023 R5 30 and 100
17 113 3 May 2023 R6 30 and 100

In order to maintain optimal conditions for maize growth, it is crucial to address
both excessive moisture and prolonged drought. These conditions have the potential to
reduce the yield by up to 25% between the sixth leaf stage (V6), characterized by the
development of six leaves with visible collars, and the tenth leaf stage (V10), characterized
by the development of ten leaves with visible collars. To ensure the appropriate growth
of maize, we consistently monitored its progress on a weekly basis across all growth
stages. Additionally, during the transition from the V10 stage to the tasseling stage or
Vegetative Tassel (VT), which involves the emergence of the tassel and the initiation of
pollen shedding, the demand for nutrients and water increases significantly to meet the
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growth requirements. In response, we decided to implement precision fertilizer technology
to optimize soil fertility. It is essential to be aware that the presence of insects and the
occurrence of hail injuries during this critical stage can potentially reduce kernel production.

The silking stage (R1) is a crucial phase for determining maize grain yield. In our
research, silks emerged and became receptive to pollen on day 65. Physiological maturity
can be estimated by adding 50 to 55 days from the R1 stage. By day 72, we observed
the blister stage (R2), characterized by the swelling and milky fluid filling of kernels,
resembling blisters. This stage represents a significant milestone in maize development,
marking the transition from vegetative growth to reproductive growth and the initiation
of kernel development. It is important to note that drought conditions during the R2
stage can cause substantial yield reductions, ranging from 50% to 60% per day. Therefore,
providing adequate nutrients and water during this stage is essential to support proper
kernel development and maturation, ultimately influencing the final grain yield.

In our research, we observed the reproductive stage (R3) (milk stage) on day 85. This
stage is characterized by the continued filling of kernels with a milky fluid, reaching their
maximum size. The R3 stage plays a pivotal role in determining the potential yield of maize
as it represents a critical period for kernel growth and development. Subsequently, during
the reproductive stage (R4) (dough stage), significant changes occur as the kernels gain dry
weight and size, acquiring a doughy consistency. The transition to the reproductive stage
R5 (dough stage) was observed on day 99. At this stage, the kernels continue to develop,
filling with a dough-like substance and transitioning from a milky appearance to a more
solid texture. Finally, on day 113, the maize plant approached physiological maturity at
the reproductive stage R6 (physiological maturity stage). At this stage, the kernels were in
their late developmental phases, indicating the culmination of the growth process.

During all flights, Ground Control Points (GCPs) are captured and serve as reference
points for the creation of image mosaics. This practice ensures consistency and enables
effective comparison between images obtained on different dates. The resulting mosaic
images possess a Ground Sampling Distance (GSD) of 0.016 m and 0.053 m when captured
at flight altitudes of 30 m and 100 m, respectively. To maintain uniformity across all acquired
images captured at various stages of growth, a series of processing steps were applied.

2.3. Image Processing for Extracting Twelve Vegetation Indices

The pre-processing of red, green, blue (RGB) and multispectral (MS) images was con-
ducted using DJI Terra version 4.0.10, a photogrammetry software developed in Shenzhen,
China. DJI Terra utilizes the RGB channels, along with near-infrared (NIR) and red edge
channels at each wavelength, to perform image processing.

Figure 2 provides a visual representation of the entire process, offering a compre-
hensive overview of the processing steps involved in handling both RGB and MS images.
These steps are specifically designed to extract digital traits, as adapted from [34].

A comprehensive data collection effort was undertaken during the investigation,
covering all three plots. This endeavor resulted in the acquisition of 3172 .tif files from each
flight conducted at an altitude of 30 m and 835 .tif files from each flight conducted at an
altitude of 100 m. Across a total of 17 flights, the dataset encompasses 53,924 .tif file images
captured at an altitude of 30 m, along with an additional 14,195 “.tif” file images captured
at an altitude of 100 m. The employed software, DJI Terra, utilizes advanced techniques
such as scene illumination, reference panels, and sensor specifications to automatically
generate orthomosaic images in .tif format from both datasets.
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Figure 2. Image processing pipelines for digital traits’ extraction adapted from [34]. From the
multispectral (MS) images, twelve vegetation indices were generated. On the other hand, from the
red, green, blue (RGB) images, twelve canopy volumes were obtained.

2.3.1. Vegetation Indices

In agricultural applications, twelve commonly used vegetation indices (VIs) are in-
strumental in assessing vegetation health and performance. These indices encompass a
range of parameters and include: (1) Chlorophyll Index green (CIgr), (2) Chlorophyll Index
red edge (CIre), (3) Enhanced Vegetation Index 2 (EVI2), (4) Green Normalized Difference
Vegetation Index (GNDVI), (5) Modified Chlorophyll Absorption Ratio Index 2 (MCRI2),
(6) Modified Triangular Vegetation Index 2 (MTVI2), (7) Normalized Difference Red Edge
(NDRE), (8) Normalized Difference Vegetation Index (NDVI), (9) Normalized Difference
Water Index (NDWI), (10) Optimized Soil-Adjusted Vegetation Index (OSAVI), (11) Renor-
malized Difference Vegetation Index (RDVI), and (12) Red–Green–Blue Vegetation Index
(RGBVI), as shown in Table 3.

Table 3. Vegetation indices formulations and references.

Vegetation Formulation Reference

CIgr NIR
Green − 1 [35]

CIre NIR
RedEdge − 1 [35]

EVI2 2.5×(NIR−Red)
1+NIR+(2.4×Red)

[36]

GNDVI NIR−Green
NIR+Green [37]

MCARI2 1.5×[(2.5×(NIR−Red))−(1.3×(NIR−Green))]√
(2×NIR+1)2−(6×NIR−5×

√
Red)−0.5

[38]

MTVI2 1.5×[(1.2×(NIR−Green))−(2.5×(Red−Green))]√
(2×NIR+1)2−(6×NIR−5×

√
Red)−0.5

[38]

NDRE NIR−RedEdge
NIR+RedEdge

[39]

NDVI NIR−Red
NIR+Red [40]

NDWI Green−NIR
Green+NIR [41]

OSAVI NIR−Red
NIR+Red+0.16 [42]

RDVI NIR−Red√
(NIR+Red)

[43]

RGBVI Green2−(Blue×Red)
Green2+(Blue×Red)

[44]

To mitigate the influence of soil surface on each VI image, a soil mask layer is generated
using the soil-adjusted vegetation index. The plots are defined by 270 ROIs, each measuring
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4.5 × 4.5 m, and are digitized in a shapefile (*.shp) format using the open-source software
Quantum GIS (QGIS, version 3.28.3-Firenze).

Ground reference data obtained from the harvested area are utilized to estimate the
canopy volume (CV) based on the subplot polygons. Subsequently, the plot segmentation
shapefiles are imported into the developed algorithm. Various image features, including
maximum (Max), average (Mean), sum, standard deviation, 95th percentile, 90th percentile,
and 85th percentile (representing the highest data values extracted after eliminating 5%,
10%, and 15% of the data following the soil subtraction process from the VI images, respec-
tively, denoted as 95P, 90P, and 85P), are computed for each subplot within each VI image.
These features are calculated using the Python libraries NumPy and Rasterstats. During the
plot segmentation creation process, the feature data are labeled and subsequently exported
as a Comma-Separated Values (CSV) file.

