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Abstract: Mainstream transferable adversarial attacks tend to introduce noticeable artifacts into
the generated adversarial examples, which will impair the invisibility of adversarial perturbation
and make these attacks less practical in real-world scenarios. To deal with this problem, in this
paper, we propose a novel black-box adversarial attack method that can significantly improve the
invisibility of adversarial examples. We analyze the sensitivity of a deep neural network in the
frequency domain and take into account the characteristics of the human visual system in order
to quantify the contribution of each frequency component in adversarial perturbation. Then, we
collect a set of candidate frequency components that are insensitive to the human visual system by
applying K-means clustering and we propose a joint loss function during the generation of adversarial
examples, limiting the frequency distribution of perturbations during attacks. The experimental
results show that the proposed method significantly outperforms existing transferable black-box
adversarial attack methods in terms of invisibility, which verifies the superiority, applicability and
potential of this work.
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1. Introduction

With the increasing application of deep neural networks (DNNs), adversarial examples
have also received increasing attention due to their threat to the security of DNNs. The latest
research on adversarial attacks has focused on more realistic black-box attack scenarios [1,2],
where attackers are assumed to have no knowledge of the target model. In particular, the
transferability of adversarial examples has received significant attention recently. Many
existing works such as [1–4] focus on generating transferable adversarial examples by
leveraging substitute models, which has significant implications for DNN deployment
since transferable adversarial examples can attack various models that are irrelevant with
substitute models. However, in black-box scenarios [5,6], noticeable artifacts in adversarial
examples may raise the suspicions of the model owner and thus render the attack method
impractical. Therefore, guaranteeing the invisibility of adversarial perturbation is critical
for black-box adversarial attacks.

Currently, the Lp norm is the most common metric for measuring and constraining
the visual difference between adversarial examples and clean ones, which, however, does
not fit the human visual system (HVS) well [7]. Recent research [8] has also demonstrated
that the Lp constraint is insufficient to guarantee the invisibility of adversarial examples; i.e.,
adversarial examples may introduce noticeable distortion although the Lp norm between
adversarial examples and clean ones can be small [9,10]. To deal with this problem, we
draw inspiration from HVSs, which show that different frequency information in images
allows for different perturbation strengths while remaining invisible to HVSs. Hence, we
propose analyzing adversarial attacks from the frequency domain.

We analyzed the robustness of a DNN model in the Fourier domain. Our results
indicated that the generalization and robustness of a model should be jointly determined by
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the training dataset and the network structure of the model. It can be said that DNN models
are commonly more sensitive to certain frequencies in the Fourier domain. In contrast to
previous works [11,12], we found that perturbations in both low and high frequencies can
result in good attack effects. This insight inspires us to design adversarial perturbations
from the perspective of the Fourier domain. By analyzing the frequency sensitivity of DNNs
and the HVS characteristics of input samples, we quantify how perturbations in different
frequency components affect the transferability and invisibility of adversarial examples.
By adjusting the frequency distribution used for generating adversarial perturbation, the
invisibility of transferable adversarial attacks can be significantly enhanced.

In summary, the main contributions of this work include the following:

• We propose an invisible adversarial attack method based on Fourier analysis, where
the derivation and superposition of adversarial perturbations are performed in the
frequency domain, thus avoiding the drawbacks to adversarial attacks due to the use
of Lp norm constraints.

• We propose a new optimization objective for adversarial attacks in the Fourier domain,
using a joint adversarial loss and frequency loss for optimization. Unlike previous
works that mainly focus on generating adversarial examples in the spatial domain and
use the Lp norm to constrain the strength of perturbation, which is insufficient for the
invisibility of adversarial examples, our analysis of the Fourier domain characteristics
of adversarial examples offers a new perspective for further research.

• We have conducted extensive experiments to evaluate the proposed method and
compare it with existing transferable adversarial attack methods. The results show
that the proposed method significantly enhances the invisibility of adversarial attacks.

2. Related Works
2.1. Black-Box Adversarial Attacks

Black-box adversarial attacks assume that the attacker only knows the output of
the target model such as the final prediction and confidence score. Black-box attacks
typically include two categories, i.e., query-based attacks and transfer-based attacks. In this
paper, we focus on the latter attack and thereby assume that the attacker can only utilize a
surrogate model to generate adversarial perturbations without the right to query the target
model, which is more suitable for application scenarios.

Fast gradient signed method (FGSM)-based attacks [1–4,10,13,14], which rely on the
transferability of adversarial examples, are the most effective among various black-box
attacks. For example, Kurakin et al. [10] enhance the transferability of adversarial examples
by introducing the basic iterative method (BIM), also known as the iterative FGSM (I-FGSM).
However, the adversarial examples generated by the I-FGSM are prone to overfitting to
local optima, which can affect the transferability of the adversarial examples. To deal
with this problem, Dong et al. [3] introduce the momentum iterative FGSM (MI-FGSM),
which incorporates the concept of momentum into the I-FGSM. The MI-FGSM stabilizes the
gradient update direction, effectively passes through local optima, and further enhances
the transferability of adversarial examples.

In addition to optimization techniques, model augmentation is also a powerful strategy.
For example, Xie et al. [4] solve the overfitting problem of the I-FGSM by using image
transformation techniques and named it the diverse iterative FGSM (DI-FGSM). To alleviate
the problem of excessive reliance on substitute models, Dong et al. [2] shift the input, create
a series of images, and approximately solve the total gradient. Lin et al. [14] use the scale
invariance property of DNNs to average the image gradients of different scales to update
adversarial examples.

Although these methods have good transferability, they often generate adversarial
examples with obvious traces of modification. To address this problem, Ding et al. [15]
made improvements to the iterative process of I-FGSM-like algorithms by proposing a
selective I-FGSM, which ignores unimportant pixels in the iterative process according
to first-order partial derivatives, thus compressing the perturbations and significantly
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reducing the adversarial example’s image distortion. Wang et al. [16] are concerned about
the neglect of global perturbation for image content/spatial structure, which can result in
leaving obvious artifacts in otherwise clean regions of the original image, and therefore
propose to adaptively assign perturbations based on the Just Noticeable Difference (JND)
of the human eye by adaptively adjusting the perturbation strength by using the pixel-
by-pixel perceptual redundancy of the adversarial example as a loss function. Similarly,
Zhang et al. [17] add the JND of the image as a priori information to the adversarial attack
and project the perturbation into the JND space of the original image. Furthermore, they
add a visual coefficient to adjust the projection direction of the perturbation to consciously
equalize the transferability and invisibility of the adversarial example. Such content-specific
adaptive perturbation is inspiring, and they all analyze the effect of image content on the
invisibility of perturbation in terms of the spatial domain, whereas the characteristics of
the image such as the structure, texture, and so on, are dependent on the distribution
of the frequency information. Thus, the approaches of analyzing invisible adversarial
attacks in terms of the Fourier domain enable a more comprehensive understanding of the
characteristics of the adversarial attack, and we will explore them from the perspective of
image frequency information.

2.2. Frequency Principle of Adversarial Examples

Currently, research on the principles of adversarial examples suggests that shallow
feature maps of neural networks typically extract edge and texture features, which high-
lights the importance of high-frequency information for final classification. In [18], Luo
et al. theoretically prove the frequency principle (FP) for DNNs through analyzing the
spectral response and spectral deviation of DNNs. They reveal the causes and effects of the
FP, demonstrating that DNNs exhibit a significant bias towards the information of different
frequencies during decision making. The dependence of the model on high-frequency
signals is also directly related to the phenomenon of adversarial examples. Zhang et al. [12]
propose a practical attack method without a box that introduces small but effective per-
turbations through a hybrid image transformation (HIT) without changing the semantic
information of the image. The authors demonstrate that the HIT can effectively deceive
multiple target models and detectors with low computational costs and high success rates.

