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Abstract: This paper presents an application of L-moments and respective L-moment ratio diagrams
(LMRD) to the task of control performance assessment (CPA). An L-moment ratio diagram is a
graphical approach to the visualization of statistical properties for a given time series. Moreover,
it enables comparing various data, showing their similarities and homogeneity. Simultaneously,
CPA aims at measuring the control loop quality, supporting decision-making about their tuning and
maintenance. This paper shows that control system quality can be efficiently visualized using LMRDs.
The method was analyzed using simulations and further validated at a real chemical engineering
industrial ammonia synthesis plant.

Keywords: control performance assessment; moment ratio diagrams; L-moments; PID; power
generation

1. Introduction

The task of a control engineer is to design, tune, and maintain control systems, which
allow a given installation to work according to the assumed requirements. To fulfill
these activities, one must have enough skills, knowledge about the process, and updated
information about the actual performance of the control system. Control performance
assessment tasks support an engineer with information about how the control system
operates [1]. Thus, CPA plays a very important role in maintaining the control system and
the desired performance of the operation of the actual plant. When the control system
does not fulfill its requirements, the whole installation also misses its targets and performs
inconsistently with expectations [2].

Despite the fact that this knowledge has been well known for decades, it is still the case
that industrial systems often do not operate as demanded [3–5], which is caused by process
difficulties (non-stationarity, disturbances and noises), hardware problems (actuators,
sensors, IT infrastructure), human errors or inattention (inadequate maintenance, design or
tuning), or just a general lack of time or proper knowledge [6,7].

The key performance indicators (KPIs) depend on the type of plant, engineering cul-
ture, and tradition; however, no matter what these are, CPA activities and measures have to
be applied using a reliable and transparent approach. In process industry, the proportional-
integral-derivative (PID) algorithm constitutes the backbone of control strategies. It is
used in an overwhelming majority, i.e., more than 90% or even 95% of industrial control
loops [8–10].

The story started in 1967 with a pulp and paper plant and its performance assess-
ment using variable standard deviation [11]. Since then, the method has evolved dra-
matically, exploring and exploiting various research areas and approaches [12]. Nowa-
days, investigations address numerous methods [13], like the ones that require plant
parametric experiments [14], which use process model identification [15,16], or that model-
free techniques that need plant data only [17,18]. Apart from homogeneous approaches,
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there are proposals to use hybrid techniques that use the fusion of various measures and
approaches [19,20].

As a result, we do not end up with a single and universal approach. There is a large
spectrum of methods, and an engineer is generally lost, as he has to select an appropriate
method. As a result, we demand hybrid and multi-criteria approaches that allow support-
ing control loop performance decision-making. In this task, statistical methods, which have
been a bit forgotten but are still characterized by enduring advantages, can come to our
rescue.Moment ratio diagrams (MRD) deliver such a tool [21], which have actually been
known in statistics for decades [22] as MRDs originated from Pearson’s research in the
early 19th century. Moment ratio diagrams graphically compare different statistics of a
given time series to visualize properties of the stochastic process, which is hidden behind
data. A MRD can be used in various tasks, such as fitting of empirical data to theoretical
probabilistic density functions (PDFs), comparison of the PDF shapes, and the classification
of data [23]. A MRD is a two-dimensional graphical diagram in a Cartesian coordinate
system for a pair of selected statistical moments.

As L-moments constitute a robust version of the common definition of statistical
moments [24], an L-moment ratio diagram (LRMD) exploits and extends the idea of the
MRD. LMRD plots are extensively used in life sciences, like seismology [25], hydrology [26],
astronomy [27], meteorology [28], medicine [29], and many others [30]. Their utilization in
engineering sciences and specifically in control technology is extremely rare. This paper
fills this observed research gap.

Any research that addresses aspects of control performance validation, their design,
or tuning remains unsatisfactory if it is limited to theoretical or simulation considerations
only. Only industrial verification of theoretical ideas tested by simulation makes it possible
to definitively confirm their sense and practical applicability. Simulation studies make it
possible to safely and quickly verify various ideas, before their plant tests, which bring
ultimate confirmation. Such an arrangement of activities is presented in this paper. Simu-
lation studies for classical benchmarks for PID controllers preceded industrial validation
conducted at an ammonia plant at Grupa Azoty, Zakłady Azotowe “Puławy” SA in Poland.
The industrial validation used long-term data from the plant’s operation collected after a
project of comprehensive modernization of the installation control system, i.e., the design,
tuning, and implementation of an advanced process control (APC) solution.

