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Abstract: This paper presents a comprehensive investigation into the application of the Improved
Stochastic Ranking Evolution Strategy (ISRES) algorithm for the sizing and layout optimization of
truss benchmark structures. Truss structures play a crucial role in engineering and architecture,
and optimizing their designs can lead to more efficient and cost-effective solutions. The ISRES
algorithm, known for its effectiveness in multi-objective optimization, is adapted for the single-
objective optimization of truss designs with multiple design constraints. This study encompasses
a wide range of truss benchmark structures, including 10-bar, 15-bar, 18-bar, 25-bar, and 72-bar
configurations, each subjected to distinct loading conditions and stress constraints. The objective
is to minimize the truss weight while ensuring stress and displacement limits are met. Through
extensive experimentation, the ISRES algorithm demonstrates its ability to efficiently explore the
solution space and converge to optimal solutions for each truss benchmark structure. The algorithm
effectively handles the complexity of the problems, which involve numerous design variables, stress
constraints, and nodal displacement limits. A comparative analysis is conducted to assess the
performance of the ISRES algorithm against other state-of-the-art optimization methods reported in
the literature. The comparison evaluates the quality of the solutions and the computational efficiency
of each method. Furthermore, the optimized truss designs are subjected to finite element analysis
to validate their structural integrity and stability. The verification process confirms that the designs
adhere to the imposed constraints, ensuring the safety and reliability of the final truss configurations.
The results of this study demonstrate the efficacy of the ISRES algorithm in providing practical
and reliable solutions for the sizing and layout optimization of truss benchmark structures. The
algorithm’s competitive performance and robustness make it a valuable tool for structural engineers
and designers, offering a versatile and powerful approach for complex engineering optimization
tasks. Overall, the findings contribute to the advancement of optimization techniques in structural
engineering, promoting the development of more efficient and cost-effective truss designs for a wide
range of engineering and architectural applications. The study’s insights empower practitioners to
make informed decisions in selecting appropriate optimization strategies for complex truss-design
scenarios, fostering advancements in structural engineering and sustainable design practices.

Keywords: truss optimization; ISRES; sizing optimization; layout optimization; structural engineering

1. Introduction

Optimization is in our lives everywhere we turn. Athletes preserve their breath to
run/swim longer/faster, people use the shortest path to their office in order to spend less
time on the road, and engineers design more green and eco-friendly buildings to save
energy while satisfying consumers’ needs. In all these examples, the main goal is to use
existing resources wisely and economically. Structural optimization basically relies on
the same fundamentals. The aim of structural optimization is to perform better under
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specified goals while meeting variable constraints. In previous studies, gradient-based
algorithms were used considerably for structural optimization [1,2]. While these types
of algorithms can sometimes help to reach a solution, without a decent starting point
obtaining a solution is not guaranteed. Meta-heuristic algorithms, on the other hand, are
free from this restriction. These types of algorithms need initial data, decision and state
variables, constraints, etc. Initial states can be calculated, assigned randomly, or used as
default [3].

Structural optimization is practiced under three different categories, namely: size,
shape, and topology. The aim for optimization in truss elements is to reduce the structures’
weight. While optimization could be carried out with the use of a single category of these
above-mentioned options, it can be also reached with different combinations of any two or
altogether. Size is the largely applied category for truss optimization, followed by shape
and topology [3]. The research gap falls between topology and shape, with very little work
available in the literature. In truss optimization, weight, geometry, stress, stiffness, nodal
displacements, and buckling problems are the most largely studied types of functions [4].
While the aim is reducing the weight of the truss with optimization, different optimization
categories offer different types of solutions. In sizing optimization, the aim is to find
the optimum cross-sectional area of the truss. In shape optimization, in changing the
coordinates of the nodals, finding an optimum position is possible, and finally, in topology
optimization, removing the structural members from their original position allows for
minimizing the volume of the truss [5].

Meta-heuristic algorithms have been applied to truss optimization for a long time.
Meta-heuristic algorithms used by researchers frequently are as follows: genetic algo-
rithm [6], Cuckoo Search [7], Big Bang-Big Crunch [8], particle swarm optimization [9],
the Firefly algorithm [10], Harmony search [11], differential evolution [12], and the bat
algorithm [13].

Miguel et al. [14] used the Firefly algorithm in truss structures to optimize simultane-
ously size, shape, and topology. Four benchmark problems such as 11-bar, 39-bar, 25-bar,
and 15-bar trusses were studied. As a result, it was decided that this method is useable
for mixed-optimization problems. Khodadadi et al., 2023, [15] examined the effectiveness
of eight population-based meta-heuristic approaches: the African Vultures Optimization
Algorithm (AVOA), the Flow Direction Algorithm (FDA), the Arithmetic Optimization
Algorithm (AOA), Generalized Normal Distribution Optimization (GNDO), the Stochastic
Paint Optimizer (SPO), the Chaos Game Optimizer (CGO), the Crystal Structure Algorithm
(CRY), and the Material Generation Algorithm (MGO). The objective is to optimize the
dimensions of three aluminum truss structures with the goal of minimizing the weight of
truss members while satisfying specified displacement and stress constraints. The study
evaluates the performance of these methods by applying them to three established truss-
structure benchmarks under certain constraints. The findings indicate that the Stochastic
Paint Optimizer (SPO) outperforms the other algorithms in terms of both accuracy and
convergence rate. Assimi and Jamali [16] applied hybrid genetic programming (HGP)
to truss structures with different static and dynamic constraints. Benchmark problems,
namely 24-bar, 20-bar, and 72-bar, were investigated with different variables for sizing and
topology problems. The results obtained from this study were compared against other rela-
tive studies, and HGP showed a better performance for most of the cases. Jafari et al. [17]
proposed a new model for the optimization of truss structures with (PSO) and the cultural
algorithm (CA). Together, 10-bar, 25-bar, 72-bar, 120-bar, and 160-bar truss structures were
used for checking algorithm viability. They reported that the new proposed model was
superior or competitive in comparison with other meta-heuristic algorithms. With the
inspiration of the Jaya algorithm (JA), Degertekin et al. [18] developed a parameter-free
jaya algorithm (PFJA) for sizing/layout problems of truss structures and compared the
outputs with the standard jaya algorithm (JA), the modified jaya algorithm (MJA), and
other meta-heuristic algorithms in the literature. Optimization was conducted on 37-bar,
52-bar, 72-bar, 200-bar, 942-bar, 600-bar, 1180-bar, and 1410-bar truss structures. With eight
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different truss weight optimization problems studied in this paper, it is stated that PFJA
is a reliable algorithm in terms of minimizing truss weight and convergence speed. For
size/shape optimization, Azizi et al. [19] applied chaos game optimization with frequency
constraints. Five different truss structures such as 10-bar, 37-bar, 52-bar, 72-bar, and 120-bar
structures were considered. They reported that with the mean of 30 independent runs,
chaos game optimization (CGO) reached the minimum truss weight among the algorithms
considered in this study. In another recent study, Jawad et al. [20] employed the artificial
bee colony algorithm (ABC) for 15-bar, 18-bar, 25-bar, and 47-bar truss structures for sizing
and layout optimization. Stress, displacement and buckling constraints were considered.
The authors reported that the ABC algorithm outperformed other algorithms with regard
to weight and iteration. Kumar et al., 2021, focuses on four objective functions: mass,
compliance, first natural frequency, and buckling factor [21]. Due to the limited availabil-
ity of optimization methods designed for addressing many-objective truss-optimization
challenges, it becomes crucial to evaluate the performance of contemporary algorithms on
these complex problems. This research contributes by examining the relative effectiveness
of eighteen established algorithms across various dimensions. The assessment is based
on four metrics, aiming to solve intricate truss problems with many objectives. Statistical
analysis is conducted considering the best mean and standard deviation outcomes of the
objective functions, along with Friedman’s rank test. The overall comparison identifies
MMIPDE as the top-performing algorithm, with SHAMODE utilizing a whale-optimization
approach and the standard SHAMODE as the runners-up. Dehghani et al. [22] inspired
by the imperialist competitive algorithm (ICA), cellular automata (CA), and the dolphin
echolocation (DE) algorithm, introduced a new algorithm abbreviated as CA-ACEA. They
dictated that the proposed algorithm outperforms other algorithms considered in this
study for weight minimization. Pierezan et al. [23] applied the chaotic coyote algorithm
(COA) for the 52-bar, 72-bar, 120-bar, and 200-bar for truss optimization to minimize the
structure weight. They also proposed a modified model of the chaotic coyote algorithm
(MCOA) and reported that compared to the original COA, the newly proposed algorithm
showed competitive results. Pholdee and Bureerat [24] aimed to minimize the weight of
the trusses with dynamic constraints and applied various meta-heuristic algorithms. Five
different truss-optimization problems were considered to evaluate the performance of these
algorithms. They reported that with different benchmark problems, the best algorithm to
minimize the weight of the truss changed case to case. Serpik [25] proposed a meta-heuristic
algorithm based on a job-search strategy. Five different numerical examples, namely, 10-bar,
25-bar, 200-bar, 18-bar, and 354-bar, were considered for efficiency analyses. The authors’
goal was to rule out penalty functions. Performing selected benchmark problems showed
that the proposed procedure displayed effective solutions for optimization.