However, recent research indicates that the conclusion that adversarial examples are
high-frequency perturbations is incorrect. In detail, Maiya et al. [19] propose a frequency-
analysis-based method for quantifying the adversarial robustness of DNNs. The authors
first define a novel frequency sensitivity index (FSI) to measure the model’s sensitivity to
perturbations in different frequency ranges. The analysis shows that adversarial examples
do not rely only on high or low frequencies, but the impact of the used dataset should
be considered.

3. Methodology
3.1. Preliminaries
3.1.1. Adversarial Attack

Let M : X → Y represent a DNN that maps the raw domain X to the target domain
Y . In this paper, we limit the DNN to image classification, indicating that X corresponds
to a number of images, and Y is a set of classes. Given a sample x, an attacker aims to
construct a perturbation δ that the perturbed sample, also called adversarial example,
x′ = x + δ successfully deceives M, i.e., M(x′) ̸= M(x). Specifically, in the untargeted
attack scenario, this causes the model’s classification to deviate from the original label,
and in the targeted attack scenario, this causes the model to classify the samples to the
target label.

White-box adversarial attacks produce adversarial examples directly on the target
model, which does not work for black-box attacks. To realize successful black-box attacks,
a common strategy utilizes a substitute model to generate adversarial examples, which are
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then used to attack the black-box models, leveraging transferability. Black-box models with
various structures are used to simulate the possible target models.

For compactness, let M0 denote the substitute model and M1,M2, . . . ,MB denote
B black-box models that are independent of M0. The structures of these models can be
different from each other. In the targeted attack scenario, the goal of the attack is to construct
adversarial examples with M0 such that these adversarial examples are misclassified as a
specified incorrect class by Mi, 1 ≤ i ≤ B. For the untargeted attack scenario, the output is
not limited to a particular incorrect class.

Mathematically, given a sample x, generating the adversarial example x′ with M0 can
be formulated as the following problem:

x′ = x + δ = arg max
x′

L
(
x′, y;M0

)
(1)

subjected to ∥δ∥p ≤ ϵ, where L(x′, y;M0) is the loss function and ϵ is a threshold given in
advance. Existing adversarial attack methods often use cross-entropy loss. The strength
of perturbation is constrained by the Lp norm to control the visual differences between
the adversarial examples and clean ones. Existing adversarial attacks typically use L0 [20],
L2 [9,21], and L∞ [9,10,21] to control the perturbation in the spatial domain.

3.1.2. Frequency Domain Robustness

By evaluating the response of DNNs to different frequencies of noise, we can analyze
the frequency domain robustness of DNNs [22]. In detail, given an image, every element in
the Fourier matrix contains information about the corresponding frequency component and
appears as a plane wave in the spatial domain. After shifting the zero-frequency component
to the center of the matrix, the distance of each element from the center point describes the
frequency of the plane wave. The direction towards the center point represents the direction
of the plane wave, and the value of the element represents the amplitude of the plane wave.
We put the perturbation in the frequency information of the plane wave, leaving all Fourier
matrices’ imaginary parts unchanged. We generate a unit perturbation on each frequency
component separately, which gives us Fourier basis noises. We apply Fourier basis noises
to the three-color channels with coefficients randomly selected from the set {−1, 1} and
perturb RGB images using different frequencies separately. After applying Fourier basis
noises, we can establish a function between the classification error rate of the model on the
noisy test set and the frequency domain information of the noise, which can be visualized
as the Fourier heatmap of the model.

3.2. Motivation

In the current field of AI research, researchers are committed to improving the perfor-
mance of AI systems and many approaches have been proposed including upgrading the
model structure, training algorithms, and improving the quality of deployed data, among
others, from the field of data-centric and model-centric AI [23]. Adversarial attack research
is significant in both fields. Research on adversarial attacks can make adversarial examples
more challenging, which is crucial for data-centric AI research to help us better understand
the impact of training data on model robustness. In addition, advances in the field of
adversarial attacks can lead us to design more robust model structures and guide strategies
and techniques for model defense, thereby improving model security and reliability.

In addition to the importance in AI research, high-quality adversarial examples play
an important role in many other real-world scenarios of applications, especially in terms
of privacy protection, e.g., securing the privacy of social network users. In big data
environments such as social media, where people’s personal information and private data
can be subject to various forms of attacks and violations, the use of adversarial samples can
help protect users’ private data from unauthorized exploitation. Users upload and share
adversarial examples of their photos instead of clean photos, which makes it more difficult
for the model to identify and utilize personal information and does not affect the photo
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sharing experience, thus effectively increasing the level of privacy protection for users on
social media platforms. Such scenarios place higher demands on the transferability and
invisibility of adversarial examples.

Existing works based on the I-FGSM and model augmentation are effective in improv-
ing the transferability of adversarial examples while leaving obvious traces of modification.
Additionally, recent research [8] demonstrates that Lp constraints in the pixel domain are
insufficient to guarantee the visual quality of adversarial examples. Due to the limitations
of the I-FGSM, attackers can only use the constraint of the L∞ norm to implicitly ensure that
the visual distance between adversarial examples and clean ones is not too large, which is
insufficient for invisibility.

The L0 norm measures the number of different pixels between two images, the L2
norm measures the Euclidean distance between two images, and the L∞ norm measures
the maximum difference between corresponding pixels in two images. These norms only
constrain certain statistical characteristics of perturbations in the pixel domain and may
not ensure the invisibility of adversarial examples. Figure 1 displays an attack instance
that uses only the Lp norm to constrain the perturbation strength, revealing the significant
limitations of Lp constraints.

Figure 1. Perturbed images with small L0, L2, and L∞ norm constraints can still exhibit distinct
perceptual artifacts; the two examples are from Tiny-ImageNet [24]. Specifically, a single pixel’s
perturbation value can be extremely large with a small L0 norm. An uneven perturbation may
deceive the L2 norm constraint, but it is visually apparent. The L∞ norm constrains the maximum
perturbation amplitude on every single pixel in the images. Still, a uniform perturbation may have a
small maximum value but a large average strength, which can seriously affect the visual perceptual
quality of images.

The use of Lp norms can be misleading; that is, adversarial examples with small Lp
norms are visually similar to clean images, but this is not the case. Nearly all adversarial
attacks directly modify image pixels in the spatial domain based on the gradient information
of the model, making it difficult for perturbations to adapt to changes in image content and
often leaving visible traces.

The perception of visual signal changes varies for different visual content. The human
visual system (HVS) [7] is a non-uniform and nonlinear image processing system that
acts as a low-pass linear system in the frequency domain. Due to its limited resolution,
the HVS is more sensitive to changes in low-frequency image signals compared to high-
frequency ones. While DNNs perceive image information counterintuitively, differently
to the HVS, image information that is unrecognizable to the human eye may be important to
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DNNs, and they can use high-frequency information that is not visible to the human
eye to achieve correct judgments. Perturbations to such information can be less visible to
the human eye, while being able to significantly influence the decision of the DNNs. The
attempt to incorporate biological principles into the design of algorithms [25,26], such as the
“Attention Mechanism”, provides a new way of thinking; i.e., the properties of HVSs can be
used in the analysis of adversarial attacks. Hence, we analyze the process of adversarial
attacks from a frequency domain perspective and explore the relationship between the
invisibility, transferability, and frequency domain distribution of perturbations.

3.3. Fourier Domain Analysis

The study of adversarial examples from the frequency perspective [18,19,22] suggests a
close correlation between the occurrence of adversarial examples and a DNN’s preferences
for different frequency information during the classification process. To further explore the
frequency domain characteristics of adversarial examples, we first analyze the frequency
domain robustness of DNNs by building Fourier heatmaps.