2.3.2. Canopy Height Model from Digital Surface Model

The estimation of crop height within each subplot relies on the utilization of a Canopy
Height Model (CHM) [34]. To create a Digital Terrain Model (DTM) representing the
field’s topography, the QGIS software is employed. The CHM is obtained by subtracting
the Digital Surface Model (DSM) data from the DTM. To ensure heightened accuracy,
a filtering process is applied to the CHM image layer, eliminating pixels with a height
below a predefined threshold of 0.05 m. Subsequently, the CHM image layer is segmented
using a plot segmentation shapefile, enabling the extraction of statistical data for each
individual ROI to acquire canopy height (CH) information. The calculation of canopy
volume (CV) is performed by multiplying the data related to canopy density (CD) with the
corresponding CH data for each specific ROI. This sequential process is carried out for all
the ROIs investigated in the study, thereby obtaining the CV values.

2.4. Environmental Measurements and Optimal IoT Design for Soil Health Monitoring

In order to facilitate a comprehensive investigation of soil properties and environ-
mental data, the authors integrated multiple sources of information to assess various
aspects. As discussed in Section 2.2, UAVs were utilized, as depicted in Figure 3a. To
enable comprehensive weather monitoring, a Vantage Pro2 weather station [32] from Davis
Instruments Corporation, Diablo Avenue Hayward, CA, USA, as shown in Figure 3b, was
employed. The Vantage Pro2 is an agriculture-focused weather station that includes
outside temperature and humidity, wind speed, rainfall, and solar radiation, plus a solar ra-
diation sensor for evapotranspiration measurement. The sensor provides accurate, reliable
weather monitoring with real-time data updates every 0.5 seconds. Our sensor network is
designed to collect a wide range of environmental parameters, including, but not limited
to light intensity, humidity, temperature, and precipitation. By capturing these variables,
we ensured that our dataset encompasses diverse meteorological conditions, ranging from
bright and sunny days to overcast or rainy weather. Furthermore, a series of measurements
including NPK nutrient levels, pH, and Electrical Conductivity (EC) were obtained using
the Soil Analyzer from Weihai JXCT Electronic Technology Co., Ltd., Weihai, China [45], as
illustrated in Figure 3c.

The IoT devices specifically designed for measuring soil parameters such as pH, NPK
levels, Electrical Conductivity (EC), moisture, and location were developed [46]. These
devices utilize a low-power transmission technique known as Long-Range Wide-Area
Network (LoRaWAN) to ensure efficient and reliable data transmission. The IoT-based soil
monitoring system, as depicted in Figure 3d, incorporates these LoRaWAN-enabled devices.
Additionally, the innovative smart trap for insect monitoring, showcased in Figure 3e, was
proposed by the authors as a prototype system.

The IoT-based system for soil monitoring consists of an Arduino Nano, soil sensors,
a 3.7 V 3000 mAh battery, and a Tiny GPS [47]. To enable wireless communication and
achieve seamless data transmission over a range of approximately 2 km, the system utilizes
the Gravitech S767 microcontroller from CAT Telecom, National Telecom Public Company
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Limited, Lak Si, Bangkok, Thailand, produced in Thailand, which implements the Lo-
RaWAN. The microcontroller Arduino Nano version 3.0 from Arduino LLC, Somerville,
MA, USA interfaces with the soil sensors using RS485 communication. The IoT devices are
programmed to send and retrieve data at five-minute intervals over a period of seven days.

Figure 3. Equipment used for the measurements in the research: (a) DJI Drone with multi-spectrum
capability, (b) Vantage Pro2 weather station, (c) NPK Soil Analyzer, (d) our IoT design for soil health
monitoring, and (e) prototype of smart trap.

In this study, the authors primarily utilized the innovative smart trap for insect moni-
toring and insect counting. The smart trap employs a Raspberry Pi controller and advanced
object-detection techniques, specifically YOLOv5. This integration enables real-time deci-
sion making in precision agriculture, with the aim of minimizing chemical usage, promoting
sustainable crop protection, and optimizing crop yield and quality. This integration serves
the purpose of fostering a future marked by sustainable and productive farming practices.

2.5. Selection of Machine Learning (ML) Methods for Grain Yield Predictions

In the domain of machine learning (ML) in precision agriculture, the authors present a
comprehensive approach, as illustrated in Figure 4, to identify the most suitable model for
crop yield prediction. The study explores the efficacy of 14 distinct ML algorithms in pre-
dicting the growth stage and productivity of maize. These algorithms encompass CatBoost
regression [48], decision tree regression [49,50], ElasticNet regression [51], gradient boost-
ing regression [52,53], Huber regression [54], K-Nearest Neighbors (KNN) regression [55],
LASSO regression [56], linear regression [57], M estimators [58], passive aggressive re-
gression, random forest (RF) regression [59], ridge regression, Support Vector Regression
(SVR) [60], and XGBoost regression [61]. By employing this diverse range of algorithms,
the authors aimed to optimize the accuracy and reliability of crop yield prediction in the
context of precision agriculture.

The proposed flow chart encompasses two integral components. The first component
involves the analysis of multi-temporal images, as explicated in Section 2.3, wherein a
comprehensive examination is conducted on various vegetation indices, chlorophyll con-
tents, and other pertinent features. A total of 17 imagery datasets, acquired from 17 flights,
as delineated in Table 2, underwent meticulous scrutiny, resulting in the extraction of
4590 ROIs derived from the multiplication of 270 ROIs by 17 days. These carefully selected
ROIs were seamlessly integrated with 14,195 .tiff images utilizing the DJI Terra software ver-
sion V4.0.10, thereby establishing pixel-to-ROI correspondences. The ROIs were subjected
to rigorous processing, incorporating precise geographic coordinates obtained through
Ground Control Points (GCPs) following established procedures. The extracted pixel data
derived from these ROIs serve as the fundamental basis for computing VI-based canopy
density, thereby enabling the classification of pixels into two distinct categories—green
pixels and non-green pixels. By focusing exclusively on green pixels, the values of twelve
VIs were computed for each ROI.
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Figure 4. The flow diagram of ML methods for grain yield prediction.

The computed VIs were subsequently employed to establish linear relationships with
maize yields, aiming to investigate their correlation. Specifically, the VIs obtained during
critical growth stages were utilized to calculate the coefficient of determination (R-squared,
R2) values. These R2 values serve as indicators of the predictive capabilities exhibited by
the various vegetation indices. By identifying the most effective indices during significant
growth stages, valuable insights can be gained regarding growth monitoring, and more
accurate yield predictions can be made.

The second part of the flow chart focuses on the application of ML algorithms for crop
yield prediction. Over the past decade, ML algorithms have demonstrated remarkable
potential and have outperformed traditional methods in various domains, including object
detection, image classification, pattern recognition, and others. Leveraging supervised
learning techniques, these algorithms have proven to be highly effective. In the specific
context of crop yield prediction, the trained ML models were evaluated by assessing their
performance on independent test samples. To select the most suitable ML algorithm for
crop yield prediction, a careful selection process was undertaken. This involved considering
a range of 14 ML algorithms, chosen based on their prominence in the literature and their
distinctive characteristics. The goal was to identify the algorithm that best aligns with the
specific requirements of predicting the growth stage and productivity of maize.

To investigate the effectiveness of ML models, this study utilizes a set of twelve VIs
based on the CD. These VIs were computed from a long-term series of collected images
for each plot. The VIs were employed as independent variables, while the maize yields
observed in each plot were utilized as dependent variables.

This investigation made use of a diverse range of meticulously selected ML algo-
rithms. The selection process took into consideration the distinctive characteristics of each
algorithm, as well as insights derived from the relevant academic literature. The primary
goal was to conduct a comprehensive analysis of multi-temporal satellite imagery data in
order to provide accurate predictions of crop yields. Each chosen model underwent careful
evaluation to ensure its suitability for the specific task at hand.