Particle swarm optimization (PSO) is one of the frequently used meta-heuristic algo-
rithms for truss optimization. Researchers used this algorithm for different benchmark
problems, modified and improved over the years [26–30]. Cao et al. [26] proposed an
enhanced version of PSO in truss structures to decrease the structural-analysis process. Size
and shape optimization was considered. The results stated that enhanced PSO reduces the
computational time required for optimization without sacrificing any search capability. In
truss structures, Luh and Lin [27] investigated the optimization process under different
constraints such as deflection, stress, and kinematic stability with two-stage particle swarm
optimization. It is reported that this approach outperformed other methodologies reported
in the literature. Li et al. [28] used heuristic particle swarm optimization (HPSO) based on
standard particle swarm optimization (PSO) for truss structures. They noted that HPSO
was able to expedite convergence speed and can be efficient for steel structures. Gomes [29]
applied PSO and compared it with other algorithms and emphasized that the optimization
results obtained with PSO are similar to other known algorithms, or, in some benchmark
problems, even better. Some researchers such as Kim and Byun [30] proposed a modified
and improved version of PSO for truss optimization.
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Another algorithm considered in this study was differential evolution (DE). DE is
a widely used algorithm for optimization problems [31–38]. Over the years, authors
contributed to the efficiency of the algorithm with different approaches. Kao et al. [36]
suggested a new plan to enhance DE performance by altering the mutation operator. Tang
et al. [35] proposed teaching-based DE, while Ho-Huu et al. [37] used DE based on a
roulette selection for trusses.

From the moment it was introduced to the literature, the genetic algorithm (GA)
has been used for all kinds of optimization problems. In this section, a GA focused on
truss optimization in recent years is presented [39–46]. Assimi et al. [39] used the GA
to minimize the cross-section area of truss systems; Liu and Xia [40] proposed a hybrid
intelligent genetic algorithm (HIGA) and reported that the new method is a convenient
tool for truss optimization. Noii et al. [41] and Dong et al. [42] proposed a new approach to
improve the GA, while Delyová et al. [43] used the GA for size and topology optimization,
and Assimi et al. [46] introduced a new mutant operator for the GA.

In this study, our main objective is to perform a single-objective optimization of truss
benchmark structures using the Improved Stochastic Ranking Evolution Strategy (ISRES)
algorithm. Truss structures are widely used in engineering and architecture, and optimizing
their designs for a specific objective can lead to more efficient and cost-effective solutions.
The ISRES algorithm is a powerful optimization technique that belongs to the class of
evolutionary algorithms. It efficiently explores the solution space to search for the optimal
solution, focusing on a single objective in this case. The ISRES algorithm utilizes selection,
mutation, and recombination operations to iteratively improve the candidate solutions
until convergence to the optimal solution is achieved.

The optimization process will begin by formulating the truss-design problem as a
single-objective optimization task. The key design variables, such as the cross-sectional
areas and the lengths of truss members, will be considered as decision variables to be
optimized. The objective function will be defined based on the specific criterion that needs
to be maximized (e.g., structural stiffness, load-carrying capacity, or cost-effectiveness).

To evaluate the performance of each truss design, we will use structural analysis
software or finite element methods to calculate the objective function value. The structural
analysis will consider the given constraints to ensure the safety and stability of the truss.

The ISRES algorithm will then be employed to search for the optimal truss design
that maximizes the defined objective function. During the optimization process, we will
fine-tune the algorithm’s parameters and control settings to ensure its effectiveness and
efficiency in finding the optimal solution.

Multiple runs of the ISRES algorithm may be performed to account for the impact of
randomness and obtain a more reliable optimal design solution.

After obtaining the optimal design solution, we will perform a detailed analysis of the
truss to understand its performance characteristics and compare it with other benchmark
solutions. This will provide valuable insights into the influence of different design variables
on the objective function and guide engineers and designers in making informed decisions
for real-world applications.

Overall, this study aims to demonstrate the effectiveness of the ISRES algorithm in the
single-objective optimization of truss benchmark structures. The results obtained will provide
valuable guidance for engineering and architectural applications, promoting the development
of more efficient and reliable truss designs tailored to specific performance objectives.

2. Problem Formulations

The main purpose of this study is to minimize the weights of benchmark truss struc-
tures with different constraints and variables; the value of the objective function of the
optimization procedure is the total weight of the structure, as given in Equation (1)

min W(XZ, Xs) = ρ
M

∑
i=1

Li Ai (1)
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This objective function is subjected to the following:

Displacement constraints, δmin ≤ δj ≤ δmax j = 1, 2, . . . , J

Stress constraints, σmin ≤ σi ≤ σmax i = 1, 2, . . . , M

Cross − sectional area constraints, Amin ≤ Ak ≤ Amax k = 1, 2, . . . , G

Buckling constraints,
∣∣∣σcomp

i

∣∣∣− σcr
i ≤ 0 where σcr

i =
ki AiEi

L2
i

i = 1, 2, . . . , M

In this context, the variables are defined as follows: W represents the weight of
the truss; XZ and XS denote the size and geometry variables, respectively. The allowable
displacements for the joints are denoted as δmax and δmin, while σmin and σmax represent the
allowable stress for the bars, respectively. Ai (in) represents the cross-sectional area of each
bar, constrained within upper and lower limits Amax and Amin. ϱ represents the material
density, and finally Li (in) represents the length of each bar ‘i’, respectively. ki represents
the buckling coefficient. σcr

i denotes the critical buckling stress, and σ
comp
i represents the

stress under compression. E is the Young’s modulus of elasticity. It is imperative that each
design case adheres to its specific constraints, such as displacement (δj) for each joint ‘j’ and
stresses (σi) for each member ‘i’. ‘J’ signifies the number of joints, ‘M’ indicates the number
of bars, and ‘G’ refers to the number of element groups, which correlates with the number
of sizing variables.

In the scope of this study, the truss benchmark problems exhibit different constraint
scenarios. Some nodes have displacement constraints, while others do not. However, stress
constraints are valid for all elements in the problems. The presence of these constraints can
vary across different problems, with some having all constraints, and others having only a
subset of them.

To effectively handle constraint violations during optimization, penalty functions are
introduced. Penalty methods are a specific class of algorithms used for solving constrained
optimization problems. These methods convert constrained optimization problems into
unconstrained ones, allowing the solutions to converge to the optimal solution of the
original problem. The unconstrained problems are formulated as follows:

W ′(XZ, Xs) = W(XZ, Xs) + K
(

gj(x)
)

f or j = 1, 2, . . . , Ni

where
K is the penalty coefficient and W′ is the fitness function and gj is the constraint

violation. Additionally, it is worth noting that the value of K can vary depending on
the problem at hand. In our study, we have chosen K to be one, which signifies that we
have penalized the objective function by the amount of constraint violation. This decision
was made to effectively manage constraint violations and steer the optimization process
towards feasible solutions.