In a Fourier heatmap, the heat value of each element of the Fourier matrix represents
the average test error of the model under the noise of the corresponding frequency compo-
nent. Our Fourier heatmaps revealed that DNNs have distinct sensitivity to input informa-
tion of different frequencies, and there is a specific sensitivity for each frequency component.
We tested the frequency domain sensitivity of DNNs with different network structures on
some commonly used classification datasets, and found that this correspondence between
the frequency domain sensitivity of DNNs and frequency domain components is universal.

We trained multiple DNN models with different structures on the commonly used
image classification datasets CIFAR10 [27], CIFAR100 [27], and Tiny-ImageNet [24]. Taking
the CIFAR10 dataset as an example, we present in Figure 2 the Fourier heatmaps of different
DNNs. The red regions in the figure correspond to the areas with the largest test error, indi-
cating that the model is most sensitive to changes in these frequency domain components.

W-Res50Res50DN121VGG19Res18 Integrated

Figure 2. Fourier heatmaps of various DNN models tested on the CIFAR10 dataset, where we used
Res50 [28], Res18 [28], VGG19 [29], DN121 [30], and W-Res50 [31]. The heat value of each pixel
represents the average test error of the corresponding DNN model under the noise of a particular
frequency component. The heat value is confined to the (0, 1) range and represented by a color
scale. As the legend indicates, larger heat values correspond to redder colors, while smaller ones
correspond to bluer colors.

It is evident that the sensitive regions of different models overlap. We extracted the
points with the highest test error from the heatmap to identify these regions, selecting
an extraction region of 35% of the entire matrix. We assigned “1” to these regions and
“0” to others and obtained a binary mask. They represent the weakest Fourier regions of
frequency domain robustness to the noise of DNNs on this dataset.

Figure 3 shows the binary masks of different models. Regions with “1” denote
sensitive regions, and regions with “0” denote non-sensitive regions. It is evident that
different DNNs have significant overlap in their sensitive regions, indicating that their
frequency domain robustness is quite similar. Combined with previous studies on the
robustness of neural networks [22], we argue that the frequency domain robustness of
a DNN is jointly determined by the statistical characteristics of the training dataset and
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the structure of its network. Therefore, integrating the sensitive regions of DNNs with
diverse structures can reduce interference from the network structure and random factors
during the training process, leading to a more precise common sensitive region of DNNs.
We integrated the masks of multiple models on the same dataset and obtained an integrated
binary mask by removing isolated points that appear in only one mask. Placing adversarial
perturbations from the Fourier domain over these common regions is naturally expected to
generate a stronger attack effect on the DNN models.

Res18 VGG19 DN121 Res50 W-Res50 Integrated 

Figure 3. Frequency domain sensitive region masks for different DNN models on the CIFAR10
dataset. By adding up the masks of all models, we set the values of points with a value of 1 in two or
more masks to 1 and set the value of points with a value of 1 in only one mask or a value of 0 in all
masks to 0, resulting in an integrated mask ω.

All DNNs on the same dataset exhibit weaker robustness to perturbations of specific
frequency domain components; this insight motivates us to explore adversarial attacks
from a frequency domain perspective.

The HVS is affected by many factors, forming some visual laws that can be utilized.
The HVS can be understood as a frequency decomposition system, which can decompose
the spatial information of the input image into different frequency components, and has
different sensitivities to different components of spatial frequency. The contrast sensitivity
function (CSF) is an index that is specifically used to evaluate the response of the HVS to
visual stimuli of different frequencies. Based on a large number of experiments, Mannos
and Sakrison [32] proposed the CSF model based on a large number of experiments using
mathematical tools such as the Fourier transform to characterize the relationship between
HVS sensitivity and spatial frequency, which was later improved by Daly [33] as:

CSF( f ) =

{
2.6 ∗ (0.0192 + 0.114 ∗ f ) exp[−0.114 ∗ f ], f ≥ fpeak

0.981, otherwise,
(2)

where f =
√

f 2
x + f 2

y is the spatial frequency and fx and fy are the spatial frequencies in the
horizontal and vertical directions, respectively. According to this model, for medium- and
high-frequency information of an image, the sensitivity of the human eye is approximately
inversely proportional to the frequency; i.e., the invisibility of a perturbation should be
positively correlated with the height of its frequency, and the sensitivity of the visual
perception decreases markedly in the high-frequency region. By constraining perturbations
to components with higher frequencies, we can increase the invisibility of adversarial
examples while maintaining their transferability.

As we group the adversarial attack process from the Fourier frequency domain, the
modification of the perturbation to each pixel value of the image is converted into a
modification of the information at each frequency, and therefore the gradient information
should also reflect how the change in the information at each frequency in the input to the
model affects the model’s output and loss function. First, we transform the input image x
to the frequency domain using the Fourier transform and denote it as xFFT:

xFFT = FFT(x) (3)
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We turn it back on the spatial domain and put it into the DNN to compute the loss function.
Back-propagation calculates the gradient information of the loss function for the output
of the model and utilizes the chain rule and the differentiability of the neural network
to complete the gradient calculation and propagation from the output layer to the input
layer. Since both the Fourier transform and the Fourier inverse transform are differentiable,
based on the chain rule, we can add them to the process of back-propagation by converting
the gradient of the loss function with respect to the input to the gradient with respect to
its frequency domain information and obtain the partial derivatives of the loss function
with respect to xFFT. During the back-propagation process, the gradient information can be
formulated as follows:

g =
∂L(IFFT(xFFT), y;M0)

∂xFFT
(4)

where FFT(·) represents the Fourier transform and IFFT(·) represents the inverse Fourier
transform. Then, the gradient information is used to update xFFT and finally obtain an
adversarial example after the inverse Fourier transform.

3.4. Attack Algorithm

Based on the above Fourier domain analysis for adversarial attacks, we propose an
invisible transferable adversarial attack in this subsection.

Several studies from a model-based perspective have argued that the decision bound-
ary and the model architecture of a substitute model all have a significant impact on
adversarial transferability [34]. Since the possible target model is completely unknown,
the use of model augmentation to reduce the dependence on the decision boundary of the
substitute model is a common strategy for transferable adversarial attacks [1,2,4]. Here, we
use frequency domain model augmentation [1] and combine it with the Fourier sensitivity
analysis of DNNs to make the augmentation more directed. Specifically, we transform
the model input to the Fourier domain and apply noise addition and enhancement to
redirect the perturbation toward the common frequency-sensitive regions of DNNs. The
augmentation can be formulated as follows:

xaug = IFFT(xFFT ⊙ µ + ξ) (5)

where ⊙ represents the Hadamard product, the multiplicative noise µ is uniform noise
sampled from a uniform distribution, that is, µ ∼ U(1 − ρ, 1 + ρ), and the additive noise ξ
is set to Gaussian noise ξ ∼ N

(
0, σ2).

Specifically, we add frequency domain noise to the model input in the Fourier domain,
improving the transferability of adversarial examples. Next, we quantitatively analyze
the impact of different frequency components of perturbations on the transferability and
invisibility of adversarial examples. We employ a clustering analysis to select the most
valuable regions in the Fourier domain for adversarial attacks, which guide the adjustment
direction of the frequency domain distribution of the perturbation. We propose a frequency
domain loss, using it alongside adversarial loss, and we use the cross-entropy loss here as
the joint loss function to derive and design the perturbation from the Fourier domain.