Model 1 (CatBoost regression) [48]: This algorithm was chosen for its adeptness
in handling categorical features prevalent in such data. By employing ordered boosting
and symmetric trees, CatBoost effectively captured temporal variations and seasonality
patterns, ensuring a high level of predictive accuracy.

Model 2 (decision tree regression) [49,50]: Selected to interpret the impact of different
temporal features on crop yields, decision tree regression leverages its hierarchical structure
to represent complex relationships within the data.
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Model 3 (ElasticNet regression) [51]: Addressing multicollinearity and perform-
ing feature selection simultaneously, ElasticNet regression has proven crucial for high-
dimensional multi-temporal data. Its combination of L1 and L2 regularization techniques
played a pivotal role in achieving these objectives.

Model 4 (gradient boosting regression) [52,53]: Demonstrating efficacy in handling
complex relationships and temporal dependencies, gradient boosting regression build an
ensemble of decision trees sequentially, enhancing predictive accuracy in the process.

Model 5 (Huber regression) [54]: Chosen for its robustness in accommodating outliers
prevalent in agricultural datasets, Huber regression minimizes the impact of extreme
values through a parameter balancing the mean absolute error (MAE) and mean-squared
error (MSE).

Model 6 (K-Nearest Neighbors regression) [55]: Predicting grain yields based on sim-
ilar multi-temporal patterns observed in the past, KNN regression relied on the assumption
that analogous temporal patterns yield similar crop yields. However, the consideration of
an appropriate K value and computational cost for larger datasets was warranted.

Model 7 (LASSO regression) [56]: Serving as a feature selection technique, LASSO
regression incorporates L1 regularization to encourage some feature coefficients to be
precisely zero, facilitating the identification of vital temporal features.

Model 8 (linear regression) [57]: Providing a baseline model to understand the overall
trend between crop yields and multi-temporal features, linear regression assumed a linear
relationship, offering valuable insights into the general temporal trend of grain yield.

Model 9 (M estimators regression) [58]: Chosen for their robustness in handling
outliers and noise in agricultural datasets, M estimators provided flexibility in choosing
the loss function, making them suitable for data with non-Gaussian noise.

Model 10 (passive aggressive regression): As an online learning algorithm, passive
aggressive regression adapted quickly to temporal changes in crop yield patterns, making
it suitable for real-time predictions, particularly in rapidly evolving agricultural conditions.

Model 11 (random forest regression) [59]: Handling high-dimensional multi-temporal
data, RF provided robust predictions by building multiple decision trees on different data
subsets and averaging their predictions.

Model 12 (ridge regression): Beneficial when dealing with multicollinear features in
multi-temporal data, ridge regression applied L2 regularization to stabilize the model and
reduce the impact of multicollinearity.

Model 13 (Support Vector Regression) [60]: Chosen for its capability to capture non-
linear relationships between multi-temporal features and crop yields, SVR mapped data
into a higher-dimensional space, enabling the identification of non-linear patterns.

Model 14 (XGBoost regression) [61]: Selected for its effectiveness in various regression
tasks, XGBoost regression constructed an ensemble of decision trees using gradient boosting
and regularization techniques, offering high predictive accuracy.

These ML algorithms were amalgamated to form a comprehensive toolkit capable
of analyzing multi-temporal satellite imagery data and accurately predicting crop yields.
Through their collective usage, they effectively addressed various challenges encountered
in the analysis process, including outlier handling, feature selection, non-linearity, and
temporal dependencies.

2.6. Selection of Best Suited Models

The selection of the most appropriate models depends on the specific characteristics of
the multi-temporal imagery and the nature of the grain yield data. Models such as CatBoost
regression and gradient boosting regression are well suited to capturing temporal patterns
and seasonality effects. ElasticNet and LASSO regression offer valuable features for feature
selection in high-dimensional data. Huber regression and M estimators are effective at
handling outliers within the crop yield data. Given the diverse range of scenarios and
variable combinations explored in this study, it is crucial for researchers to rigorously
evaluate each algorithm’s performance using defined evaluation metrics. This meticulous
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evaluation process enables researchers to identify the most effective models for accurately
predicting grain yield within their unique agricultural context, thus enhancing the reliability
and accuracy of the predictions.

To evaluate the performance of these various algorithms [62–65], the authors used
several metrics, including mean-squared error (MSE), root-mean-squared error (RMSE),
mean absolute error (MAE), and R-squared (R2) as

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2, (1)

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi − Mi)2, (2)

MAE =
∑N

i=1 |Pi − Mi|
N

, (3)

and

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

, (4)

where N is the number of all samples, M and P are the true values and predicted values of
the yields, yi represents the actual values, ŷi represents the predicted values, | · | represents
the absolute value, and ȳ represents the mean of the actual values, respectively. These
metrics provide insights into the accuracy and predictive power of each algorithm in
estimating the growth stage and productivity of maize.

The study encompasses an extensive set of forty features utilized as inputs for the
ML models to facilitate the accurate prediction of crop growth and yield. This compre-
hensive set of features comprises eight soil-related factors, eight parameters derived from
environmental data, and twenty-four features derived from twelve VIs. The soil-related
factors encompass N, P, K, pH level, soil temperature, soil humidity, EC, and maize height.
These factors provide insights into the soil composition, fertility, and moisture content, as
well as the growth status of the maize plants. On the other hand, the parameters derived
from environmental data capture important variables such as water feed, UV radiation,
evapotranspiration, daily rainfall, rain rate, humidity, wind speed, and temperature. These
environmental factors play a crucial role in influencing crop growth and yield, and their
inclusion in the analysis allows for a comprehensive understanding of the interactions
between soil conditions and the surrounding environment.

Furthermore, the study incorporates twenty-four features derived from twelve VIs,
specifically the CIgr, CIre, EVI2, GNDVI, MCARI2, MTVI2, NDRE, NDVI, NDWI, OSAVI,
RDVI, and RGBVI, accompanied by the CD and CV. Through the incorporation of a
diverse set of forty features, ML models can capture the complex relationships between
soil properties, environmental conditions, and vegetation characteristics, thereby exerting a
significant influence on crop health and a holistic analysis of crop growth and productivity.

2.7. Ensemble Model for Improved Grain Yield Predictions

This section presents an ensemble machine learning (ML) model designed to enhance
the accuracy and reliability of grain yield predictions by harnessing the strengths of mul-
tiple individual models. Ensemble models have emerged as a prominent technique in
agricultural data analysis due to their capacity to mitigate limitations and improve accu-
racy by effectively capturing diverse patterns and relationships in the data. By combining
the predictive power of multiple ML algorithms, the ensemble model contributes to more
robust and accurate grain yield predictions.

Within our ensemble model, we meticulously selected a range of top-performing
machine learning (ML) algorithms, including Huber regression, M estimators, linear regres-
sion, ridge regression, and others, based on their demonstrated effectiveness in capturing
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temporal variations, addressing multicollinearity, and accommodating outliers present in
the dataset.

The operational framework of the ensemble model is structured as follows:

• Data preparation: To combine the data from various sources, we collected the following:

– Twenty-four VIs with the CD and CV (CIgr, CIre, EVI2, GNDVI, MCARI2, MTVI2,
NDRE, NDVI, NDWI, OSAVI, RDVI, and RGBVI).

– Sixteen environmental data (maize height, N, P, K, pH, soil temperature, soil
humidity, EC, water feed, UV radiation, evapotranspiration, daily rain, rain rate,
humidity, wind speed, temperature).