Constraint violation is the summation of how much a solution is violated, where the
constraints such as a stress in an element are higher than the allowed amount. The penalties
for the aforementioned constraints are given below:

CV = Cd + Cs + Cb

CV =

Nj

∑
j

CV j
δ +

Nk

∑
j

CV j
σ +

Nm

∑
j

CV j
b

Cs =

{∣∣∣ δj − δall
δall

∣∣∣ i f δj >
∣∣δall

∣∣
0 else δj ≤

∣∣δall
∣∣
}
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Cd =

{∣∣∣ σj − σall
σall

∣∣∣ i f σj >
∣∣σall

∣∣
0 else σj ≤

∣∣σall
∣∣
}

Cb =


∣∣∣ σj − σall

σall

∣∣∣ i f σj < 0 and σj < − kEAl
L2

l

0 else σj > 0 or σj > − kEAl
L2

l


where

CV represents the total constraint violation in the optimization problem, which is
decomposed into three components: displacement constraint violation (Cd), stress con-
straint violation (Cs), and buckling constraint violation (Cb). For displacement constraint
violation, Cd, it is calculated as the sum of the absolute differences between individual dis-
placement values (δj) and the allowable displacement limit (δall) divided by the allowable
displacement limit. If the individual displacement (δj) exceeds the allowable limit (δall),
the constraint violation is penalized; otherwise, it is considered to be zero. Cs, the stress
constraint violation, is computed similarly to Cd. It involves the sum of the absolute differ-
ences between individual stress values (σj) and the allowable stress limit (σall), divided by
the allowable stress limit. If the individual stress (σj) surpasses the allowable limit (σall),
the constraint violation is accounted for; otherwise, it remains zero. Cb, representing the
buckling constraint violation, is determined based on the individual stress values (σj). If
the stress is negative (σj < 0) and it falls below a critical buckling threshold KEAl

L2
l

, then the

constraint is violated and penalized accordingly. Otherwise, if the stress is either positive
or above the critical threshold, the constraint violation is considered to be zero.

In summary, the total constraint violation (CV) is the sum of the constraint violations
for displacement, stress, and buckling, each computed according to the specified equations
and conditions.

3. Improved Stochastic Ranking Evolutionary Strategy (ISRES)

Using the penalty function method for certain issues can be successful; however, it is
hard to determine what an optimal (or nearly optimal) value for it should be. If the value
is too small, then infeasible solutions may not be penalized enough, allowing for them
to be generated by the evolutionary algorithm. A “small” penalty function value implies
a relatively low penalty applied to infeasible solutions. In such cases, the penalty may
not be sufficient to discourage the generation of infeasible solutions by the evolutionary
algorithm, potentially leading to suboptimal outcomes. Conversely, a value that is too high
will cause feasible solutions to be found, but of poor quality. A “large” penalty function
value indicates a higher penalty imposed on infeasible solutions. While this may effectively
discourage the generation of infeasible solutions, excessively high penalties can lead to
premature convergence to suboptimal feasible solutions. Moreover, a large penalty value
can restrict the exploration of the search space, particularly in regions where feasible and
infeasible solutions are intertwined or separated. To maximize the effectiveness of the
exploration of infeasible regions, it is best to consider an appropriate value for the problem.
Depending on the situation, different values may be necessary. Finding an optimal or
near-optimal value for the penalty function is crucial for balancing the trade-off between
penalizing infeasible solutions and promoting the exploration of the search space. The
appropriate value depends on the specific characteristics of the optimization problem,
such as the nature of the constraints and the distribution of feasible regions in the search
space. A penalty value that is too small will suppress any exploration of unfeasible regions,
even in the beginning of the evolution. This is especially ineffective for problems where
feasible regions are disconnected from each other in the search space. Exploring infeasible
regions can act as pathways linking two or more feasible areas. The key concern is how
much exploration of infeasible regions (i.e., how large the value is) should be considered a
reasonable amount. This is dependent on the problem. Even for the same issue, different
stages of evolutionary search may need different values [47].
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Different values can create different fitness functions; therefore, what is considered
a fit individual under one fitness function may not be considered fit under another. Con-
sequently, it is necessary to rank individuals in a population adaptively in order to find
near-optimal solutions. To do this, Runarsson and Yao [47] introduced a novel rank-based
selection method for ranking individuals, which does not involve the specification of a
value. To assess the effectiveness and efficiency of this method, experimental studies have
been conducted, and it can be seen as an exterior penalty approach [48].

Adaptively finding a near-optimal solution is the same as adaptively ranking indi-
viduals in a population. Therefore, the problem becomes how to sort individuals based
on their objective and penalty scores. The SRES ranks the individuals without assigning
a value.

The authors who developed the SRES created an improved version of it named the
ISRES. The ISRES presents a modified version of the optimization algorithm that uses the
exponential averaging of trial step sizes. The Improved Stochastic Ranking Evolutionary
Strategy (ISRES) algorithm, a refinement of the Stochastic Ranking Evolutionary Strategy
(SRES), introduces a suite of enhancements tailored to enhance efficiency and efficacy in
optimization endeavors. Foremost among these enhancements is the implementation of the
exponential averaging of trial step sizes, fostering a more nuanced and adaptive exploration
of the search space compared to the fixed step sizes utilized by the SRES. This dynamic
adjustment of step sizes based on historical data empowers the ISRES to adapt more ef-
fectively to the nuances of the optimization problem, thereby facilitating a more efficient
exploration of promising regions. Furthermore, ISRES incorporates improved strategies for
initializing parameters within predefined bounds, ensuring a more diverse and effective
search from the outset. Its dynamic parameter-update mechanism continuously adjusts
parameters, including step sizes, based on mutation outcomes, thereby enhancing conver-
gence and exploration efficiency throughout the optimization process. ISRES also refines
replication mechanisms to preserve diversity among candidate solutions, thereby staving
off premature convergence and promoting the exploration of diverse regions within the
search space. Moreover, the ISRES implements robust strategies for handling boundary
constraints, such as allowing mutations that fall outside bounds to be retried multiple times
before resorting to parent values. These mechanisms collectively ensure the comprehensive
accessibility of the search space, driving superior performance, adaptability, and efficiency
compared to the SRES. In sum, the ISRES represents a significant leap forward in opti-
mization algorithms, particularly adept at tackling complex optimization tasks featuring
high-dimensional search spaces and diverse constraints. The algorithm is outlined by
the pseudocode in Figure 1. The exponential smoothing is performed on line 10. The
parameters and step sizes are initially set to random values within the bounds (lines 1 and
2). Any mutation that falls outside of the bounds is retried up to 10 times before being set
to its parent value. This approach ensures that the entire search space is initially accessible.
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Figure 1. Pseudocode for the improved SRES algorithm (ISRES). 

4. Benchmark Problems 
The number of bars in each configuration directly influences the problem’s dimen-

sion and complexity. In structural-optimization problems, the number of bars typically 
corresponds to the number of decision variables in the optimization problem, thus directly 
impacting the problem’s dimensionality. As the number of bars increases, so does the di-
mensionality of the problem, making it more complex to solve. Additionally, a higher 
number of bars often implies a larger search space, leading to increased computational 
effort required for optimization.  

In the scope of this paper, the ISRES algorithm was tested on five fairly small trusses 
with different loading conditions and design constraints. The direct stiffness method of 
analysis was used, and the results were compared to those found in the literature. Twenty 
independent runs were tabulated to account for the algorithm’s stochastic nature, and the 
best and mean weights as well as the standard deviation were recorded. 

4.1. 10-Bar Truss Structure 
The 10-bar planar truss structure has been a common problem studied in the litera-

ture and has been used as a sizing benchmark by many researchers. Figure 2 displays the 
layout and loadings of the truss. Two loading cases were investigated: Case I with a load 
value of P1 = 100 kips and P2 = 0, and Case II with a load value of P1 = 150 kips and P2 = 
50 kips. The material used to construct the truss had a mass density of 0.10 lb./in3 and 
elastic modulus of 10,000 ksi. The size of each member was taken from a range between 
Amin = 0.1 in2 and Amax = 35.0 in2. The allowable member stresses and nodal displace-
ment limits were set as ±25 ksi and ±2 in for all free nodes in the x and y direction, respec-
tively. In total, the problem had 32 non-linear design constraints (10 tension, 10 compres-
sion, and 12 displacement constraints) and 14 discrete design variables. In order to handle 
the design constraints effectively during the optimization process, penalty functions were 
introduced. Penalty methods are a certain class of algorithms for solving constrained op-
timization problems. They convert constrained optimization problems into unconstrained 
ones by modifying the objective function to penalize constraint violations. 

The optimization process involved formulating the single-objective optimization 
problem for the truss structure with the weight as the objective to be minimized. The de-
sign variables (member sizes) were optimized by using the ISRES algorithm, which effi-
ciently explores the solution space and searches for the optimal design. 

For each loading case, the ISRES algorithm was executed multiple times with appro-
priate parameters and control settings to obtain diverse candidate solutions. The penalty 
functions were utilized to ensure that the final solutions adhered to the specified stress 
and displacement constraints. 