The main contribution of this work is the introduction of an LMRD to control the
performance assessment. This work consists of two elements. First, a simulation analysis
was performed using common process PID control benchmarks. Next, an industrial vali-
dation was performed using an ammonia synthesis installation. Different from standard
LMRD formulations, a new and appropriate scheme of LMRD is proposed and tested.The
research compared the applied L-moments using well-known control performance mea-
sures: integral square error (ISE), integral absolute error (IAE), and basic KPIs of the control
loop step response: overshoot (κ) and settling time (Tset). Finally, the LMRDs were val-
idated in a real application from the heat power generation industry. This paper starts
with Section 2 describing the methods followed by the simulation analysis included in
Section 3. Section 4 presents the industrial study results and Section 5 concludes the work
and presents observed open issues for further research.

2. Applied methods

The work uses selected statistical and control performance assessment methods, which
are described below: basic integral control error measures, and statistical moments and
L-moments, which are utilized in the proposed LRMD.

2.1. CPA Integral Indexes

The main integral indexes used for control loop assessment are the integral square
error and integral absolute error. They are evaluated using a selected norm for the control
error signal, which is the difference between the setpoint (STP) and process variable (PV),
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often also denoted as a CV—controlled variable. The ISE we evaluate is the mean integral
of the squared control errors ϵ(k) (norm ℓ2)

ISE =
1
N

N

∑
k=1

ϵ2(k). (1)

In practical implementations, we exchange an integral with the summation of control
errors collected in sampled time moments k = 1, . . . , N. Integral square measure penalizes
those errors, which exhibit large values, neglecting the ones with small values. As large
control errors frequently occur as a result of large disturbances or rapid setpoint changes,
the ISE favors control aggressiveness and disregards small but continuing imbalances like
oscillations. Statistically, the ISE measure is seriously affected by outlying observations and
exhibits a 0% breakdown point [31].

The IAE index sums the errors’ absolute values over a given time period, i.e., it uses
the ℓ1 norm of the control error

IAE =
1
N

N

∑
k=1

|ϵ(k)|. (2)

This measure is much less conservative than ISE, and it allows penalizing continuing
oscillations, which are comparable to large error incidents. Although the breakdown point
of IAE also equals 0%, it is shown that this measure exhibits robustness against some kinds
of outliers, i.e., the outliers in OX. This is much more important in the case of time series, as
those anomalies reflect outlying time observations.

2.2. Statistical Moments

We may utilize statistics in many different ways. We often calculate the data mean or
standard deviation for some empirical data to show basic properties, i.e., its expected value
and fluctuations. We may also address the problem in a different way using a theoretical
approach. We fit an appropriate distribution model, a PDF function, to the data and then
use its factors or moments (if they exist) to characterize the data.

In this approach, we use an empirical approach and consider appropriate estima-
tors for basic statistical moments. Let us assume that {Xi}T denotes a given time series
with its expected value, mean µ (the first statistical moment) and the rth central moment
γr = E(X − µ)r, where E(·) represents the expectation operator. The mean µ denotes the
first moment γ1, while variance σ2 represents the second moment denoted as γ2, where
σ indicates standard deviation.

The first two moments are frequently supplemented in analyzes by the third γ3
moment called skewness and the fourth γ4—the kurtosis. The data skewness factor reflects
its asymmetry, with its value equal to zero for symmetrically distributed data. Kurtosis
relates to the data concentration

γ3 =
1

Nσ3

N

∑
i=1

(xi − µ)3, (3)

γ4 =
1

Nσ4

N

∑
i=1

(xi − µ)4 − 3. (4)

The above estimators can be used to evaluate the first four moments for a given empir-
ical time series. The existence of data contamination in the form of outlying observations
(those originating from different stochastic process) in data biases statistical analyzes and
estimations.Outliers change the shape of a distribution function, increasing or extending its
tails. They cause heavy or long tails in PDFs [32].