In summary, we have forty features with two hundred seventy data plots on each of
the seventeen dates to process, with in total 137,700 records from the dataset. In addition,
data cleaning, missing value handling, and null entry removal were also included:

• Feature engineering: Use six different feature importance techniques to extract signifi-
cant features:

– Random forest importance consists of a large number of individual decision trees
that operate as an ensemble. Each individual tree in the random forest outputs a
class prediction, and the class with the most votes becomes the model prediction.
The importance of each feature is determined by the average impurity decrease
calculated from all decision trees in the forest.

– Recursive feature elimination (RFE) with cross-validation is a method that fits
the model multiple times, and at each step, it removes the weakest feature (or
features). RFE with cross-validation uses the cross-validation approach to find
the optimal number of features.

– Permutation importance can be used with any model. After a model is trained,
the values in a single column of the validation data are randomly shuffled. Then,
the model performance metric (such as accuracy or R2) is re-evaluated with
the shuffled data. Features that have a significant impact on performance are
considered important.

– LASSO regression coefficients is a regression analysis method that performs both
variable selection and regularization to enhance the prediction accuracy and inter-
pretability of the statistical model. LASSO selects features with non-zero coefficients.

– The correlation coefficient measures the linear relationship between the target
and the numerical features. Features that have a higher correlation with the target
variable are considered important.

– SHapley Additive exPlanations (SHAP) is a unified measure of feature impor-
tance. It assigns each feature an important value for a particular prediction.

• Model selection: We meticulously evaluated the performance of various ML algo-
rithms on our grain yield prediction task. The top arbitrary number models, based
on evaluation metrics such as mean-squared error (MSE), root-mean-squared error
(RMSE), mean absolute error (MAE), and R-squared (R2), were chosen for ensemble
construction.

• Training: Each of the selected models was trained on our dataset, utilizing the same
training, testing, and validation splits of 70%, 20%, and 10%, respectively, to ensure
consistency and fairness in the comparison. Fourteen different ML models were
trained and evaluated for the data. The models included the following:

– CatBoost, decision trees, ElasticNet, gradient boosting, Huber, KNN, LASSO re-
gression, linear regression, M estimators, passive aggressive, RF, ridge regression,
SVR and XGBoost.

• Ensemble building: We created the ensemble by combining the predictions of the
top arbitrary models using weighted averaging. The weights assigned to each model
were determined based on their performance during training. This process optimizes
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the ensemble’s predictive accuracy. The weighted ensemble prediction PEnsemble is
given by

PEnsemble =
w1PModel1 + w2PModel2 + w3PModel3

w1 + w2 + w3
, (5)

where w1, w2, and w3 represent the weights assigned to each model and PModel1,
PModel2, and PModel3 are the predictions made by each individual model. We fine-tuned
the weights (denoted as w1, w2, and w3) based on the preliminary evaluation results, ex-
ploring various weight combinations to optimize the ensemble model’s performance.

• Evaluation: The ensemble model’s performance was evaluated using the same evalu-
ation metrics employed for individual models. We compared its results to those of
individual models to gauge the improvement achieved through ensemble modeling.

• Hyperparameter tuning: If necessary, we fine-tuned the hyperparameters of our
ensemble model to enhance its predictive capabilities further. Techniques such as grid
search or random search were employed for this purpose.

By incorporating the ensemble model into our grain yield prediction framework, we
aimed to provide more accurate and reliable forecasts, ultimately assisting farmers and
agronomists in optimizing crop management practices and decision making in precision
agriculture. The fusion of multiple ML algorithms within the ensemble harnesses the
strengths of each model, resulting in a robust tool for agricultural yield predictions.

3. Results

Through a comprehensive analysis of environmental factors and various vegetation
indexes, this study aims to determine which aspects of the maize growth stage and other
factors can be adjusted to predict seed weight. In the first part of the study, a total of
seventeen UAV flights were conducted to collect images from a bird’s-eye view, creating a
detailed map of the study area. The images’ data from each day were then computed for
twenty-four vegetation indexes with both the CD and CV, namely the CIgr_CD, CIre_CD,
EVI2_CD, GNDVI_CD, MCAR2_CD, MTVI2_CD, NDRE_CD, NDVI_CD, NDWI_CD,
OSAVI_CD, RDVI_CD, RGBVI_CV, CIgr_CV, CIre_CV, EVI2_CV, GNDVI_CV, MCAR2_CV,
MTVI2_CV, NDRE_CV, NDVI_CV, NDWI_CV, OSAVI_CV, RDVI_CV, and RGBVI_CD.

The goal was to identify which specific days of the growth stage and vegetation indexes
show high correlations with seed weight. The results are presented in Figure 5, which
highlights five dates and five vegetation indexes (VIs) that displayed a strong correlation
with seed weight. These included day 56 of stage V10, days 65 and 72 of stage R1, and day
79 of stage R2, and day 85 of stage R3. Additionally, the VIs with the highest correlation
were the CIre_CD, NDRE, CIgr, EVI2, and NDVI. Notably, on day 79 of stage R2, the VI
indexes CIre, NDRE, CIgr, EVI2, and NDVI demonstrated particularly high correlations of
0.80, 0.80, 0.77, 0.75, and 0.74, respectively. Forty features with two hundred seventy data
plots on day 79 of stage R2 were selected to feed the ML algorithm to predict grain yield.

In this study, all ground truth data were gathered simultaneously on a singular date
and time during the unmanned aerial vehicle (UAV) flight missions. The collected data
were bifurcated into two distinct categories: the first encompassing the soil properties’
data, which entailed NPK nutrient levels, pH, EC, soil temperature, soil humidity, water
feed per area (m3/dunam), and maize height (m) and the second comprising weather data,
including ultraviolet radiation (UV), evapotranspiration, daily rain, rain rate, humidity,
wind speed, and temperature. The weather-related data were consistently captured at
five-minute intervals throughout the entire growing season.

Figure 6 depicts the correlation between seed weight and sixteen factors derived
from the soil properties and weather data used for the analysis. Daily rain and rain rate
were excluded from this correlation analysis due to their predominantly negligible values
throughout the entire growing season, with most observations indicating zero or minimal
rainfall. Among the various factors examined, several displayed a modest correlation with
seed weight. These factors encompassed maize height, temperature, humidity, wind speed,
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UV radiation, water feed, and evapotranspiration, exhibiting correlation coefficients of 0.32,
0.28, 0.26, 0.25, 0.19, 0.19, and 0.17, respectively.

Figure 5. Five high correlation of date of growth stage and VIs with seed weight. Green shades
indicate positive correlations, darker shades suggest stronger relationships, red shades suggest
negative correlations, darker shades suggest stronger inverse relationships, and neutral shades
indicate little to no correlation.

Figure 6. Sixteen environment data to correlate with seed weight. For the daily rain and rain rate, the
values are zero and do not appear in correlation chart. Green shades indicate positive correlations,
darker shades suggest stronger relationships, red shades suggest negative correlations, darker shades
suggest stronger inverse relationships, and neutral shades indicate little to no correlation.



Appl. Sci. 2024, 14, 3313 16 of 29

To facilitate the analysis, the weather data obtained on day 79, corresponding to
stage R2 or 30 March 2023, during the time interval from 10.00 a.m. to 2.00 p.m., were
averaged. These weather data were collected using Internet of Things (IoT) sensors and
included measurements of the temperature (39 ◦C), rainfall (0.0 mm), UV index (7.2 UV),
and evapotranspiration rate (4.8 mm). Evapotranspiration refers to the movement of
water from the land surface to the atmosphere through the processes of evaporation and
transpiration, as depicted in Figure 7.