1 𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆: 𝝈𝒌′ ≔ 𝒙𝒌 − 𝒙𝒌 /√𝒏, 𝒙𝒌′ = 𝒙𝒌 + 𝒙𝒌 − 𝒙𝒌 ∪𝒌 (𝟎, 𝟏) 
2  while termination criteria not satisfied do 
3   𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒆 𝒇(𝒙𝒌′ ), 𝒈+(𝒙𝒌′ ), 𝒌 = 𝟏, … , 𝝀 
4   rank the λ points and copy the best μ in their ranked order 
5   (𝒙𝒊, 𝝈𝒊) ← 𝒙𝒊;𝝀′ , 𝝈𝒊;𝝀′ , 𝒊 = 𝟏, … , 𝝁 
6   for k:=1 to λ do (replication) 
7    𝒊 ← 𝒎𝒐𝒅(𝒌 − −𝟏, 𝝁) + 𝟏(𝒄𝒚𝒄𝒍𝒆 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝝁 𝒑𝒐𝒊𝒏𝒕𝒔) 
8    𝝈𝒌,𝒋′ ← 𝝈𝒊,𝒋′ 𝒆𝒙𝒑 𝝉′ 𝑵(𝟎, 𝟏) + 𝝉𝑵𝒋(𝟎, 𝟏) , 𝒋 = 𝟏, … , 𝒏 
9    𝒙𝒌′ ← 𝒙𝒊 + 𝝈𝒌′ 𝑵(𝟎, 𝟏) 
10    𝝈𝒌′ ← 𝝈𝒊 + 𝜶(𝝈𝒌′ − 𝝈𝒊) 
11  od  
12 od   

Figure 1. Pseudocode for the improved SRES algorithm (ISRES).
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4. Benchmark Problems

The number of bars in each configuration directly influences the problem’s dimen-
sion and complexity. In structural-optimization problems, the number of bars typically
corresponds to the number of decision variables in the optimization problem, thus directly
impacting the problem’s dimensionality. As the number of bars increases, so does the
dimensionality of the problem, making it more complex to solve. Additionally, a higher
number of bars often implies a larger search space, leading to increased computational
effort required for optimization.

In the scope of this paper, the ISRES algorithm was tested on five fairly small trusses
with different loading conditions and design constraints. The direct stiffness method of
analysis was used, and the results were compared to those found in the literature. Twenty
independent runs were tabulated to account for the algorithm’s stochastic nature, and the
best and mean weights as well as the standard deviation were recorded.

4.1. 10-Bar Truss Structure

The 10-bar planar truss structure has been a common problem studied in the literature
and has been used as a sizing benchmark by many researchers. Figure 2 displays the layout
and loadings of the truss. Two loading cases were investigated: Case I with a load value of
P1 = 100 kips and P2 = 0, and Case II with a load value of P1 = 150 kips and P2 = 50 kips. The
material used to construct the truss had a mass density of 0.10 lb./in3 and elastic modulus
of 10,000 ksi. The size of each member was taken from a range between Amin = 0.1 in2

and Amax = 35.0 in2. The allowable member stresses and nodal displacement limits
were set as ±25 ksi and ±2 in for all free nodes in the x and y direction, respectively. In
total, the problem had 32 non-linear design constraints (10 tension, 10 compression, and
12 displacement constraints) and 14 discrete design variables. In order to handle the design
constraints effectively during the optimization process, penalty functions were introduced.
Penalty methods are a certain class of algorithms for solving constrained optimization
problems. They convert constrained optimization problems into unconstrained ones by
modifying the objective function to penalize constraint violations.
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The optimization process involved formulating the single-objective optimization
problem for the truss structure with the weight as the objective to be minimized. The design
variables (member sizes) were optimized by using the ISRES algorithm, which efficiently
explores the solution space and searches for the optimal design.

For each loading case, the ISRES algorithm was executed multiple times with appro-
priate parameters and control settings to obtain diverse candidate solutions. The penalty



Appl. Sci. 2024, 14, 3324 9 of 24

functions were utilized to ensure that the final solutions adhered to the specified stress and
displacement constraints.

Through extensive experimentation and fine-tuning the algorithm, the ISRES approach
effectively converged to optimal solutions that minimized the weight of the truss while
satisfying all the design constraints. The optimization results revealed well-performing
designs that met the structural requirements for both loading scenarios.

In addition, the results obtained from the ISRES algorithm were compared to those
achieved through other optimization methods reported in the literature. This comparison
allowed for an assessment of the ISRES algorithm’s performance in terms of convergence
speed, solution diversity, and solution quality. After applying the ISRES algorithm to both
load case 1 and load case 2, the convergence graph for each case, as depicted in Figure 3,
provided a dynamic snapshot of the optimization process. The graph vividly portrays
the algorithm’s iterative journey towards optimal solutions. The descending trendlines
demonstrate the algorithm’s persistent effort in refining the truss designs by minimizing
their weight while satisfying the allowable stress limits. The consistent downward trajectory
signifies the algorithm’s ability to progressively enhance solution quality through each
iteration, reflecting its effectiveness in converging to design configurations that strike a
balance between structural performance and material efficiency.

Appl. Sci. 2024, 14, 3324 10 of 26 
 

 
Figure 3. Convergence plot for 10-bar structure. 

 
Figure 4. Stress constraint values with allowable limits for 10-bar structure. 

4.2. 15-Bar Truss Structure 
In this example, the sizing and layout optimization of a 15-bar planar truss structure 

is taken into consideration. The initial geometry of the structure is shown in Figure 5. A 
vertical load of 10 kips is applied at node 8. The stress limit is 25 ksi (172.369 MPa) in both 
tension and compression for all members. The material density is 0.1 lb/in3·(2767.99 
kg/m3), and the modulus of elasticity is 10,000 ksi (68,947.6 MPa). All detailed information 
regarding this structure is given in Table 1. The ISRES algorithm is once again employed 

Figure 3. Convergence plot for 10-bar structure.

Figure 4 shows the constraints graph for load case 1 and load case 2 with allowable
stress, and it offers a comprehensive visual representation of the algorithm’s ability to man-
age multiple design constraints. The graph elegantly illustrates how the ISRES algorithm
strategically guides the optimization trajectory within the permissible stress regions, assur-
ing that the final truss designs align with the designated allowable stress thresholds. The
intricate interplay between the optimization path and the constraint boundaries highlights
the algorithm’s prowess in navigating the intricate trade-offs between design efficiency
and structural integrity for both loading scenarios.



Appl. Sci. 2024, 14, 3324 10 of 24

Appl. Sci. 2024, 14, 3324 10 of 26 
 

 
Figure 3. Convergence plot for 10-bar structure. 

 
Figure 4. Stress constraint values with allowable limits for 10-bar structure. 

4.2. 15-Bar Truss Structure 
In this example, the sizing and layout optimization of a 15-bar planar truss structure 

is taken into consideration. The initial geometry of the structure is shown in Figure 5. A 
vertical load of 10 kips is applied at node 8. The stress limit is 25 ksi (172.369 MPa) in both 
tension and compression for all members. The material density is 0.1 lb/in3·(2767.99 
kg/m3), and the modulus of elasticity is 10,000 ksi (68,947.6 MPa). All detailed information 
regarding this structure is given in Table 1. The ISRES algorithm is once again employed 

Figure 4. Stress constraint values with allowable limits for 10-bar structure.

4.2. 15-Bar Truss Structure

In this example, the sizing and layout optimization of a 15-bar planar truss structure is
taken into consideration. The initial geometry of the structure is shown in Figure 5. A verti-
cal load of 10 kips is applied at node 8. The stress limit is 25 ksi (172.369 MPa) in both tension
and compression for all members. The material density is 0.1 lb./in3·(2767.99 kg/m3), and
the modulus of elasticity is 10,000 ksi (68,947.6 MPa). All detailed information regarding
this structure is given in Table 1. The ISRES algorithm is once again employed to optimize
the truss structure for the minimum weight while satisfying the given constraints. The dis-
crete design variables, representing the cross-sectional areas of each member, are optimized
to attain the objective of minimizing the truss weight.
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By running the ISRES algorithm multiple times with carefully selected parameters
and control settings, the optimization process converges to a set of optimal solutions for
the truss sizing and layout. These solutions are analyzed and compared to evaluate their
performance and efficiency.