We propose to combine the frequency domain robustness of DNNs and the frequency
characteristics of the HVS to perform the adversarial attack from the frequency domain
and enhance the invisibility of the transferable adversarial examples. The details are given
in Algorithm 1. As shown in Algorithm 1, our method can be divided into three stages.
Firstly, we transfer the input image to the frequency domain and perform frequency domain
augmentation. Then, we take back-propagation of the joint loss function in the Fourier
domain and update the adversarial example by applying a frequency domain step size of α
while ensuring that the pixel values are in the normal range by normalization.
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Algorithm 1 Fourier invisible adversarial attack.

Input: Fourier heatmap mask ω ∈ RH×W, frequency mask set Ω, std σ of the noise ξ, ρ of
the noise µ, clean image x ∈ RC×H×W, target label (for a targeted attack) or original label
(for an untargeted attack) y, substitute model M0, number of iterations T, frequency
domain step size α, noise initialization times N and L∞ constraint ϵ

Output: Adversarial example x′

1: x′0 = x
2: for i = 0 → T − 1 do
3: for n = 0 → N − 1 do
4: x′FFT = FFT(x′i)
5: Random initialization of noise ξ and µ
6: Frequency-domain augmentation

xaug = IFFT(x′FFT ⊙ µ + ξ)
7: Gradient calculates by back-propagation

gn =
∂Ladv(xaug ,y;M0)

∂x′FFT
+

∂L f re(x′FFT,xFFT;Ω)

∂x′FFT
8: end for
9: Average the gradients from multiple augmentations

g′ = 1
N ∑N−1

n=0 gn
10: Update from the frequency domain

x′′FFT = x′FFT + α ∗ g′

11: Convert the example back to the spatial domain
x′i+1 = IFFT(x′′FFT)

12: Limit the maximum strength of perturbations
x′i+1 = clipx,ϵ(x

′
i+1)

13: Normalization
x′i+1 = clip

(
x′i+1, 0, 1

)
14: end for
15: x′ = x′T
16: return x′

It is worth noting that the noise processing for the input image may make the direction
of the gradient information unstable, so we perform N times random initializations of the
frequency domain augmentation noise and perform propagation N times, obtaining the
gradient information gn{n = 1, 2, . . . , N}. By averaging gn, the average gradient g′ can
stabilize the update direction of the counter perturbation. We will explain the design of
each step in the algorithm in detail in the following sections.

3.5. Cluster Analysis

The previous analysis has demonstrated that DNNs possess shared sensitive char-
acteristics for specific frequency domain components in the Fourier domain regarding
adversarial examples. Noise in these frequency domain components is more likely to de-
ceive the neural network. Moreover, as we discussed earlier, the frequency of perturbations
is closely linked to their invisibility. In the Fourier domain, the visual perceptual sensitivity
of the HVS to perturbations is likewise closely related to its frequency and decreases signif-
icantly for high-frequency perturbations. Hence, we analyze the optimization objectives of
perturbations in the Fourier domain, integrating both frequency sensitivity and invisibility.

Observing the frequency-domain-sensitive regions of the DNN, as shown in Figure 3,
it can be found that a substantial part of the common frequency-domain-sensitive regions
of the neural network exist in low-to-medium frequency regions. Therefore, when con-
straining the perturbation to the frequency-sensitive region, we need to consider the effect
of the frequency of the perturbation on the visibility.

For the process of adversarial attacks, each element in the Fourier matrix embodies
two characteristics of the perturbation of a frequency component. On the one hand, the
heat value ht in the Fourier heatmap reflects the sensitivity of the DNN to perturbations in
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this frequency domain component. The higher the heat value ht, the greater the probability
of the perturbation causing the target model to classify incorrectly. On the other hand,
based on the CSF model, it can be concluded that for the middle- and high-frequency
bands in which the common sensitive region of the DNN are located, the CSF and the
spatial frequency can be approximated as being inversely related. Correspondingly, the
CSF reflects the human eye’s ability to perceive details at different frequencies, so for the
same intensity of perturbation, the higher its frequency, the weaker the human eye’s ability
to perceive the details and therefore the better its invisibility; i.e., the invisibility of the
perturbation is positively correlated with its frequency. Consequently, we use the distance
τ from the pixel point to the zero-frequency component (after frequency centering) to
represent the invisibility of the perturbation at that frequency. These two characteristics of
perturbation correspond to the requirements of transferability and invisibility of adversarial
examples, which we define as:

ht = heat(u, v) (6)

τ =

√(
u −

[
H − 1

2

])2
+

(
v −

[
W − 1

2

])2
(7)

Through the function of the frequency domain component (u, v) of perturbation, the
heat value ht, and the frequency τ, we can transform the improvement in the invisibility of
transferable adversarial examples into the filtering of each element in the Fourier matrix
in a two-dimensional space composed of the heat value ht and frequency τ. Placing
perturbations in the area with the highest heat value ht can improve the transferability of
adversarial examples, while placing all perturbations in the area with the highest τ can
minimize the visual difference between adversarial examples and original images.

A clustering algorithm [35] is the process of clustering similar samples together based
on the distribution law of the sample data themselves. We use a clustering algorithm to
filter common sensitive regions in the Fourier domain and obtain the optimal embedding
regions conducive to the invisibility of adversarial examples. We take all elements in the
sensitive regions as a set, denoted as C, and use the K-means algorithm [35] to cluster them.
The K-means algorithm is based on calculating the distance between samples and center
points to induce the target function of each cluster under its own samples, which is:

arg max
C

J(C) =
K

∑
k=1

∑
h(i)t ∈Ck

∥∥∥λ ∗ h(i)t − τ(k)
∥∥∥2

2
(8)

Here, we normalize the values of ht and τ and set the weight of the two through the
coefficient λ to adjust the bias towards the transferability and invisibility of adversarial
examples. We first initialize K cluster centers in the clustering process, where K is set to
2. Then, each sample is classified by calculating its distance to the cluster center, and the
position of the cluster center is recalculated until all samples are classified.

Through the clustering algorithm, we divided the common sensitive regions ω of the
DNN in the Fourier domain into two parts: the low-frequency region ωlow with a low heat
value and a low value for the adversarial attack, and the high-frequency region ωhigh with
a high heat value and high value for the adversarial attack. It should be noted that ωlow
and ωhigh do not simply represent high and low frequencies but rather relatively high or
low frequencies after weighing the heat value and frequency.

Figure 4 shows the clustering results of the sensitive regions on the CIFAR10 dataset.
Comparing the results of the different models and integrated result, it is obvious that
the distributions of low-frequency regions and high-frequency regions of the DNNs do
have obvious common characteristics, which again confirms our proposed view that the
frequency domain robustnesses of DNNs are common.
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Res18 VGG19 DN121 W-Res50 Integrated Res50

Figure 4. Results after the clustering mask on the CIFAR10 dataset, with the Fourier heatmap,
sensitive regions, low-frequency regions, and high-frequency regions from top to bottom by row.

Through a quantitative analysis, we divide the common sensitive region and use
the result as the optimization target in the Fourier domain for the adversarial attack. We
will discuss further how to redirect the frequency domain distribution of the perturbation
toward this region by frequency domain constraints in the next section.

3.6. Frequency Domain Loss

Typically, many adversarial attacks directly use the adversarial loss function as the
optimization objective while simply constraining the perturbation through the Lp norm,
which is obviously insufficient for an attack method that has requirements for image quality.
Some studies add image evaluation functions such as SSIM [6], JND [16] constraints, etc.,
to the optimization objective as penalty terms to solve it, but this simple restriction on the
strength of the perturbation may lead to an unsuccessful attack on the DNN.

We propose that in addition to the strength of a perturbation, its frequency domain
distribution can also affect the performance of the adversarial example. Therefore, we
propose a new optimization objective that adds the frequency domain loss to adjust the
perturbation. Specifically, we divide the loss function of the adversarial attack into the
adversarial loss and frequency domain loss, and we formulate the frequency domain
optimization as the maximization process of the frequency domain loss. We find the region
with the highest value in the Fourier domain for the adversarial attack; then, we can
improve the efficiency of the adversarial attack by optimizing the perturbation frequency
domain distribution.