Figure 7. The environment data of temperature, rain rate, UV radiation, and evapotranspiration of
the day of prediction on 30 March 2023.

3.1. Best Suited Model Selection for Maize Grain Yield Prediction

This experiment is geared towards predicting maize grain yield by utilizing multi-
temporal imagery to extract vegetation indices (VIs) based on the canopy density (CD) and
canopy volume (CV), derived from the product of the canopy density and plant height. The
analysis incorporates ground truth environmental data (Env), encompassing NPK nutrient
levels, pH, EC, soil temperature, soil humidity, water feed per area (m3/dunam), and maize
height (m). Additionally, weather data such as ultraviolet radiation (UV), evapotranspira-
tion, daily rain, rain rate, humidity, wind speed, and temperature were considered.

On day 79 (30 March 2023) of stage R2, we identified the CIre, NDRE, CIgr, EVI2,
and NDVI, determining which days of the growth stage and vegetation indices were
highly correlated with the target variable and can be effectively utilized for prediction in
our research.

To contribute to the understanding of our methodology, the authors provide the
ensemble ML model pipeline, as depicted in Figure 8.

The initial phase of this study involved meticulous data preparation, where the dataset
underwent thorough collection, and cleaning procedures were implemented to address
missing values and eliminate null entries.

Subsequently, in the feature-engineering stage, six distinct techniques were applied
to extract significant features. These methods encompassed selecting all 40 features (ex-
cluding the target for predicting “seed”), utilizing random forest importance to identify
features like the “CIre_CD”, “NDRE_CD”, “CIgr_CD”, “EVI2_CD”, and “NDVI_CD”,
employing recursive feature elimination with cross-validation (RFE with CV) to high-
light features such as “CIre_CD”, “NDRE_CD”, “CIgr_CD”, “EVI2_CD”, and “NDVI_CV”
and utilizing permutation importance to pinpoint features like “CIre_CD”, “NDRE_CD”,
“CIgr_CD”, and “EVI2_CD”. Additionally, features were selected based on the LASSO
coefficients (“CIgr_CD”, “CIgr_CV”, “SoilHumi”, “wind speed”), the correlation coefficient
(“NDRE_CD”, “evapotranspiration”, “humidity”, “temperature”, “EC”), and the SHAP
values (“CIre_CD”, “NDRE_CD”).
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Figure 8. Ensemble pipeline for our purposes.

Following feature engineering, the study progressed to model training and evaluation,
employing a diverse set of fourteen ML models, CatBoost, decision tree, ElasticNet, gradient
boosting, Huber, KNN, LASSO regression, linear, M estimators, passive aggressive, RF,
ridge, SVR, and XGBoost regression.

Hyperparameter tuning was then conducted to optimize specific models, namely “Hu-
ber”, “M estimators”, “linear regression”, and “ridge regression”. This fine-tuning process
utilized GridSearchCV to identify and implement the most effective hyperparameters for
enhanced model performance.

Finally, the study explored ensemble techniques to amalgamate the predictions from
multiple models, thereby improving overall performance. Four distinct ensemble methods,
labeled PEnsemble1, PEnsemble2, PEnsemble3, and PEnsemble4, were implemented, com-
bining various models such as “Huber”, “M estimators”, “linear regression”, and “ridge
regression” in different configurations to leverage the strengths of individual models and
enhance predictive accuracy.

To determine the most suitable model prior to employing ensemble techniques, the
authors adopted six distinct methods of feature engineering:

• Random forest importance: This method leverages the random forest algorithm, which
constructs a multitude of decision trees during training. The importance of a feature is
computed by observing how often a feature is used to split the data and how much it
improves the model’s performance.

• Recursive feature elimination (RFE) with cross-validation: RFE is a technique that
works by recursively removing the least important feature and building a model on
the remaining features. The process is repeated until the desired number of features is
achieved. Cross-validation is integrated into this process to optimize the number of
features and prevent overfitting.
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• Permutation importance: This technique gauges the importance of a feature by evalu-
ating the decrease in a model’s performance when the feature’s values are randomly
shuffled. A significant drop in performance indicates high feature importance.

• LASSO regression coefficients: LASSO is a regression analysis method that uses L1
regularization. It has the capability to shrink some regression coefficients to zero, ef-
fectively selecting more significant features while eliminating the less impactful ones.

• Correlation coefficient: This method calculates the linear correlation between each
feature and the target variable. Features that have strong correlation coefficients are
deemed important, as they have a substantial linear association with the target.

• SHAP values: SHAP values furnish a metric for gauging the influence of each feature
on the model’s prediction. By attributing the difference between the prediction and the
average prediction to each feature, SHAP provides a more intuitive comprehension of
feature importance, particularly in the context of complex models.

The study employed six different feature engineering techniques to prioritize the selec-
tion of features based on their importance, ensuring the utilization of the most significant
predictors in the model. Tables 4 and 5 present the performance of various ML models
across these distinct feature engineering methods.

Among the top-performing models, the Huber model stands out, achieving the best R2

value of 0.926313 with features selected using SHAP values. This combination demonstrates
minimal errors with an MAE of 0.278809, an MSE of 0.516539, and an RMSE of 0.718707,
explaining approximately 92.63% of the variance in the dependent variable. The Huber
model, when paired with features selected using the correlation coefficient, permutation
importance, random forest importance, and RFE with CV, consistently maintains R2 values
exceeding 92.63%, indicating its robust performance. The M estimators model, coupled
with features selected using SHAP values and permutation importance, also showcases
strong performance with an R2 value above 92.46%.

Table 4. Top 10 best performances of fourteen ML model across six distinct methods of
feature engineering.

Feature Set Model MAE MSE RMSE R2

SHAP Values Huber 0.278809 0.516539 0.718707 0.926313
Correlation Coefficient Huber 0.278873 0.516555 0.718717 0.926311

Permutation Importance Huber 0.279073 0.516604 0.718752 0.926304
Random Forest Importance Huber 0.279069 0.516617 0.718760 0.926302

RFE with CV Huber 0.279063 0.516617 0.718761 0.926302
All Features Huber 0.279325 0.517176 0.719150 0.926222

SHAP Values M estimators 0.299684 0.526963 0.725922 0.924826
Permutation Importance M estimators 0.303802 0.528391 0.726905 0.924622

Random Forest Importance M estimators 0.303904 0.528540 0.727007 0.924601
RFE with CV M estimators 0.304337 0.529960 0.727983 0.924398

Conversely, the top 10 worst performing models include the decision tree model
with features selected using all features, permutation importance, and LASSO coefficients,
exhibiting R2 values below 43%. This suggests potential overfitting to the training data
or the decision tree model’s limited suitability for the dataset. The passive aggressive
model, using the correlation coefficient feature selection method, and the ElasticNet model,
utilizing both correlation coefficient and LASSO coefficients, also present low R2 values,
indicating weaker performance. The XGBoost model with features selected using SHAP
values and the decision tree model with features selected using RFE with CV both have R2

values below 65%, further suggesting challenges with these combinations.



Appl. Sci. 2024, 14, 3313 19 of 29

Table 5. Top 10 worst performances of fourteen ML model across six distinct methods of
feature engineering.