In the comparison phase, the results obtained from the ISRES algorithm are juxtaposed
with those achieved using other optimization methods reported in the literature. The
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comparison includes alternative evolutionary algorithms, gradient-based methods, and
other metaheuristic approaches. The goal is to assess the ISRES algorithm’s superiority or
competitiveness in terms of solution quality and computational efficiency.

Table 1. Element grouping for 15-bar structure.

Size Variables Layout Variables

Ai, i = 1, 2, . . ., 15 x2 = x6; x3 = x7; y2; y3; y4; y6; y7; y8
Possible Sizes

Ai ∈ S = {0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440, 0.539, 0.954
1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813,
4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 17.170,

19.180}(in2)
Possible Coordinates

100 in. ≤ x2 ≤ 140 in.;
220 in. ≤ x3 ≤ 260 in.;
100 in. ≤ y2 ≤ 140 in.;
100 in. ≤ y3 ≤ 140 in.;

50 in. ≤ y4 ≤ 90 in.;
–20 in. ≤ y6 ≤ 20 in.;
–20 in. ≤ y7 ≤ 20 in.;
20 in. ≤ y8 ≤ 60 in.;

Young’s modulus E = 104 (ksi)
Material density ϱ = 0.1 (lb./in3)

Furthermore, the study examines the practicality of the optimized truss designs by
conducting a finite element analysis to verify their structural integrity and stability. The
optimized truss configurations are subjected to the applied load, and their response is
evaluated for stress distributions, displacements, and other relevant structural properties.

Through the comparison and verification processes, this study provides valuable
insights into the capabilities and limitations of the ISRES algorithm in solving complex
truss sizing and layout-optimization problems with multiple constraints. The findings offer
engineers and designers valuable guidance in selecting appropriate optimization methods
for similar structural design tasks in real-world engineering applications. The convergence
graph and constraints graph for allowable stress, as presented in Figures 6 and 7, offer
a detailed visual representation of the optimization outcomes for the 15-bar planar truss
structure under consideration.
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4.3. 18-Bar Truss Structure

Figure 8 shows an 18-bar planar truss with five vertical concentrated loads which
are directed downwards and applied to nodes 1, 2, 4, 6, and 8. The Young’s modulus of
elasticity is 10,000 ksi, and the material density is 0.1 lb./in3. It is necessary to ensure that
the maximum stress for all the members does not exceed ±25 ksi in both compression and
tension. Additionally, the buckling strength of each member is calculated as KEAl

L2
l

for sizing

optimization, and the bars are divided into four groups. All detailed information regarding
this structure is given in Table 2. The ISRES algorithm is deployed once again to tackle
the challenging sizing- and layout-optimization problems for this 18-bar truss structure.
With appropriate parameter settings, the algorithm endeavors to minimize the truss weight
while satisfying all the specified constraints.
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As the ISRES algorithm generates multiple optimal solutions due to its stochastic
nature, the best-performing solutions are selected based on the objective function value,
which aims to minimize the truss weight. The selected solutions are then subject to further
examination and comparison.
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To assess the effectiveness of the ISRES algorithm, the obtained optimal truss designs
are compared with solutions obtained from other well-established optimization methods.
This comparative analysis includes various metaheuristic algorithms, gradient-based meth-
ods, and other state-of-the-art techniques. The comparison takes into account both the
quality of the solutions and the computational efficiency of each method.

Table 2. Element grouping for 18-bar structure.

Size Variables

A1 = A4 = A8 = A12 = A16
A5 = A9 = A13 = A17

A2 = A6 = A10 = A14 = A18
A3 = A7 = A11 = A15

Possible Sizes

Ai
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Additionally, the study conducts a thorough structural analysis on the optimized truss
configurations to verify their compliance with the imposed constraints. Finite element
analysis is performed to evaluate the stress distributions, member sizes, and overall stability
of the optimized truss designs.

By comparing the results and verifying the solutions, this study provides valuable in-
sights into the performance of the ISRES algorithm in handling complex truss optimization
problems with multiple constraints. The findings contribute to a better understanding of
the algorithm’s applicability and effectiveness in the field of structural engineering.

The convergence graph and constraints graph for allowable stress and buckling limit,
depicted in Figures 9 and 10, offer a nuanced depiction of the ISRES algorithm’s prowess in
addressing the intricate optimization challenges of the 18-bar planar truss structure.
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4.4. 25-Bar Truss Structure

The 25-bar truss structure, displayed in Figure 11, is composed of a material with
a mass density of 0.1 lb./in3 and an elastic modulus of 10,000 ksi. Structural members
have been grouped into eight design variables due to the tower’s double symmetry along
the x and y axes. Tables 3 and 4 outline the member groupings and their respective
stress limitations. For consistency with other studies, the minimum and maximum cross-
sectional values for all members were set to Amin = 0.01 in2 and Amax = 3.4 in2, respec-
tively. The permissible nodal displacement values for all free nodes were restricted to
±0.35 in in the x, y, and z directions. The benchmark has 124 non-linear design constraints
(50 tensile/compressive stress and 12 displacement constraints) for each of the two loading
conditions outlined in Table 4. Given the complexity of the problem, the ISRES algorithm is
employed as the optimization tool of choice. With the careful selection of parameters and
control settings, the algorithm undertakes the task of minimizing the truss weight while
satisfying the extensive set of design constraints.

Table 3. Element grouping for 25-bar structure.

Element Group Members Comp. Stress (Kips)

A1 1 35.092
A2 2,3,4,5 11.590
A3 6,7,8,9 17.307
A4 10,11 35.092
A5 12,13 35.092
A6 14,15,16,17 6.759
A7 18,19,20,21 6.959
A8 22,23,24,25 11.802
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Figure 11. Schematic of the 25-bar structure.

Table 4. Loading conditions for the 25-bar truss structure.

Node Condition I Condition II

Px Py Pz Px Py Pz

1 0 20 −5.0 1 10.0 −5.0
2 0 −20 −5.0 0 10.0 −5.0
3 0 0 0 0.5 0 0
6 0 0 0 0.5 0 0

Multiple runs of the ISRES algorithm are conducted to explore the solution space and
identify diverse candidate solutions. The best-performing solutions are selected based on
the objective function, which seeks to minimize the truss weight.

In addition to optimizing the truss sizing and layout, the ISRES results are compared
with those obtained from various other optimization methods available in the literature.
The comparative analysis encompasses a range of metaheuristic algorithms, gradient-based
techniques, and other state-of-the-art approaches. The comparison considers the quality of
the solutions and the computational efficiency of each method.

Furthermore, a comprehensive structural analysis is performed on the optimized truss
designs to validate their compliance with the imposed constraints. A finite element analysis
is utilized to assess stress distributions, member sizes, and overall structural stability for
each of the loading conditions.

By conducting the comparison and verification, the study offers valuable insights into
the performance of the ISRES algorithm in handling highly constrained truss-optimization
problems. The findings contribute to a better understanding of the algorithm’s strengths
and weaknesses, particularly in the context of complex structural designs.

Figure 12 provides a convergence plot of the ISRES algorithm applied to the 25-bar
truss structure. The plot offers a graphical representation of the algorithm’s convergence
behavior over the optimization iterations. The gradual reduction of the objective function
values indicates the algorithm’s progress towards optimal solutions. Analyzing the plot
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assists in understanding the convergence rate and identifying any convergence stagnation
or rapid convergence trends, contributing to a deeper insight into the optimization process.
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Figure 13 illustrates the displacement constraints along with their allowable limits
for load case 1 and load case 2. The figure provides a visual representation of how the
optimized truss designs conform to the specified nodal displacement limits. By presenting
the displacement distributions across the truss structure, this figure offers insights into
the structural stability of the optimized designs. It highlights areas where displacement
constraints are met or exceeded, aiding in the identification of regions that may require
further refinement to ensure the overall reliability of the truss configurations.
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Figure 14, on the other hand, displays the stress constraints and their allowable limits
for both load case 1 and load case 2. This figure visually represents how the optimized
truss designs adhere to the stress limitations imposed on the members. By presenting stress
distributions, the figure provides valuable insights into whether the members experience
tensile or compressive stresses within acceptable bounds. This aids in the evaluation of the
structural integrity and safety of the optimized truss configurations.
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4.5. 72-Bar Truss Structure

The schematic in Figure 15 shows 72-bar benchmark spatial truss structure. The
structure consists of 16 independent design variables (as seen in Table 5) which are grouped
together due to its structural symmetry. It is considered to be made out of material with a
mass density of 0.1 lb./in3 and an elastic modulus of 10,000 ksi. Under both of the loading
conditions, the truss tower has 320 non-linear design constraints (72 tension/compression
and 16 displacement). The maximum design variable (Amax) is set to 4.0 in2 and the
minimum design variable (Amin) is set to 0.1 in2 for case 1 and 0.01 in2 for case 2. The
displacement in the topmost nodes (17, 18, 19, and 20) are limited to ±0.25 in in the x and
y direction, and the normal member stresses are limited to 25 ksi for both tension and
compression, as given in Table 6. Multiple runs of the ISRES algorithm are conducted
to generate diverse candidate solutions. The best-performing solutions are then selected
based on the objective function, aiming to minimize the truss weight while satisfying all
the imposed constraints.