Through a clustering analysis, we divided the overall Fourier matrix into a low-
frequency region ωlow, a high-frequency region ωhigh, and a non-sensitive region
ωother = E − ωlow − ωhigh, where E is the all-ones matrix; we name them the frequency
mask set Ω{ωlow, ωhigh, ωother}. Then, all the information of the perturbation on the fre-
quency domain dall can be formulated as:

dall = x′FFT − xFFT = dlow + dhigh + dother (9)
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where dlow, dhigh and dother represent the perturbation strength of the disturbance in the
low-frequency region, high-frequency region, and non-sensitive region, respectively:

dhigh =
∥∥∥ωhigh ⊙

(
x′FFT − xFFT

)∥∥∥
2

(10)

dlow =
∥∥ωlow ⊙

(
x′FFT − xFFT

)∥∥
2 (11)

dother =
∥∥ωother ⊙

(
x′FFT − xFFT

)∥∥
2 (12)

For the overall perturbation, the value of dother is the lowest for the adversarial attack,
so we constrain it; furthermore, within the sensitive region, we further optimize the
perturbation based on the HVS, which has greater visual redundancy for ωhigh and lower
redundancy for ωlow, so we concentrate the perturbation on dhigh. We can summarize
the frequency optimization objectives of the adversarial attack as increasing dhigh and
constraining dlow and dother, formulated as:

arg max
x′FFT

L f re
(
x′FFT, xFFT; Ω

)
→


arg min

x′FFT

dother

arg min
x′FFT

dlow

arg max
x′FFT

dhigh

(13)

To adjust the frequency domain distribution of the perturbation, the easiest way is
to use the strength of the perturbation in each frequency domain region directly as the
frequency domain loss. However, this method may lead to the problem of overfitting; if the
strength of perturbation in a certain frequency domain is too large, it will obscure the antag-
onistic loss during back-propagation and the strength of the perturbation will vary greatly
during the iterative process so that simple superposition will lead to unstable gradients.

Therefore, we use the ratio of the strengths of the perturbation in different regions as
the loss function, so we set frequency domain loss as:

∂L f re(x′FFT, xFFT; Ω)

∂x′FFT
=

∂

(
− dlow
(dhigh+ϑ)

− dother
(dhigh+ϑ)

)
∂x′FFT

(14)

In the optimization process, the strength of the perturbation may be zero, so we add a
tiny factor ϑ = 1e − 3 to the denominator to avoid a zero denominator. We use dlow and
dother as the numerator and dhigh as the denominator to form the frequency domain loss,
respectively. Moreover, we set the frequency domain loss to a negative value to avoid
increasing the gradient.

The use of the frequency domain loss can adjust the frequency domain distribution of
the perturbation by minimizing the fractional equation and increasing dhigh in exchange
for decreasing dother and dlow. Since the DNN has a high sensitivity to the perturbation
within ωhigh, by reducing the unnecessary frequency domain components in the non-
sensitive region, we can achieve an adversarial attack with a lower perturbation strength.
In addition, placing the perturbation more in the high-frequency region can improve the
overall invisibility of the adversarial examples.

4. Experimental Results and Analysis
4.1. Experiment Setup
4.1.1. Datasets

We selected the three most commonly used image classification datasets: CIFAR10 [27],
CIFAR100 [27], and Tiny-ImageNet [24]. They contain 10, 100, and 200 labels with image
shapes of 32 × 32 × 3, 64 × 64 × 3, and 64 × 64 × 3, respectively; 13,000, 18,000, and
28,000 images from the training set are chosen as the validation set to build the Fourier
heatmap of the DNN.
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4.1.2. Backbone Network

All the models we used achieved good results in the image classification task. In the
experimental part, we consider representative DNNs as black-box models Mi, namely
Resnet50 [28], Resnet18 [28], VGG19 [29], DenseNet-121 [30], and Wide-Resnet50 [31]
(denoted as Res50, Res18, VGG19, DN121, and W-Res50, respectively). All experiments in
this paper were conducted in the PyTorch environment using a single RTX Titan GPU.

We trained all models on the above three datasets and used SGD as an optimizer.
The learning rate was set to 0.001 and was dynamically adjusted using a scheduler with
momentum set to 0.9. The number of epochs was 100, and the batch size was 64.

Our proposed method is general and independent of the DNN structure and can be
applied similarly to any existing pre-trained classifier. In the experiments, to avoid errors
due to a single model structure and to ensure the reliability of experiment results, we
employed multiple substitute models and comprehensively evaluated their performance
against attacks by exchanging between substitute models and black-box models.

4.1.3. Comparative Methods

We choose the baseline I-FGSM [10] and PGD method [9] and various state-of-the-art
attack methods, DI-FGSM [4], S2I-FGSM [1], MI-DI-FGSM [4], and TI-DI-FGSM [2], as
comparative methods to evaluate our proposed attack methods from multiple perspectives
such as invisibility, transferability, etc.

Among them, the MI-DI-FGSM and TI-DI-FGSM are the combination of two adversar-
ial attacks. The MI-DI-FGSM was proposed by Xie et al. [4], and adds diverse inputs (DIs)
to momentum iteration (MI-FGSM) [3]; the TI-DI-FGSM was proposed by Dong et al. [2],
and adds a translation invariant attack (TI) to the DI-FGSM.

4.1.4. Parameter Settings

For all experiments, we set the parameters of all algorithms as follows: L∞ maximum
perturbation constraint ϵ = 16/255, number of iterations T = 10, step size α = 1.6/255,
and noise initialization times N = 10.

For our proposed algorithm, we constructed neural network models for constructing
Fourier heatmaps on each dataset which are independent of the black-box models Mi. We
integrated the results of different networks and set the extraction percentage of sensitive
regions to 35% and the weighting factor to λ = 0.5 in K-means clustering, obtaining
sensitive regions ω and high-frequency regions ωhigh, as shown in Figure 5. For the
frequency domain augmentation, we set the multiplicative noise to ρ = 0.5 and the
standard deviation to σ = 16/255 for Gauss noise, and we set the frequency step size
to α = 100 on CIFAR100 and tiny-ImageNet, and to 15 on CIFAR10. To fairly evaluate
the effectiveness of the proposed method, as with comparative methods, we added L∞
constraints on the perturbations in the null domain, limiting the perturbations to the same
strength for all methods, i.e., ϵ = 16/255.

For the parameter setting of the comparative methods, we set the transformation prob-
ability to 0.5 for the DI-FGSM. For the MI-DI-FGSM, we set the transformation probability
to 0.5 and the decay factor of the momentum iteration to 1.0. For the TI-DI-FGSM, the
transformation probability was also 0.5, and the kernel length of the translational transfor-
mation was 7. For the S2I-FGSM, we set the tuning factor to 0.5 and the standard deviation
of Gaussian noise set to 16/255.

4.1.5. Attack Scenarios

In the experimental part, we randomly selected clean images from the test set of each
dataset for the adversarial attack and used all models to correctly classify these images. To
ensure fairness, we used the same images for different attack methods in the same scenario.
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Integrated Maskall mlow mhigh

Figure 5. The division of Fourier domain regions by K-means clustering on the three datasets. After
the clustering mask on the CIFAR10, CIFAR100, and Tiny-ImageNet datasets, the results are shown
from top to bottom by row. The integrated Fourier heatmap sensitive regions and the low-frequency
and high-frequency regions after clustering are shown from left to right by column.