Feature Set Model MAE MSE RMSE R2

All Features Decision Tree 0.987037 4.735048 2.176017 0.324520
Permutation Importance Decision Tree 0.996296 4.731600 2.175224 0.325012
Correlation Coefficient Passive Aggressive 1.620354 4.476983 2.115888 0.361334

LASSO Coefficients Decision Tree 0.940370 4.000685 2.000171 0.429281
SHAP Values Decision Tree 0.748519 3.459833 1.860063 0.506436
SHAP Values XGBoost 0.763426 2.624211 1.619942 0.625642

Correlation Coefficient ElasticNet 1.237896 2.548584 1.596428 0.636431
LASSO Coefficients ElasticNet 1.213348 2.533981 1.591848 0.638514

RFE with CV Decision Tree 0.878889 2.498648 1.580711 0.643554
LASSO Coefficients Gradient Boosting 0.841662 2.399104 1.548904 0.657755

In summary, the results highlight that the Huber model consistently demonstrates
strong performance across multiple feature-selection methods, indicating its suitability
for this dataset and problem. Conversely, the decision tree model appears less suited,
producing some of the lowest R2 values, suggesting it might not be the optimal choice or
may require further refinement through hyperparameter tuning or constraints to prevent
overfitting. The study also underscores the effectiveness of feature-selection methods such
as SHAP values, correlation coefficient, permutation importance, random forest importance,
and RFE with CV, particularly when combined with the Huber model.

Consequently, Huber, M estimators, ridge regression, and linear regression were
selected from six different feature importance techniques for further processing with the
hyperparameter tuning technique—an essential step in the ML workflow. The primary
objective was to search for the optimal combination of hyperparameters that yields the best
model performance.

The GridSearchCV method facilitates an exhaustive search over a specified parameter
grid, employing cross-validation to estimate the performance of each combination. For the
Huber model, the best parameter tuning resulted in an achieved R2 of 0.926266, setting the
regularization strength (α) to 1, the Huber threshold (ϵ) to 1.0, and the maximum number
of iterations (max_iter) to 100.

For the parameters of M estimators within the RANSACRegressor algorithm, the
minimum number of samples (min_samples) was set to 0.7 of randomly available data
samples for each iteration, and the stop-iterating probability (stop_probability) was set to
0.9. The obtained R2 of 0.924029 was achieved when 70% of the samples were used to fit
the model in each iteration, and the algorithm iterated until there was a 96% probability of
correctly identifying the inliers.

The linear regression model, configured with fit_intercept=True, enhances flexibil-
ity, allowing it to better capture data patterns, resulting in an achieved R2 of 0.918301.
Fine-tuning the parameters of the ridge regression model involved setting the alpha to
0.615848211066026, fit_intercept to True, and selecting “lsqr” as the solver. The “lsqr”
solver, representing “Least Squares QR Decomposition”, proves efficient in solving the
least squares problem. The ridge regression model yielded the best R2 score of 0.916892
when the regularization strength was 0.615848211066026, an intercept was included, and
the lsqr solver computed the coefficients. A summarized overview of the hyperparameter
tuning results is presented in Table 6.
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Table 6. Summary of hyperparameters.

Model Parameter Value R2

Huber
alpha 1

epsilon 1 0.926266
max_iter 100

M estimators min_samples 0.7 0.924029
stop probability 0.96

Linear regression fit_intercept True 0.918301

Ridge regression
alpha 0.615848211

fit_intercept True 0.916892
solver lsqr

3.2. Results of Ensemble Models

In this subsection, we delve into the outcomes of our top-three ensemble models
designed for predicting maize grain yield. These ensembles, meticulously curated by
harnessing the strengths of various ML algorithms, underwent a comprehensive evaluation
based on predefined performance metrics like the MSE, RMSE, MAE, and R2. Our analysis
provides a detailed examination of each ensemble model’s precision and effectiveness in
capturing intricate connections within multi-temporal satellite imagery data, environmental
variables, and maize yields. Additionally, we conducted a comparative assessment to
identify the top-performing ensemble, characterized by its accuracy and reliability in
predicting grain yields.

Our presentation of these findings aims to offer valuable insights into the potential
of ensemble modeling for maize grain yield prediction. We believe that such insights can
prove instrumental for decision makers in agriculture and precision farming, guiding them
toward more informed practices and strategies.

Following thorough feature engineering and hyperparameter tuning, our results high-
light the effectiveness of the Huber, M estimators, ridge regression, and linear regression
models when paired with the features “CIre_CD” and “NDRE_CD” derived from the SHAP
values technique for predicting maize grain yield. Building on these findings, we opted to
utilize the VotingRegressor to create ensembles for each method, thereby enhancing the
predictive capabilities of our model as follows:

• PEnsemble 1: Using Huber, M estimators (RANSAC), linear regression, and ridge
regression, the weighted ensemble prediction is given by

PEnsemble1 =
w1PHuber + w2PM-estimators + w3PLinear Regression + w4PRidge Regression

w1 + w2 + w3 + w4
. (6)

• PEnsemble 2: Using Huber, M estimators (RANSAC), and linear regression, the
weighted ensemble prediction is given by

PEnsemble2 =
w1PHuber + w2PM-estimators + w3PLinear Regression

w1 + w2 + w3
. (7)

• PEnsemble 3: Using Huber, M estimators (RANSAC), and ridge regression, the
weighted ensemble prediction is given by

PEnsemble3 =
w1PHuber + w2PM-estimators + w3PRidge Regression

w1 + w2 + w3
. (8)

• PEnsemble 4: Using Huber and M estimators (RANSAC), the weighted ensemble
prediction is given by

PEnsemble4 =
w1PHuber + w2PM-estimators

w1 + w2
. (9)
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The results, reflecting the weights assigned to each model in the ensemble methods,
are presented in Table 7.

Table 7. Evaluation metrics for different ensemble methods and Graph Neural Networks (GNNs)
with the Graph Convolutional Network (GCN) and Graph Attention Network (GAN).

Method Model MAE MSE RMSE R2

PEnsemble 1 Huber, M estimators, linear regression, ridge regression 0.308433 0.531334 0.728926 0.924202
PEnsemble 2 Huber, M estimators, linear regression 0.308890 0.531836 0.729271 0.924131
PEnsemble 3 Huber, M estimators, ridge regression 0.311677 0.532635 0.729818 0.924017
PEnsemble 4 Huber, M estimators 0.291894 0.522753 0.723016 0.925427

GCN Graph Convolutional Network 2.209819 7.784366 2.790047 −0.057997
GAT Graph Attention Network 2.384475 9.266993 3.044173 −0.259505

Method 1 (PEnsemble1) employs four distinct models: Huber, M estimators, linear
regression, and ridge regression, each assigned weights of 0.5, 0.3, 0.1, and 0.1, respectively.
The Huber model is granted the highest weight, emphasizing its substantial impact on
ensemble prediction. This aligns with the robust nature of Huber’s regression, particularly
beneficial in datasets susceptible to outliers. The obtained R2 score was 0.924202, signifying
commendable predictive performance.

In Method 2 (PEnsemble2), three models—Huber, M estimators, and linear regression—
were included, with weights of 0.45, 0.35, and 0.2, respectively. Huber remains dominant,
though to a lesser extent than in Method 1. The increased weight assigned to M estimators
suggests a more balanced reliance on the robustness of both Huber and M estimators. The
resulting R2 score was 0.924131, slightly lower than Method 1, but still impressive.

Method 3 (PEnsemble3) utilizes three models—Huber, M estimators, and ridge
regression—with weights of 0.45, 0.35, and 0.2, respectively. Similar to Method 2 in terms of
weights, it substitutes linear regression with ridge regression. Ridge regression introduces
L2 regularization, potentially preventing overfitting and enhancing generalization. How-
ever, the R2 score was 0.924017, slightly lower than the scores obtained by the previous
two methods.