This feature biases classical estimators of statistical moments, making them inappro-
priate. This fact causes artificially increased values of the standard deviation and biased
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mean. To cope with this problem, we may use its robust counterparts like the median for
the expected value, mean absolute deviation (MAD) for variance, trimmed estimators, and
many others [33]. The other approach is to use L-moments, which are also robust against
outliers and simultaneously introduce other advantages into the analyses.

2.3. L-Moments

Hosking [24] proposed the notion of L-moments as a linear combination of ordered
statistics. This theory incorporates a new description of the distribution function shape,
supports the task of the estimation of coefficients for an assumed PDF and enables testing
hypotheses about eventual theoretical distributions. We define the L-moments for any
random variable, for which the moments exist. The L-moments allow obtaining an almost
unbiased estimation, even for a very small observation sample. Additionally, the L-moment
estimators are robust against outliers and the distribution function tails [34]. The above
properties are highly appreciated in the life sciences. However, the same observation might
be made in the engineering sciences, and control is not an exception.

We evaluate L-moments according to the following algorithm. At first, the data
{x1, . . . , xN}, N—number of samples, are ranked in ascending order from 1 to N. In the
consecutive step, the sample L-moments (l1, . . . , l4) are evaluated, followed by the sample
L-skewness τ3 and L-kurtosis τ4. The algorithm equations are sketched below:

l1 = β0, l2 = 2β1 − β0,

l3 = 6β2 − 6β1 + β0,

l4 = 20β3 − 30β2 + 12β1 − β0,

τ2 =
l2
l1

, τ3 =
l3
l2

, τ4 =
l4
l2

, (5)

where

β j =
1
N

N

∑
i=j+1

xi
(i − 1)(i − 2) · · · (i − j)

(N − 1)(N − 2) · · · (N − j)
. (6)

These formulation of moments allow obtaining the shift estimator, i.e., the L-shift l1,
two scaling factors in the form of the L-scale l2 ∈ [0, 1), L-covariance denoted as L-Cv
τ2 > 0, and two higher moments: L-skewness τ3 ∈ (−1, 1) and L-kurtosis τ4 ∈

(
− 1

4 , 1
)

.
L-moments can be applied to many tasks; for instance, in the modified method-of-

moments for theoretical distribution fitting to empirical data. L-skewness and L-kurtosis
are used as a proper goodness-of-fit measure. We can evaluate L-moments for theoretical
distribution functions as well [35]. As an example, the L-moments for a normal distribution
are as follows: l1 = µ, l2 = σ

π , τ3 = l3
l2
= 0 and τ4 = l4

l2
= 0.1226.

It should be noted that L-moments have allowed the introduction of several other
ordered-type estimators such as trimmed TL-moments [36], LL- [37], LH- [38], LQ- [39],
and PL- moments [40].

2.4. Moment Ratio Diagrams

Moment ratio diagrams graphically present empirical or theoretical statistical prop-
erties of given data in a two-dimensional plane. Practically, we use two versions of MRD
diagrams [41]. A MRD(γ3, γ4) presents the relationship between the third γ3 moment (or its
square γ2

3 in some realizations) plotted as the abscissa and the fourth one, γ4 drawn as the
ordinate. The kurtosis is often drawn upside down. One should remember that there is a
theoretical constraint on the accessible area on a diagram, due to the following relationship:

γ4 − γ2
3 − 1 ≥ 0. (7)

Each distribution function can be represented by a point, curve, or region. This
representation depends on the number of PDF shape parameters. Distribution functions
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that do not have shape factors (like Gauss, Laplace, or Cauchy) are reflected by a single
point. The functions that have one shape factor, like the generalized extreme value (GEV),
are drawn as a curve. Regions reflect distributions parameterized by two shape factors,
like the α-stable distribution of four parameter kappa (K4P). The second type of diagram,
i.e., the MRD(γ2, γ3), relates the variance γ2 drawn as the abscissa with the skewness γ3
at the ordinate. However, this diagram is location- and scale-dependent, which makes it
less useful.