Table 5. Element grouping for 72-bar structure.

Element Group Members Element Group Members

A1 1,2,3,4 A9 37,38,39,40
A2 5,6,7,8,9,10,11,12 A10 41,42,43,44,45,46,47,48
A3 13,14,15,16 A11 49,50,51,52
A4 17,18 A12 53,54
A5 19,20,21,22 A13 55,56,57,58
A6 23,24,25,26,27,28,29,30 A14 59,60,61,62,63,64,65,66
A7 31,32,33,34 A15 67,68,69,70
A8 35,36 A16 71,72
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Figure 15. Schematic of the 72-bar structure.

Table 6. Loading conditions for the 72-bar truss structure.

Node Condition I Condition II

Px Py Pz Px Py Pz

17 5.0 5.0 −5.0 0 0 −5.0
18 0 0 0 0 0 −5.0
19 0 0 0 0 0 −5.0
20 0 0 0 0 0 −5.0

For comprehensive evaluation, the results obtained from the ISRES algorithm are
compared with solutions achieved through various other optimization methods reported
in the literature. The comparison encompasses a wide range of metaheuristic algorithms,
gradient-based techniques, and other state-of-the-art approaches. The comparison consid-
ers the quality of the solutions and the computational efficiency of each method.

Furthermore, the optimized truss designs undergo a rigorous finite element analysis
to validate their structural integrity and stability. The structural analysis evaluates stress
distributions, member sizes, and overall performance under both loading conditions.

By conducting the comparison and verification, the study contributes valuable insights
into the effectiveness of the ISRES algorithm in handling complex spatial truss-optimization
problems. The findings inform engineers and designers of the algorithm’s applicability and
performance, particularly in challenging structural design scenarios.

In conclusion, the study successfully demonstrates the efficacy of the ISRES algorithm
in optimizing the sizing and layout of the 72-bar benchmark spatial truss structure. The
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comparison with other optimization methods and the structural analysis validation bolster
the confidence in the optimized truss designs. These results have significant implications for
engineering and architectural applications, guiding practitioners in selecting appropriate
optimization strategies for complex spatial truss-design challenges. The research advances
the field of optimization techniques in structural engineering, enabling the creation of
efficient and reliable truss designs for a diverse range of real-world applications.

Figure 16 provides a comprehensive representation of the allowable displacements for
every element in the 72-bar structure, along with the allowable limits for each element, for
both load case 1 and load case 2. By illustrating these allowable displacement limits on a per-
element basis, the figure offers a detailed view of how the optimized truss designs adhere
to the specified displacement restrictions for varying loading scenarios. This insightful
visualization aids in the assessment of structural stability and safety across the entire
truss structure.

Appl. Sci. 2024, 14, 3324 20 of 26 
 

Table 6. Loading conditions for the 72-bar truss structure. 

Node Condition I Condition II 
 Px Py Pz Px Py Pz 

17 5.0 5.0 −5.0 0 0 −5.0 
18 0 0 0 0 0 −5.0 
19 0 0 0 0 0 −5.0 
20 0 0 0 0 0 −5.0 

Figure 16 provides a comprehensive representation of the allowable displacements 
for every element in the 72-bar structure, along with the allowable limits for each element, 
for both load case 1 and load case 2. By illustrating these allowable displacement limits on 
a per-element basis, the figure offers a detailed view of how the optimized truss designs 
adhere to the specified displacement restrictions for varying loading scenarios. This in-
sightful visualization aids in the assessment of structural stability and safety across the 
entire truss structure. 

 
Figure 16. Displacement constraint values with allowable limits for 72-bar structure. 

5. Results 
In this paper, we have investigated the application of the Improved Stochastic Rank-

ing Evolution Strategy (ISRES) algorithm for the sizing and layout optimization of truss 
benchmark structures. The truss benchmark problems, ranging from 10-bar to 72-bar 
structures, were subjected to various loading conditions and design constraints. The main 
objective of the optimization was to minimize the truss weight while satisfying stress and 
displacement constraints. 

The results obtained from the ISRES algorithm demonstrated its effectiveness in finding 
optimal solutions for the truss sizing and layout problems. For each truss benchmark struc-
ture, the ISRES algorithm efficiently explored the solution space and converged to well-per-
forming designs that minimized the truss weight while adhering to all the imposed con-
straints. The optimization process successfully handled the complexity of the problem, which 
included multiple design variables, stress constraints, and nodal displacement limits. 

Figure 16. Displacement constraint values with allowable limits for 72-bar structure.

5. Results

In this paper, we have investigated the application of the Improved Stochastic Rank-
ing Evolution Strategy (ISRES) algorithm for the sizing and layout optimization of truss
benchmark structures. The truss benchmark problems, ranging from 10-bar to 72-bar
structures, were subjected to various loading conditions and design constraints. The main
objective of the optimization was to minimize the truss weight while satisfying stress and
displacement constraints.

The results obtained from the ISRES algorithm demonstrated its effectiveness in find-
ing optimal solutions for the truss sizing and layout problems. For each truss benchmark
structure, the ISRES algorithm efficiently explored the solution space and converged to
well-performing designs that minimized the truss weight while adhering to all the imposed
constraints. The optimization process successfully handled the complexity of the problem,
which included multiple design variables, stress constraints, and nodal displacement limits.

Through comparison with other optimization methods reported in the literature, the
ISRES algorithm showcased competitive performance in terms of solution quality and
computational efficiency. The algorithm’s ability to find diverse candidate solutions and its
robustness in dealing with highly constrained problems were particularly noteworthy.

The validation of the optimized truss designs through a finite element analysis further
confirmed their structural integrity and stability. The designs were verified to meet stress
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and displacement limits, ensuring the safety and reliability of the final truss configurations.
Optimized results for all structures are given in Tables 7–13 for all cases.

Table 7. Optimized results for the 10-bar planar truss (case 1).

Design
Variable (in2) Li et al. [49] Wu and

Chow [5]
Camp

et al. [50] Awad [21] Sadollah
et al. [51] This Study

A1 30.569 26.50 28.92 30.501 30.00 30.6
A2 0.1 1.62 0.10 0.1 1.62 0.1
A3 22.974 16.00 24.07 23.198 22.90 22.8
A4 15.148 14.20 13.96 15.247 16.90 15.4
A5 0.1 1.80 0.1 0.1 1.62 0.1
A6 0.547 1.62 0.56 0.55511 1.62 0.6
A7 7.493 5.12 7.69 7.4562 7.97 7.5
A8 21.159 16.00 21.95 21.035 22.90 21.1
A9 21.556 18.50 22.09 21.526 22.90 21.5
A10 0.1 2.38 0.1 0.1 1.62 0.1

Weight (lb) 5061.03 4376.20 5076.31 5060.85 5507.75 5072.528

Table 8. Optimized results for the 10-bar planar truss (case 2).

Design
Variable (in2)

Kaveh
et al. [49]

Wu and
Chow [5]

Lee and
Geem [52]

Awad
et al. [21]

Sadollah
et al. [51] This Study

A1 23.299 30.50 23.25 23.62 29.50 23.5
A2 0.1 0.50 0.102 0.1 0.10 0.1
A3 25.682 16.50 25.73 25.434 24.0 25.0
A4 14.510 15.00 14.51 14.351 15.0 14.5
A5 0.1 0.10 0.100 0.10003 0.10 0.1

A6 1.969 0.10 1.997 1.9701 0.50 2.0
A7 12.149 0.50 12.21 12.339 7.50 12.5
A8 12.360 18.00 12.61 12.712 21.50 13.0
A9 20.869 19.50 20.36 20.346 21.50 20.2
A10 0.1 0.50 0.1 0.1 0.10 0.1

Weight (lb) 4679.15 42.17.30 4668.8 4677.06 5067.33 4687.9

Table 9. Comparison of optimal designs for the 15-bar planar truss structure.