Method 4 (PEnsemble4) employs only two models—Huber and M estimators—with
weights of 0.6 and 0.4, respectively. Despite its simplicity, this ensemble heavily relies on
the Huber model and achieved the highest R2 score of 0.925427 among all methods. This
result suggests that, at times, using fewer models with appropriate weighting can lead to
superior predictions.

In summary, the results indicate that, while all ensemble methods exhibit robust
performance, PEnsemble4 stands out for its superior prediction quality. The pronounced
reliance on the Huber model, renowned for its resilience to outliers, is a crucial factor
contributing to this exceptional performance. It is essential to recognize that the efficacy
of ensemble methods can be contingent on the quality and characteristics of the data.
Consequently, diverse datasets or varying feature sets may lead to divergent outcomes.

On the other hand, the authors conducted a comparative study to benchmark current
ensemble machine learning methods with novel ones in other domains, such as deep
learning, to predict crop yield. Prediction of corn variety yield with missing attribute data
can be effectively addressed using Graph Neural Networks (GNNs) [66]. The result of
Table 7 shows much worse performance, with Graph Convolutional Networks (GCNs),
−0.057997 and Graph Attention Networks (GATs), −0.259505 having negative R2 values,
which means that these models perform worse than a mean baseline. This significant
discrepancy may stem from the GNNs’ inability to capture the variance in the dependent
variables effectively, or it may be due to issues related to overfitting or underfitting. The
performance matrix of the study that compares GNNs to traditional ensemble machine
learning methods showed a big difference in how well the models worked and how accurate
the predictions were. The ensemble methods, PEnsemble1, PEnsemble2, PEnsemble3, and
PEnsemble4, all had high R2 values above 0.92, which means they had a strong predictive
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relationship. These ensemble methods leverage combinations of the Huber, M estimators,
linear regression, and ridge regression models, contributing to their robust performance.

In summarizing the methodology employed in this study to predict maize yield using
an ensemble ML model with IoT environmental data and UAV vegetation indices, we
focused on assessing the performance of diverse models through various approaches to
feature selection, hyperparameter tuning, and ensembling. The comparative evaluation of
the scores for different models and methods is presented in Table 8 and Figure 9.

Table 8. Comparison of R2 scores for different models.

Model R2 Feature Scaler R2 Feature_SHAP R2 Feature_Hyperparameter R2 Ensemble

Huber 0.926222 0.926313 0.926266 0.924202
M-estimators 0.921954 0.924826 0.924030 0.924131

Linear Regression 0.904104 0.918302 0.918302 0.924017
Ridge Regression 0.911118 0.916077 0.916892 0.925427

For feature scaling, the R2 feature scaler utilized the StandardScaler to scale the training
and testing datasets, standardizing them to have a mean of 0 and a standard deviation of
1. This process ensures that all features have the same scale, which is crucial for certain
algorithms sensitive to feature scaling.

Figure 9. Comparison of R2 scores for different models and ensemble methods.

Feature importance, evaluated through the R2 feature SHAP, involved employing
SHAP to understand the importance of features in the model. SHAP provides a uni-
fied measure of feature importance, aiding in understanding which features the model
deems significant.

Hyperparameter tuning, denoted as the R2 feature hyperparameter, involved fine-
tuning the model’s hyperparameters using GridSearchCV. This step ensures the selection
of the best set of hyperparameters for the model, optimizing its performance.

In the ensembling phase, labeled as the R2 ensemble, the models were combined using
four different methods and weights. PEnsemble 1 combined Huber, M estimators, linear
regression, and ridge regression with weights of [0.5, 0.3, 0.1, 0.1], resulting in an R2 score of
0.924202. PEnsemble 2 combined Huber, M estimators, and linear regression with weights
of [0.45, 0.35, 0.2], resulting in an R2 score of 0.924131. PEnsemble 3 combined Huber, M
estimators, and ridge regression with weights of [0.45, 0.35, 0.2], resulting in an R2 score
of 0.924017. PEnsemble 4 combined Huber and M estimators with weights of [0.6, 0.4],
achieving the highest R2 score of 0.925427.
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In summary, the use of different strategies yielded diverse R2 scores. Through ensem-
bling, the strengths of individual models were effectively combined, potentially leading
to improved and more robust predictions. Notably, the results indicate that the ensemble
method, particularly Method 4 (incorporating Huber and M estimators), achieved a slightly
superior R2 score compared to the other ensemble methods and individual models. Impor-
tantly, the ensemble model demonstrated robustness in handling unseen data, enhancing
its utility for predictive tasks.

In the context of our study, the accuracy of our model, validated with previously
unseen data on the number of subgrids to coverage in each plot, is visually presented
in Figure 10b. Plot 1, Plot 2, and Plot 3 comprise 1393 grids, 1612 grids, and 1693 grids,
respectively. Figure 10a illustrates the accuracy trends of various prediction models across
these distinct plots, encompassing both traditional and ML methodologies.

• Breeder (traditional method): Our traditional approach exhibited varying accuracy
levels across plots, with the lowest accuracy observed in Plot 1 and higher accuracies
in Plots 2 and 3. Notably, it appears less effective for Plot 1, indicating potential
limitations when predicting yields for certain scenarios.

• ML models (Huber, M estimators, linear regression, ridge regression): These models
consistently demonstrated a stable accuracy range of 75–90% across all three plots.
Linear regression and ridge regression, in particular, closely mirrored each other
regarding predictive accuracy.

• PEnsemble approaches: Our ensemble methods (PEnsemble 1 to 4) showcased accura-
cies akin to individual ML models. Noteworthy is PEnsemble 4, exhibiting slightly
superior performance across all plots, suggesting an effective amalgamation of the
strengths of individual models.

Figure 10. (a) Accuracy of different ML model and PEnsemble approach vs. breeder and (b) the
number of unseen data to predict grain yield.

In summary, the traditional “breeder” approach exhibited varied performance across
plots, notably with lower accuracy in Plot 1. Additionally, the ML models, overall, pre-
sented more consistent and higher accuracy across all plots compared to the traditional
method. In particular, PEnsemble 4 stood out marginally, underscoring its potential as a
practical ensemble approach for maize yield prediction. This analysis suggests that ML
models, especially ensemble methods, can be potent tools for predicting maize yields with
higher accuracy than traditional methods, particularly in scenarios where the conventional
approach might encounter challenges.
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4. Discussion
4.1. Validating the Model with Unseen Data

In practical terms, the conventional breeder’s approach to yield prediction involves
random sampling, as illustrated for each plot in Table 9.

Table 9. Collection of ground truth data for maize plants using the traditional approach.

Plot Name
No. of Seeds

with One
Cob

Weight of
100 Seeds (g)

Weight of
Seeds with

One Cob (g)

No. of Seeds
per One

Kilogram

Actual
Harvesting

(kg)

1 360 26 93.6 3846 1314.44
2 288 21 60.48 4762 236.92
3 300 19.4 58.2 5155 387.82

For Plot 1, covering an area of 24,000 m2 and hosting 8960 maize plants, a sampled cob
contained 360 seeds. The weight of 100 seeds was 26 g, and the entire cob weighed 93.6 g.
This translates to 3846 seeds per kilogram. Moving on to Plot 2, spanning 33,600 m2 with
a slightly larger population of 9173 maize plants, a cob from this plot carried 288 seeds.
The weight measurements indicated 21 g for 100 seeds and 60.48 g for the full cob. Here,
one kilogram is equivalent to 4762 seeds. Finally, Plot 3, occupying an area of 30,400 m2,
had the highest population among the three plots, housing 9813 maize plants. A single cob
from this plot contained 300 seeds, with the weight of 100 seeds at 19.4 g and the entire cob
at 58.2 g. The actual harvested weights for Plots 1, 2, and 3 were 1314.44 kg, 236.92 kg, and
387.82 kg, respectively.