For the untargeted attack scenario, we generated 2000 adversarial examples for each
attack method using a selection of 2000 clean images for each dataset. In the targeted attack
scenario, we randomly selected 200 images from each dataset and conducted targeted
attacks on all labels except the original ones. In CIFAR100 and Tiny-ImageNet, the clas-
sification confidence of the substitute model’s target labels served as a filter; we retained
the attack results for the top 10 target labels with the highest confidence for each clean
image, resulting in 2000 adversarial examples per attack method for evaluating the optimal
performance of the targeted attack. The CIFAR10 dataset contains only nine additional
labels besides the original label, so we included all the attack results on these labels. This
resulted in 1800 adversarial examples, which were used to assess the average performance
of the attack methods in the targeted attack scenario.

4.1.6. Evaluation Matrix

For the evaluation of transferability and invisibility, we used the same substitute
model for different attacking methods to generate adversarial examples in the same attack
scenario and tested them using the same black-box models.

We evaluated the transferability of adversarial examples on the black-box models. In
the targeted attack scenario, the black-box model should classify the adversarial examples
to the target labels outside the original labels for a successful transfer attack. In the
untargeted attack scenario, the adversarial examples are considered to have a successful
transfer attack as long as the black-box model misclassifies them. The transfer success rates
of the adversarial examples on the black-box models evaluate the transferability of the
attacking methods.

In terms of evaluating the image quality of adversarial examples, the L∞ norm ensures
that the perturbation strength set by all methods is consistent. We employed multiple
metrics to evaluate examples from various perspectives; all used evaluation metrics are
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as follows: Peak Signal-to-Noise Ratio (PSNR) [36], Structural Similarity Index (SSIM) [36],
Root Mean Squared Error (RMSE), Universal Quality Image Index (UQI) [37], Erreur
Relative Globale Adimensionnelle de Synthèse (ERGAS) [38], Visual Information Fidelity
(VIF) [39], and Learned Perceptual Image Patch Similarity (LPIPS) [40].

4.2. Evaluation of Image Quality
4.2.1. Tiny-ImageNet

The image quality of adversarial examples was evaluated under both untargeted and
targeted attack scenarios, and the average values of the metrics for all the adversarial
examples of different methods are presented in Table 1, where the up arrow indicates that
for this metric, a higher value is better, while the down arrow indicates the opposite. Under
the premise of the same L∞ perturbation strength constraints of all attack methods, our
method outperforms others on various image evaluation metrics.

Table 1. Performance of different attacking methods in terms of image quality on Tiny-ImageNet.
The best results are presented in bold.

Settings Methods L2(↓) PSNR(↑) SSIM(↑) VIF(↑) LPIPS (↓) RMSE(↓) UQI(↑) ERGAS(↓)

PGD 3.970 28.90 0.9219 0.4775 0.0873 0.0359 0.9808 5477.7
I-FGSM 2.403 33.29 0.9619 0.6087 0.101 0.0217 0.9933 3551.9

DI-FGSM 2.779 32.03 0.9617 0.5727 0.1139 0.0251 0.9888 3889.6
TI-DI-FGSM 2.728 32.19 0.9577 0.5783 0.1091 0.0246 0.9902 4020.1
MI-DI-FGSM 3.517 29.97 0.9309 0.5011 0.1765 0.0317 0.9863 5145.7

S2I-FGSM 3.043 31.24 0.9572 0.5444 0.1222 0.0275 0.9885 4170.3

Targeted
Res50

Ours 1.169 39.60 0.9902 0.7894 0.0478 0.0105 0.9991 1375.8

PGD 3.973 28.91 0.922 0.4781 0.0946 0.0358 0.9809 5467.3
I-FGSM 2.299 33.68 0.9709 0.6273 0.1015 0.0207 0.9923 3209.3

DI-FGSM 2.593 32.64 0.9655 0.5917 0.1258 0.0234 0.9907 3588.3
TI-DI-FGSM 2.664 32.40 0.9651 0.5843 0.1093 0.024 0.9891 3692.9
MI-DI-FGSM 3.426 30.20 0.9436 0.512 0.1762 0.0309 0.9853 4717.9

S2I-FGSM 2.862 31.78 0.9611 0.5646 0.1369 0.0258 0.9898 3903.8

Targeted
VGG19

Ours 1.109 40.07 0.9938 0.8062 0.0422 0.01 0.9985 1548.0

PGD 4.002 28.85 0.9228 0.4753 0.0916 0.0361 0.983 5378.5
I-FGSM 2.775 32.10 0.9601 0.5733 0.0918 0.025 0.9889 3723.5

DI-FGSM 2.807 31.95 0.9622 0.5686 0.107839 0.0253 0.9888 3754.8
TI-DI-FGSM 2.960 31.50 0.9607 0.5569 0.1026 0.0267 0.9876 3876.3
MI-DI-FGSM 5.199 26.57 0.8888 0.3856 0.2224 0.0469 0.9748 6738.5

S2I-FGSM 3.287 30.57 0.9525 0.5207 0.1341 0.0297 0.9872 4355.0

Untargeted
Res50

Ours 1.694 36.36 0.9855 0.7005 0.0578 0.0153 0.9946 2423.9

PGD 4.024 28.80 0.9208 0.4718 0.1083 0.0363 0.9824 5452.3
I-FGSM 2.979 30.88 0.9605 0.5593 0.1348 0.0269 0.9889 3877.1

DI-FGSM 3.288 30.59 0.9534 0.525 0.1636 0.0297 0.9873 4285.7
TI-DI-FGSM 3.382 30.36 0.9525 0.5155 0.1428 0.0305 0.9858 4403.9
MI-DI-FGSM 5.152 26.66 0.8916 0.3872 0.2416 0.0465 0.975 6706.0

S2I-FGSM 3.724 29.50 0.9435 0.4886 0.1988 0.0336 0.9853 4835.8

Untargeted
VGG19

Ours 2.097 34.61 0.9789 0.6485 0.1170 0.0189 0.9938 2953.4

The data in Table 1 show that in the target attack scenario, compared with the DI-
FGSM algorithm, which performs relatively well in comparison to other methods, the
average PSNR of our adversarial examples is higher by about 4–6 dB. There is a significant
improvement in all the evaluation metrics of image quality and invisibility, such as VIF and
LPIPS. The data for the untargeted attack reflect similar results to those for the targeted
attack. Compared with the other methods, our examples show significant improvement in
all image evaluation metrics on all substitute models, with an average PSNR improvement
of about 4–8 dB. This indicates that our adversarial attack also applies to the untargeted



Appl. Sci. 2024, 14, 3315 16 of 23

attack scenario and performs well on the invisibility of the adversarial examples in both
attack scenarios.

In addition, through cross-model comparison of the adversarial examples on different
substitute models, it can be found that although there are some differences in the image
quality of adversarial attacks on each model due to variations in network structures, the
relative performance of all attacking methods is consistent. This indicates that adversarial
attacks do not depend on a specific network structure, and our method can be applied to
various substitute models.

4.2.2. CIFAR100 and CIFAR10

Similarly, we conducted experiments on the CIFAR10 and CIFAR100 datasets to
evaluate the image quality of adversarial examples. We used the same backbone network
Res50 as the substitute model in Tiny-ImageNet and evaluated both untargeted and targeted
attack scenarios. We report the average values of all evaluation metrics of the generated
adversarial examples in Table 2.

Table 2. Performance of different attacking methods in terms of image quality on CIFAR100
and CIFAR10.The best results are presented in bold.