2.5. L-Moment Ratio Diagrams

The notion of L-moments was introduced by Hosking [24]. As L-moments extend
the background idea of moments, it was natural to introduce the LMRD as an extension
of the idea of MRDs. The LMRD is a popular tool in extreme value analysis (EVA). They
allow identifying the proper distribution for empirical observations. The plot that relates
L-kurtosis τ4 to L-skewness τ3 denoted as LMRD(τ3, τ4) is the most common variant.
By analogy to MRDs, we may compare any empirical data against various theoretical
distribution functions [34].

Similarly to MRDs (γ2, γ3), there are two LMRD variants and the LMRD(τ2, τ3) is also
used. This research suggests also using the third type of diagram, i.e., the LMRD(l2, τ4). It
is shown that its properties are more useful in the control engineering context.

The idea behind using LMRDs rests on the fact that there exists an assumption that
properly controlled variables should meet Gaussian properties. This means that the process
is linear, symmetric, stationary, all the disturbances are properly decouples, and there are
no extraordinary human interventions, like manual control mode. In such a case, one
expects that the associated points on the LMRD(τ3, τ4) diagram will be close to the point
(0, 0.1226), and in LMRD(τ2, τ3), this is as close as possible to the origin (0, 0) and τ3 ≈ 0.

3. Simulation Research

A dedicated Matlab simulation layout was designed to analyze the single element
PID control loop. It is sketched in Figure 1. We used a parallel form of the PID algorithm
defined as

GPID(s) = kp(1 +
1

Tis
+ Tds). (8)

PID Gi(s)
setpoint

process 
variable

heavy-tailed 
disturbance

measurement
noise

+

-

+ +
+ +

Figure 1. The simulation close-loop system diagram.

To assess the effectiveness of the LMRD diagrams, we simulated three univariate PID
controls with three plants, which were proposed by Åström [42] as control benchmarks:

• multiple equal pole transfer function,

G1(s) =
1

(s + 1)4 , (9)

• first-order transfer function with a dead time,

G4(s) =
1

(0.2s + 1)2 e−s, (10)
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• fast and slow mode transfer function,

G5(s) =
1

(s + 1)(0.04s2 + 0.04s + 1)
. (11)

Such a selection allowed running the analysis taking into account a wide spectrum
of possible processes, which can be met in process industry. The simulation loops were
sampled with a time period of ∆T = 0.1 s. The setpoint signal was set to a constant
zero value. Moreover, two disturbances were introduced into the loops. They simulated
potential industry-like effects:

• the Gaussian N(0, σ2) measurement noise with standard deviation σ = 0.1 ·
√

2, which
was added at the plant output to the process variable;

• filtered heavy-tailed disturbance, which was added before the plant transfer function,
and which was simulated as a SαS stochastic process based on the α-stable distribution
random number generator with the stability exponent α = 1.95 and scaling factor
γ = 2.0 [43].

All PID controllers were tuned using performance index optimization, according
to three weighted criteria: the integral of time-weighted absolute error (ITAE) criterion
(weight w1 = 1), maximum overshoot (w2 = 10), and sensitivity (w3 = 20), as proposed
in [44]. These settings are referred to hereafter as well-tuned and are shown in Table 1.

Table 1. Parameters for the well-tuned PID controllers.

kp Ti Td

G1(s) 1.0503 2.9977 0.9293
G4(s) 0.2653 0.6066 0.2121
G5(s) 0.1330 0.2585 0.0808

A detailed analysis with the whole set of considered diagrams is presented for the first
transfer function G1(s), while the other two processes are assessed by selecting the most
promising diagram, i.e., the LMRD(l2, τ4). Figure 2 shows the sample control error time
series for the G1(s) transfer function controlled by the so called well-tuned controller, with
its parameters as in Table 1.

The analysis assessed and compared various settings of the PID algorithm. The gain
kp ∈ [0.05; 2.05] was changed every 0.25 step, the integration time Ti ∈ [0.2; 10.2] was
changed every 1.0, while the derivative time constant was set to a constant Td = 0.9293.
Altogether, we used further comparison results for 99 various control loops. To exclude
statistical effects, each set of parameters was run 50 times and the evaluated L-moment
values were averaged. We related the obtained controller performance to common and
well-understood loop quality indexes. We used overshoot, settling time, ISE, and IAE for
that purpose. This relationship was included in all LMRDs in the form of the respective
shading of the circles representing each tuning.