In this comparative analysis, we evaluated the performance of different approaches in
predicting maize harvest yields, contrasting them with the traditional breeder’s method, as
illustrated in Table 10.

Table 10. A comparison of the percentage error between the actual harvest grain yield and the
predictions from various approaches.

Actual Harvesting (kg) Plot 1: 1314.44 % of Error for
Plot 1 Plot 2: 236.92 % of Error for

Plot 2 Plot 3: 387.82 % of Error for
Plot 3

Breeder 503.19 0.62 332.87 0.40 342.67 0.12
Huber 986.23 0.25 258.20 0.09 345.22 0.11

M estimators 991.44 0.25 259.58 0.10 346.97 0.11
Linear regression 998.47 0.24 262.01 0.11 348.57 0.10
Ridge regression 999.03 0.24 263.05 0.11 348.01 0.10

PEnsemble 1 990.30 0.25 259.48 0.10 346.36 0.11
PEnsemble 2 990.50 0.25 259.45 0.10 346.50 0.11
PEnsemble 3 990.61 0.25 259.65 0.10 346.39 0.11
PEnsemble 4 988.31 0.25 258.75 0.09 345.92 0.11

The examined methods encompass a traditional breeder’s approach, five ML models,
and four ensemble methods denoted as PEnsemble 1 through 4. To gauge accuracy, we
computed the percentage of errors between the actual harvest yields and predictions for
the three distinct plots with varying actual harvests: 1314.44 kg for Plot 1, 236.92 kg for
Plot 2, and 387.82 kg for Plot 3. For Plot 1, where the actual harvest was 1314.44 kg,
the traditional breeder’s method predicted a yield of 503.19 kg, resulting in a substantial
62% error. Meanwhile, the Huber model predicted 986.23 kg with a more moderate 25%
error, and the M estimators model also predicted 991.44 kg with a 25% error. The linear
regression and ridge regression models forecasted 998.47 kg and 999.03 kg, respectively,
both exhibiting a 24% error. Additionally, the four PEnsemble models provided predictions
and errors ranging from 988.31 kg (25% error) to 990.61 kg (25% error).

Moving to Plot 2, where the actual harvest was 236.92 kg, the traditional breeder’s
method predicted 332.87 kg, resulting in a substantial 40% error. Notably, models like Huber
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and PEnsemble 4 predicted yields around 258.2 kg to 258.75 kg, both showcasing error
rates below 10%. Other models, including M estimators, linear regression, ridge regression,
and other PEnsemble models, had predictions ranging from 259.45 kg to 263.05 kg, with
error rates from 10% to 11%.

For Plot 3, with an actual harvest of 387.82 kg, the traditional breeder’s method
estimated a yield of 342.67 kg, resulting in a 12% error. Most of the ML models and the
PEnsemble methods predicted yields between 345.22 kg and 348.57 kg, with errors between
10% and 11%.

In summary, this table provides an insightful overview of the accuracy of various
predictive methods against actual harvest yields across different plots. While the traditional
breeder’s method tended to yield higher error rates, especially for Plot 1, the ML models and
PEnsemble methods exhibited lower error percentages, which underscores their potential
for more accurate yield predictions.

4.2. Implications of the Study

The outcomes of this study have significant implications for agricultural practices, par-
ticularly in precision agriculture. Identifying specific growth stages and vegetation indices
correlated with seed weight offers valuable guidance for farmers engaging in precision
agriculture. By concentrating efforts such as irrigation and nutrient management during
these critical periods, farmers can optimize seed yield. Additionally, the study underscores
the importance of understanding the correlations between environmental factors, includ-
ing weather and soil conditions, and seed weight. This knowledge empowers farmers
to make informed decisions regarding irrigation, pest control, and other environmental
management practices to enhance crop production.

4.3. Limitations, Challenges, and Possible Future Works

However, it is crucial to acknowledge the limitations and challenges associated with
this study. Data collection for environmental factors and vegetation indices introduces the
possibility of errors and variability. Ensuring the accuracy and consistency of data collection
methods becomes paramount to the reliability of the study findings. Furthermore, while the
study identifies correlations between factors and seed weight, it does not imply causality.
Other unmeasured variables can contribute to seed weight, which requires caution when
drawing causal relationships from correlations alone. Maize varieties are also one of the
factors that can affect grain yield [67,68]. This study used the CP303 seed type to plant
due to the high percentage of the kernel set and being suitable for planting in flat and
sloped areas [69]. The exclusion of certain weather factors, such as the daily rain and rain
rate, from the correlation analysis due to negligible values presents a limitation. Although
seemingly insignificant, these factors could still influence crop yield, and their omission
could affect the comprehensiveness of the analysis. Furthermore, the study findings are
specific to the study area and conditions, and generalizing these results to different regions
or crops may require additional validation. Climate conditions are one of the challenges
farmers face when managing plants. Maize grows in temperatures between 25 °C and
35 °C, and the irrigation system must offer approximately 450–600 mm coverage during
the growing season [70]. Future work will employ enhanced techniques for water crop
management [71], pest control [28], and disease control [72,73], such as early detection of
emerging plants [74], and precision fertilizer application based on plant needs [75] that
use deep learning techniques to mitigate pests and diseases. In conclusion, this study
provides valuable information on the intricate relationships between environmental factors,
vegetation indices, and maize seed weight. These insights can inform more precise decision
making in agriculture, especially in the context of precision agriculture. However, it is
imperative to consider the study’s limitations and the data’s potential variability when
applying these results to real-world farming scenarios. Further research and validation
efforts may be necessary to establish causation and extend the applicability of these findings
to broader agricultural contexts. Future efforts will further enhance the model’s capabilities,
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extending it to other areas of applicability to foster more resilient and efficient agricultural
practices amidst evolving environmental and societal challenges.

5. Conclusions

The study introduces a novel approach for farmers to enhance output, plant adminis-
tration, and crop safeguarding using technology. It enables the early assessment of maize
grain production on day 79 of the R2 stage, significantly improving upon traditional projec-
tions made during the black layer stage. The PEnsemble 4 methodology has a remarkable
accuracy of 91%, signifying a substantial improvement in predicting grain production com-
pared to conventional methods. The researchers have effectively utilized ML techniques to
develop a comprehensive model for predicting maize yield. This model provides accurate
and data-driven predictions by combining environmental data from IoT sources and UAV
data, such as soil properties, nutrients, weather conditions, and vegetation indicators. This
research dramatically enhances agricultural output by offering farmers valuable insights
to make informed decisions and adopt sustainable farming techniques. The selection of
the most suitable model is contingent upon the unique attributes of each study situation.
Ensemble and tree-based models are adept at capturing temporal trends in canopy density,
whereas robust models that can handle high dimensionality and complexity perform ex-
ceptionally well in complicated circumstances. To improve the ability to make predictions,
the researchers intend to continuously improve and optimize the ML model by utilizing
sophisticated algorithms and approaches for feature engineering. Expanding the duration
of data collection to encompass numerous growing seasons and a range of environmental
variables would offer valuable information about how crops react and the variances in
their yields. Integrating satellite imagery data with UAV data will improve the extent
and detail of information, allowing for more accurate yield forecasts. By broadening the
model’s range, it can accurately forecast crop illnesses and pest infestations, offering crucial
information for efficient disease control.
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