Settings Methods L2(↓) PSNR(↑) SSIM(↑) VIF(↑) LPIPS (↓) RMSE(↓) UQI(↑) ERGAS(↓)

PGD 3.9592 28.9501 0.8506 0.4207 0.2248 0.0357 0.9846 4861.313
I-FGSM 2.212 34.0041 0.9422 0.5856 0.1769 0.02 0.9925 2753.327

DI-FGSM 2.3564 33.459 0.9392 0.5677 0.1988 0.0213 0.9923 2896.558
TI-DI-FGSM 2.4783 33.0247 0.9359 0.5492 0.1718 0.0224 0.9907 3108.424
MI-DI-FGSM 3.1938 30.8156 0.8981 0.4791 0.2727 0.0288 0.9887 3833.376

S2I-FGSM 2.653 32.4333 0.9253 0.5263 0.2128 0.0239 0.9907 3291.363

Targeted
CIFAR100

Ours 1.1808 39.555 0.985 0.7468 0.0866 0.0107 0.9971 1554.388

PGD 2.033 28.7168 0.9544 0.4836 0.0978 0.0367 0.9945 4020.453
I-FGSM 1.4367 31.794 0.978 0.5789 0.0861 0.0259 0.997 2826.112

DI-FGSM 1.843 29.5851 0.9651 0.5106 0.1359 0.0333 0.9952 3630.055
TI-DI-FGSM 2.0019 28.8683 0.9623 0.5042 0.1334 0.0361 0.9936 3923.169
MI-DI-FGSM 2.7379 26.1326 0.928 0.4048 0.2124 0.0494 0.9901 5389.967

S2I-FGSM 1.7697 29.9492 0.9673 0.5151 0.1229 0.0319 0.9956 3526.703

Targeted
CIFAR10

Ours 0.6173 39.2151 0.9948 0.755 0.021 0.0111 0.9992 1324.995

PGD 3.9664 28.9342 0.8503 0.4199 0.2278 0.0358 0.9846 4866.471
I-FGSM 2.2014 34.0471 0.9433 0.5878 0.1725 0.0199 0.9924 2738.272

DI-FGSM 2.3082 33.64 0.9403 0.5741 0.1925 0.0208 0.9921 2857.357
TI-DI-FGSM 2.4504 33.126 0.9371 0.554 0.1682 0.0221 0.991 3042.448
MI-DI-FGSM 4.8833 27.1276 0.8064 0.351 0.3608 0.0441 0.9793 5848.935

S2I-FGSM 2.7332 32.179 0.9226 0.5176 0.2297 0.0247 0.9903 3393.043

Untargeted
CIFAR100

Ours 1.5578 37.1052 0.9751 0.674 0.1267 0.0141 0.9959 2023.021

PGD 2.0425 28.6772 0.9552 0.486 0.1005 0.0369 0.9944 4051.093
I-FGSM 1.7972 29.8239 0.9697 0.5227 0.1191 0.0324 0.9955 3546.147

DI-FGSM 1.8363 29.6212 0.9673 0.5155 0.1307 0.0331 0.9952 3635.69
TI-DI-FGSM 2.0438 28.6842 0.9625 0.5019 0.1329 0.0369 0.9933 4006.551
MI-DI-FGSM 2.7362 26.138 0.93 0.406 0.2075 0.0494 0.9901 5398.472

S2I-FGSM 1.9634 29.0394 0.9613 0.488 0.1528 0.0354 0.9946 3947.055

Untargeted
CIFAR10

Ours 1.1618 33.6425 0.9825 0.5969 0.0747 0.021 0.9976 2495.726

The above experimental data show that under different attack scenarios and different
experimental settings on alternative models, the generated adversarial examples of our
method on multiple datasets outperform the comparison methods in terms of image qual-
ity and invisibility. This also confirms the correctness of our frequency domain analysis
for adversarial attacks; i.e., by constraining the adversarial perturbation’s frequency do-
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main distribution, we can effectively improve the invisibility of the generated adversarial
example, which we will continue to prove in later experiments.

4.3. Visualization Analysis

In former experiments, we demonstrate our improvement to comparative attacking
methods regarding invisibility, and we will evaluate the impact of adversarial attacks by
visualizing the image details of adversarial examples.

4.3.1. Detail Comparison

We visually compare the image details of the adversarial examples generated by
attacking methods. In the same experimental setup as before, we compare examples
generated in the same alternative model under the same attack scenario.

In Figure 6, we show the adversarial examples generated by all methods on the
substitute model Res50. The adversarial perturbation generated by the comparison method
has a very obvious impact on the visual quality of the examples and leaves visual traces
in the smooth region of the image. In contrast, the adversarial examples generated by
our method have little impact on the smooth region of the image and have a significantly
better visual quality than those of the other methods, which are closer to the original image
for the HVS. The results in the targeted attack and untargeted attack scenarios reflect the
same phenomenon: the perturbation generated by the comparison method significantly
affects the visual quality of the examples on all three different datasets. In comparison, our
perturbation significantly reduces the impact of relatively smooth regions in the images.

Figure 6. Comparison of the image details of the adversarial examples of the attacking methods.
These adversarial examples come from the Tiny-ImageNet, CIFAR100, and CIFAR10 datasets from
top to bottom by two rows. For each dataset, the upper row shows the targeted attack scenario, and
the lower row shows the untargeted attack scenario. The leftmost column shows the original clean
images. The adversarial examples generated by different methods are listed from left to right.
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The comparative methods measure the overall change in pixel values of images using
Lp norms, which ignores image content and leads to visible traces in smooth regions. We
design the perturbation from the frequency domain and restrict the frequency domain
distribution of the perturbation to the high-frequency region, which has less effect on the
visibility, significantly improving the invisibility of the adversarial examples.

4.3.2. Difference Analysis

To further analyze the impact of attacks on images, we visualize the adversarial
perturbations using an absolute difference map.

Taking the adversarial examples in untargeted attack scenario on the Tiny-ImageNet
dataset as an example, we differentiate the adversarial example from the original image,
take the absolute values, and visualize the absolute difference maps on the three RGB
channels. Due to the constraints of the L∞ norm, the maximum perturbation of all the
adversarial examples is set to 16/255. We normalize all the absolute difference maps to
0∼255, where 0 and 255 represent black and white, respectively. The larger the perturbation
value of that point, the brighter the pixel point.

In Figure 7, we show the absolute difference maps of perturbations in the three
channels of the image for the comparative methods and our proposed method. The
perturbations generated by the comparative methods in each channel exhibit meaningless
noise patterns, with the perturbation strength in each region being approximately uniform,
especially evident in the maps of PGD. In contrast, our absolute difference maps exhibit
clear distribution patterns of perturbations in all three channels. Our perturbations are
mainly concentrated in regions of the image with complex contents, but have little effect on
the smooth regions of the image.

OursS
2
I-FGSMTI-DI-FGSMMI-DI-FGSMDI-FGSMI-FGSMPGD

0

255

0

255

Clean Image

Figure 7. Absolute difference maps of the adversarial examples and clean image, where each column
from top to bottom is the perturbation of the three channels R, G, and B. All absolute difference maps
are normalized from 0 to 255, where 0 and 255 are represented in black and white.

From the above analysis, it can be concluded that our method adapts the perturbations
to the image content and significantly reduces the influence on the smooth regions of
the image, i.e., the regions where the low-frequency component accounts for more. We
transferred the perturbations to high-frequency regions where the human visual system
is less sensitive, thus making the generated adversarial examples have minimal visual
differences compared to the original images.
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4.4. Evaluation of Transferability

To verify the transferability of our proposed attack methods, we tested all comparative
attacking methods’ transfer success rates on black-box models. In the same way as in the
experiments above, we tested on three datasets with the substitute model Res50 to test the
performance of each method in targeted and untargeted attack scenarios.

Table 3 shows the transfer success rates of the black-box models in the targeted attack
scenario using different attacking methods; the results of the experiments on Tiny-ImageNet,
CIFAR100, and CIFAR10 are shown from top to bottom. Each row represents the transfer
success rate on different black-box models.