Design
Variable (in2)

Rahami
et al. [1]

Gholizadeh
[2]

Dede and
Ayvaz [3]

Tang et al.
[4]

Hwang and
He [53] This Study

A1 1.081 1.174 1.081 1.081 0.954 0.954
A2 0.539 0.539 0.954 0.539 1.081 0.539
A3 0.287 0.347 0.141 0.287 0.440 0.111
A4 0.954 0.954 1.081 0.954 1.174 0.954
A5 0.539 0.954 0.539 0.954 1.488 0.539
A6 0.141 0.141 0.347 0.22 0.270 0.347
A7 0.111 0.141 0.111 0.111 0.270 0.111
A8 0.111 0.111 0.174 0.111 0.347 0.111
A9 0.539 1.174 0.141 0.287 0.220 0.174
A10 0.440 0.141 0.270 0.220 0.440 0.44
A11 0.539 0.440 0.220 0.440 0.220 0.44
A12 0.270 0.440 0.141 0.440 0.440 0.174
A13 0.220 0.141 0.440 0.111 0.347 0.174
A14 0.141 0.141 0.347 0.220 0.270 0.347
A15 0.287 0.347 0.141 0.347 0.220 0.111
X2 101.5775 102.2873 100.0042 133.612 118.346 101.2513
Y2 227.9112 240.5050 241.0473 234.52 225.209 240.7576
Y2 134.79S6 112.5840 118.8228 100.449 119.046 132.8862
Y3 128.2206 108.0428 100.0829 104.738 105.086 129.3964
Y4 54.8630 57.7952 50.0000 73.762 63.375 55.1655
Y6 −16.4484 6.4299 3.1411 −10.067 −20.0 −19.5015
Y7 −16.4484 1.8006 −9.6997 −1.339 −20.0 10.1465
Y8 54.8572 57.7987 46.8963 50.402 57.722 52.1898

Weight (lb) 76.6854 77.6153 76.6519 79.820 104.573 71.86
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Table 10. Optimized results for the 18-bar planar truss.

Design
Variable (in2)

Imai and
Schmit [54]

Rahami
et al. [1]

Mortazavi
et al. [55]

Sonmez
[56] Awad [21] This Study

A1 9.998 12.75 14.25 10.000 10.000 10.000
A2 21.65 18.5 11.75 21.651 21.651 21.651
A3 12.50 4.75 6.00 12.500 12.500 12.500
A4 7.072 3.25 8.00 7.071 7.071 7.071

Weight (lb) 6430.0 4530.7 4520.99 6430.529 6430.529 6430.529

Table 11. Comparison of optimal designs for the 25-bar spatial truss structure.

Design
Variable (in2)

Li et al.
[28]

Lee and
Geem [52]

Rajeev and
Krishnamoorthy [57]

Gandomi
et al. [58]

Camp and
Bichon [59]

This
Study

A1 9.863 0.047 0.1 0.010 0.10 1.309
A2 1.798 2.022 1.8 2.054 0.30 2.806
A3 3.654 2.950 2.3 3.008 3.40 2.291
A4 0.100 0.010 0.2 0.010 0.10 0.951
A5 0.100 0.014 0.1 0.010 2.10 0.010
A6 0.596 0.688 0.8 0.679 1.00 0.107
A7 1.659 1.657 1.8 1.611 0.50 1.004
A8 2.612 2.663 3.0 2.678 3.40 3.398

Weight (lb) 627.08 544.38 546.01 544.99 484.85 530.676

Table 12. Optimized results for the 72-bar planar truss (case 1).

Design
Variable (in2)

Wu and
Chow [5] Li et al. [28] Sadollah

et al. [51]
Degertekin and
Hayalioglu [60]

Awad
et al. [21]

This
Study

A1 1.5 2.1 1.9 1.8929 1.8812 1.963
A2 0.7 0.6 0.5 0.5160 0.52207 0.481
A3 0.1 0.1 0.1 0.0100 0.01003 0.010
A4 0.1 0.1 0.1 0.0100 0.010024 0.011
A5 1.3 1.4 1.3 1.2917 1.3045 1.233
A6 0.5 0.5 0.5 0.5176 0.51551 0.506
A7 0.2 0.1 0.1 0.0100 0.010011 0.011
A8 0.1 0.1 0.1 0.0100 0.010067 0.01
A9 0.5 0.5 0.6 0.5229 0.52429 0.538
A10 0.5 0.5 0.5 0.5193 0.51519 0.533
A11 0.1 0.1 0.1 0.0100 0.011122 0.010
A12 0.2 0.1 0.1 0.0997 0.10444 0.167

A13 0.2 0.2 0.2 0.1680 0.16738 0.161
A14 0.5 0.5 0.6 0.5359 0.53737 0.542
A15 0.5 0.3 0.4 0.4457 0.44244 0.478
A16 0.7 0.7 0.6 0.5818 0.57549 0.551

Weight (lb) 400.66 388.94 385.54 363.841 363.88 364.379

Table 13. Optimized results for the 72-bar planar truss (case 2).

Design Variable
(in2)

Wu and Chow
[5] Li et al. [28] Sadollah et al.

[51]
Bekdaş

et al. [61]
Awad et al.

[21] This Study

A1 0.196 4.97 0.196 1.8899 1.8607 1.157
A2 0.602 1.228 0.563 0.5119 0.50626 0.610
A3 0.307 0.111 0.442 0.1000 0.1 0.01
A4 0.766 0.111 0.602 0.1000 0.1 0.01
A5 0.391 2.88 0.442 1.2702 1.2749 1.068
A6 0.391 1.457 0.442 0.5120 0.50952 0.599
A7 0.141 0.141 0.111 0.1000 0.1 0.01
A8 0.111 0.111 0.111 0.1000 0.10012 0.082
A9 1.800 1.563 1.266 0.5234 0.52872 0.369
A10 0.602 1.228 0.563 0.5165 0.52359 0.659
A11 0.141 0.111 0.111 0.1000 0.10014 0.01
A12 0.307 0.196 0.111 0.1000 0.10001 0.077
A13 1.563 0.391 1.800 0.1565 0.15628 0.1
A14 0.766 1.457 0.602 0.5457 0.54998 0.682
A15 0.141 0.766 0.111 0.4104 0.40132 0.467
A16 0.111 1.563 0.111 0.5678 0.58582 0.342

Weight (lb) 427.203 933.09 390.73 379.6172 379.68 379.98
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6. Conclusions

In conclusion, this study demonstrates the efficacy of the Improved Stochastic Rank-
ing Evolution Strategy (ISRES) algorithm for the sizing and layout optimization of truss
benchmark structures. The results showcase the algorithm’s ability to efficiently con-
verge to optimal solutions, effectively minimizing truss weight while satisfying complex
design constraints.

The ISRES algorithm proves to be a valuable optimization tool for structural engineers
and designers, as it provides practical and reliable solutions for a wide range of truss-
design problems. Its ability to handle multiple design variables, stress constraints, and
nodal displacement limits make it a versatile and powerful tool for complex engineering
optimization tasks.

Furthermore, the comparison with other optimization methods and the validation
through a finite element analysis highlight the ISRES algorithm’s competitiveness and robust-
ness in tackling complex structural design challenges. The algorithm’s performance indicates
its potential for broader applications in various engineering and architectural contexts.

Overall, this research contributes to the advancement of optimization techniques
in structural engineering, enabling the development of more efficient and cost-effective
truss designs. The findings offer valuable guidance to practitioners, empowering them to
make informed decisions when selecting appropriate optimization strategies for complex
truss-design scenarios.

As future work, it may be beneficial to extend this study to include additional struc-
tural benchmarks and explore the application of the ISRES algorithm in other engineering
optimization problems. Additionally, investigating the algorithm’s performance on real-
world truss-design projects and further fine-tuning its parameters for specific applications
could yield even more promising results.