Table 3. Transfer success rate of attacking methods on three datasets (from top to bottom: Tiny-
ImageNet, CIFAR100, and CIFAR10).

Targeted Attack

Methods Res18 VGG19 Dense W-Res50

PGD 3.20% 0.45% 0.05% 0.15%
I-FGSM 1.50% 0.10% 0.50% 0.50%

TI-DI-FGSM 18.50% 1.20% 3.00% 13.50%
Ours 21.00% 10.00% 6.00% 16.50%

PGD 4.05% 3.55% 4.65% 0.95%
I-FGSM 8.45% 4.90% 8.30% 2.60%

TI-DI-FGSM 27.85% 20.40% 30.25% 10.55%
Ours 28.85% 22.10% 32.15% 12.90%

PGD 6.89% 6.61% 7.22% 7.44%
I-FGSM 15.11% 11.89% 13.56% 15.94%

TI-DI-FGSM 22.94% 17.39% 21.44% 19.94%
Ours 32.22% 27.78% 28.44% 32.22%

Untargeted Attack

PGD 40.05% 11.25% 1.15% 4.10%
I-FGSM 50.45% 20.15% 4.80% 17.70%

TI-DI-FGSM 63.54% 40.82% 20.52% 47.02%
Ours 69.15% 41.10% 21.40% 48.65%

PGD 46.50% 52.00% 54.00% 12.50%
I-FGSM 54.00% 47.50% 59.00% 21.00%

TI-DI-FGSM 66.33% 66.83% 73.92% 31.21%
Ours 67.00% 68.50% 75.50% 35.50%

PGD 31.50% 37.00% 33.50% 34.50%
I-FGSM 58.50% 56.50% 60.50% 62.50%

TI-DI-FGSM 53.50% 46.00% 57.00% 58.00%
Ours 69.00% 61.50% 63.00% 68.50%

The experimental results in the table show that in the challenging targeted attack
scenario, the adversarial examples generated by our method have good transferability,
which indicates that our proposed adversarial attack method has a good performance on
the invisibility of adversarial examples and good transferability.

In the untargeted attack scenario, the DNN’s classification of the adversarial sample
only needs to deviate from the original label to determine the success of the adversarial
attack, which significantly reduces the attack difficulty compared to the targeted attack
scenario. Table 3 shows the transfer success rates of attacking methods in an untargeted
attack scenario; the results of the experiments on Tiny-ImageNet, CIFAR100, and CIFAR10
are shown from top to bottom. The data in the table show that our method also has
significantly higher transferability success rates compared to the TI-DI-FGSM, which is
one of the most transferable adversarial attacks available, indicating that our method also
outperforms others in an untargeted attack scenario.
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4.5. Ablation Study
4.5.1. Quantitative Analysis in the Frequency Domain

To quantitatively analyze the perturbation of adversarial attacks on images and verify
the effectiveness of our proposed method, we conducted a statistical analysis of the per-
turbations of a large number of adversarial examples from the perspective of the Fourier
domain to examine the frequency domain characteristics of the perturbations generated by
our method.

The strength and proportion of low-frequency perturbations can reflect the invisibility
of the adversarial examples. By counting the proportion of low-frequency perturbations in
the total perturbation strength of all generated adversarial examples, we can summarize
the distribution pattern of perturbations of comparative methods.

In the previous discussion, we divided the Fourier matrix into three parts, and we
used the masks as filters to calculate the perturbation strength in different frequency bands
using the L2 norm. The strength of the perturbations in these different frequency bands
represents the amount of modification of the image’s corresponding frequency information.
We count the average low-frequency perturbation strength on the region ωlow and the
percentage of low-frequency perturbations in the total perturbation strength.

Figure 8 shows the frequency domain characteristics of comparative methods on the
Tiny-ImageNet, CIFAR100, and CIFAR10 datasets, respectively. The histogram data in
the figures represent the average strength of low-frequency perturbations of adversarial
examples. The line plot data represent the proportion of low-frequency perturbations
for different methods. The histogram data in the figure show that our method has the
smallest average low-frequency perturbation strength. Moreover, the line plots reflect
that the proportion of low-frequency perturbations in the adversarial perturbations of our
method is also the lowest compared to comparative methods. This illustrates that the
proposed optimization objective is effective, which successfully limits the perturbation
to the HVS-insensitive high-frequency region while improving the performance of the
adversarial examples.
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Figure 8. Average low-frequency perturbation strength and low-frequency perturbation share of
different methods on CIFAR10 (a), CIFAR100 (b), and Tiny-ImageNet (c). Here, the MI-DI-FGSM and
TI-DI-FGSM are denoted as MI-DI and TI-DI, because of length.

4.5.2. Fourier Perturbation Hotspot Map

To further analyze the distribution pattern of perturbations of the adversarial attack in
different frequency bands, we average the perturbations over all examples and visualize
the frequency domain characteristics of the average perturbations.

We use a similar processing method as the Fourier heatmap to Fourier transform the
average perturbation and obtain a Fourier map with the values of its elements representing
the strength of the perturbation in this frequency domain component. Then, we extract the
strongest region with the maximum value of 20% of the Fourier map and binarize it. We call
the binarized map the Fourier perturbation hotspot map. The Fourier perturbation hotspot
maps for all methods are shown in Figure 9. The proposed method successfully aligns the
frequency domain distribution of the perturbations with high-frequency sensitive regions
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of the DNN. This further supports the conclusion that the proposed frequency loss function
was effective and successful.

S
2
I-FGSMDI-FGSM OursMI-DI-FGSM TI-DI-FGSMI-FGSM

OursDIMI-FGSM MI-DIM TI-DIM SI-FGSM

SI-FGSMDIM MI-DIM TI-DIMI-FGSM Ours

mhigh

Figure 9. Fourier perturbation hotspot plots of the comparative attacking method. From top to
bottom are the experimental results on CIFAR10, CIFAR100, and Tiny-ImageNet datasets, where the
rightmost column is the high-frequency region in Figure 5.

5. Conclusions and Discussion

In this work, we analyze the process of adversarial attacks from the perspective of the
Fourier domain and propose an invisible adversarial attack, which significantly improves
the invisibility of the transferable adversarial examples. We compute the gradient and
superimpose the perturbation from the frequency domain and then quantify the impact
of different Fourier frequency components of perturbations on the transferability and
invisibility of adversarial examples, so as to establish a target region that can balance the
transferability and invisibility through the K-means clustering algorithm. We propose
to use the adversarial loss and the loss in the frequency domain as a joint optimization
objective to constrain the frequency-domain distribution of the perturbation towards the
target region. The experimental results show that the proposed designs are effective and
the performance of the adversarial examples is significantly improved.

Most research on transferable adversarial attacks focuses on how to simulate black-box
models through model augmentation to improve the success rate of transfer attacks. We
hope to provide a new perspective beyond the conventional spatial domain perspective; we
can also explore the intrinsic principles of adversarial examples through frequency analysis.
This may help solve the problems of adversarial attacks that are currently difficult to solve
in the spatial domain.

The common frequency-sensitive characteristics of DNNs are of great significance for
future research on adversarial attacks; for example, more robust black-box DNN water-
marking can be constructed based on these characteristics [41]. Further exploration may
help to improve the performance of adversarial attacks, the interpretability of the attacks,
and the understanding of the generalization ability of DNNs. Due to the limitation of
the experimental equipment, this study uses a limited number of DNNs to construct the
common frequency-sensitive region. By adding more structurally rich models, a more
accurate common frequency-sensitive region of DNNs can be obtained, providing stronger
support for further research in the field of adversarial attacks.
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