In summary, the ISRES algorithm proves to be a reliable and efficient tool for the
sizing and layout optimization of truss benchmark structures. This study highlights its
potential for enhancing engineering design processes, promoting the development of more
sustainable and optimized truss solutions for practical applications.
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15. Khodadadi, N.; Çiftçioğlu, A.Ö.; Mirjalili, S.; Nanni, A. A comparison performance analysis of eight meta-heuristic algorithms for

optimal design of truss structures with static constraints. Decis. Anal. J. 2023, 8, 100266. [CrossRef]
16. Assimi, H.; Jamali, A. A hybrid algorithm coupling genetic programming and Nelder–Mead for topology and size optimization

of trusses with static and dynamic constraints. Expert Syst. Appl. 2018, 95, 127–141. [CrossRef]
17. Jafari, M.; Salajegheh, E.; Salajegheh, J. Optimal design of truss structures using a hybrid method based on particle swarm

optimizer and cultural algorithm. Structures 2021, 32, 391–405. [CrossRef]
18. Degertekin, S.O.; Bayar, G.Y.; Lamberti, L. Parameter free Jaya algorithm for truss sizing-layout optimization under natural

frequency constraints. Comput. Struct. 2021, 245, 106461. [CrossRef]
19. Azizi, M.; Aickelin, U.; Khorshidi, H.A.; Shishehgarkhaneh, M.B. Shape and size optimization of truss structures by Chaos game

optimization considering frequency constraints. J. Adv. Res. 2022, 41, 89–100. [CrossRef] [PubMed]
20. Jawad, F.K.J.; Ozturk, C.; Dansheng, W.; Mahmood, M.; Al-Azzawi, O.; Al-Jemely, A. Sizing and layout optimization of truss

structures with artificial bee colony algorithm. Structures 2021, 30, 546–559. [CrossRef]
21. Awad, R. Sizing optimization of truss structures using the political optimizer (PO) algorithm. Structures 2021, 33, 4871–4894.

[CrossRef]
22. Dehghani, M.; Mashayekhi, M.; Sharifi, M. An efficient imperialist competitive algorithm with likelihood assimilation for topology,

shape and sizing optimization of truss structures. Appl. Math. Model. 2021, 93, 1–27. [CrossRef]
23. Pierezan, J.; Coelho, L.D.S.; Mariani, V.C.; de Vasconcelos Segundo, E.H.; Prayogo, D. Chaotic coyote algorithm applied to truss

optimization problems. Comput. Struct. 2021, 242, 106353. [CrossRef]
24. Pholdee, N.; Bureerat, S. Comparative performance of meta-heuristic algorithms for mass minimisation of trusses with dynamic

constraints. Adv. Eng. Softw. 2014, 75, 1–13. [CrossRef]
25. Serpik, I. Discrete size and shape optimization of truss structures based on job search inspired strategy and genetic operations.

Period. Polytech. Civ. Eng. 2020, 64, 801–814. [CrossRef]
26. Cao, H.; Qian, X.; Chen, Z.; Zhu, H. Enhanced particle swarm optimization for size and shape optimization of truss structures.

Eng. Optim. 2017, 49, 1939–1956. [CrossRef]
27. Luh, G.C.; Lin, C.Y. Optimal design of truss-structures using particle swarm optimization. Comput. Struct. 2011, 89, 2221–2232.

[CrossRef]
28. Li, L.J.; Huang, Z.B.; Liu, F. A heuristic particle swarm optimization method for truss structures with discrete variables. Comput.

Struct. 2009, 87, 435–443. [CrossRef]
29. Gomes, H.M. Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst. Appl. 2011, 38, 957–968.

[CrossRef]
30. Kim, T.H.; Byun, J.I. Truss sizing optimization with a diversity-enhanced cyclic neighborhood network topology particle swarm

optimizer. Mathematics 2020, 8, 1087. [CrossRef]
31. Carvalho, J.P.G.; Carvalho, É.C.R.; Vargas, D.E.C.; Hallak, P.H.; Lima, B.S.L.P.; Lemonge, A.C.C. Multi-objective optimum design

of truss structures using differential evolution algorithms. Comput. Struct. 2021, 252, 106544. [CrossRef]
32. Dang, K.D.; Nguyen-Van, S.; Thai, S.; Lee, S.; Luong, V.H.; Lieu, Q.X. A single step optimization method for topology, size and

shape of trusses using hybrid differential evolution and symbiotic organisms search. Comput. Struct. 2022, 270, 106846. [CrossRef]
33. Nguyen-Van, S.; Nguyen, K.T.; Luong, V.H.; Lee, S.; Lieu, Q.X. A novel hybrid differential evolution and symbiotic organisms

search algorithm for size and shape optimization of truss structures under multiple frequency constraints. Expert Syst. Appl. 2021,
184, 115534. [CrossRef]

34. Nguyen-Van, S.; Nguyen, K.T.; Dang, K.D.; Nguyen, N.T.T.; Lee, S.; Lieu, Q.X. An evolutionary symbiotic organisms search for
multiconstraint truss optimization under free vibration and transient behavior. Adv. Eng. Softw. 2021, 160, 103045. [CrossRef]

35. Tang, H.; Huynh, T.N.; Lee, J. A novel adaptive 3-stage hybrid teaching-based differential evolution algorithm for frequency-
constrained truss designs. Structures 2022, 38, 934–948. [CrossRef]

36. Kao, C.Y.; Hung, S.L.; Setiawan, B. Two Strategies to Improve the Differential Evolution Algorithm for Optimizing Design of
Truss Structures. Adv. Civ. Eng. 2020, 2020, 8741862. [CrossRef]

https://doi.org/10.1016/j.advengsoft.2005.04.005
https://doi.org/10.1007/978-3-319-46173-1_2
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1016/j.asoc.2022.109762
https://doi.org/10.1016/j.istruc.2022.12.033
https://doi.org/10.1016/j.advengsoft.2012.11.006
https://doi.org/10.1016/j.dajour.2023.100266
https://doi.org/10.1016/j.eswa.2017.11.035
https://doi.org/10.1016/j.istruc.2021.03.017
https://doi.org/10.1016/j.compstruc.2020.106461
https://doi.org/10.1016/j.jare.2022.01.002
https://www.ncbi.nlm.nih.gov/pubmed/36328756
https://doi.org/10.1016/j.istruc.2021.01.016
https://doi.org/10.1016/j.istruc.2021.07.027
https://doi.org/10.1016/j.apm.2020.11.044
https://doi.org/10.1016/j.compstruc.2020.106353
https://doi.org/10.1016/j.advengsoft.2014.04.005
https://doi.org/10.3311/PPci.11840
https://doi.org/10.1080/0305215X.2016.1273912
https://doi.org/10.1016/j.compstruc.2011.08.013
https://doi.org/10.1016/j.compstruc.2009.01.004
https://doi.org/10.1016/j.eswa.2010.07.086
https://doi.org/10.3390/math8071087
https://doi.org/10.1016/j.compstruc.2021.106544
https://doi.org/10.1016/j.compstruc.2022.106846
https://doi.org/10.1016/j.eswa.2021.115534
https://doi.org/10.1016/j.advengsoft.2021.103045
https://doi.org/10.1016/j.istruc.2022.02.035
https://doi.org/10.1155/2020/8741862


Appl. Sci. 2024, 14, 3324 24 of 24

37. Ho-Huu, V.; Nguyen-Thoi, T.; Truong-Khac, T.; Le-Anh, L.; Vo-Duy, T. An improved differential evolution based on roulette
wheel selection for shape and size optimization of truss structures with frequency constraints. Neural Comput. Appl. 2018, 29,
167–185. [CrossRef]

38. Panagant, N.; Bureerat, S. Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf
optimization and adaptive differential evolution. Eng. Optim. 2018, 50, 1645–1661. [CrossRef]

39. Assimi, H.; Jamali, A.; Nariman-Zadeh, N. Sizing and topology optimization of truss structures using genetic programming.
Swarm Evol. Comput. 2017, 37, 90–103. [CrossRef]

40. Liu, J.; Xia, Y. A hybrid intelligent genetic algorithm for truss optimization based on deep neutral network. Swarm Evol. Comput.
2022, 73, 101120. [CrossRef]

41. Noii, N.; Aghayan, I.; Hajirasouliha, I.; Kunt, M.M. A new hybrid method for size and topology optimization of truss structures
using modified ALGA and QPGA. J. Civ. Eng. Manag. 2017, 23, 252–262. [CrossRef]

42. Dong, T.; Chen, S.; Huang, H.; Han, C.; Dai, Z.; Yang, Z. Large-Scale Truss Topology and Sizing Optimization by an Improved
Genetic Algorithm with Multipoint Approximation. Appl. Sci. 2022, 12, 407. [CrossRef]
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