Figure 3 shows the respective LMRDs(τ3, τ4) related to the overshoot. We can observe
that, generally, the majority of loops exhibited a low overshoot. Those few that had
significant value of overshoot were characterized by an increased L-kurtosis τ4 compared
to the normal distribution and τ4 = 0.1226. We may also observe that the scatter of points
with respect to the OX axis denoting skewness τ3 was small and insignificant within a
narrow set of τ3 ∈ (−0.01, 0.01).
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Figure 2. Time series for the loop G1(s), which was run using the so-called well-tuned PID algorithm
(blue line—process variable, green—setpoint, magenta—manipulated variable).

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
L-skewness =3

0.115

0.12

0.125

0.13

0.135

0.14

0.145

L-kurtosis =4

0 5 10 15 20 25 30
overshoot

empirical
Gauss
optimal

Figure 3. The LMRD(τ3, τ4) for G1(s) related to overshoot κ.

Following the above presentation scheme, Figure 4 shows the analogous relationship
related to the settling time Tset. We see quite a contrary behavior, as the loops that exhibited
a long settling time are represented by points with a lower L-kurtosis value.

Generally, these two plots confirm the contradictory meaning of the overshoot and the
settling time. Higher accuracy was achieved at the cost of the settling time, and conversely
speeding up the control led to a lower accuracy and introduced oscillations represented by
the overshoot.
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The next two diagrams extend the analysis, as they introduce the integral indexes.
Figure 5 shows how the varying ISE index (norm ℓ2) is represented in the LMRD(τ3, τ4),
while Figure 6 presents the effect of the norm ℓ1.

We can observe that both integrals ISE and IAE reacted similarly to the settling time,
while the direct difference between ISE and IAE was less significant. We can only observe
that IAE made a bit more of a mutual distinction between control loops, while ISE was,
one might say, more binary in making a sharper distinction. This separation between the
norms ℓ2 and ℓ1 is visible. This observation confirms that the meaning of the ISE and IAE
is significant and should be considered in the selection of a performance index.

Additionally, the LMRD(τ3, τ4) diagram is characterized by one shortcoming, as it has
no possibility of reflecting loop fluctuations, which is naturally addressed by scale factors,
like L-scale l2 or L-Cv τ2.

One may assume that similar observations of the overshoot and three other indexes
might also appear for the other plots. As the same effect was observed, the following
analysis is presented in the form of two types of diagrams related to the overshoot and
settling time. Figures 7 and 8 present respective LMRDs(τ2, τ3). The incorporation of
the scale factor L-Cv τ2 into the assessment enabled showing an appropriate separation
between the poor and worse tunings in all cases. Additionally, the contradictory meaning
for κ and Tset remained.

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
L-skewness =3

0.115

0.12

0.125

0.13

0.135

0.14

0.145

L-kurtosis =4

0 20 40 60 80 100 120 140 160
settling time

empirical
Gauss
optimal

Figure 4. The LMRD(τ3, τ4) for G1(s) related to settling time.
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-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
L-skewness =3

0.115

0.12

0.125

0.13

0.135

0.14

0.145
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0.5 1 1.5 2
ISE

empirical
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optimal

Figure 5. The LMRD(τ3, τ4) for G1(s) related to ISE.
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Figure 6. The LMRD(τ3, τ4) for G1(s) related to IAE.
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Figure 7. The LMRD(τ2, τ3) for G1(s) related to overshoot.
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Figure 8. The LMRD(τ2, τ3) for G1(s) related to settling time.

Unfortunately, for the LMRDs(τ2, τ3), we observed that the L-Cv τ2 value was not
limited, and the OX axis scaling depended on data values. The use of the scaled l2 moment
should have addressed this issue. Figures 9 and 10 show LMRDs(l2, τ3) related to the
overshoot and settling time. Unfortunately, we did not obtain a full improvement. The
plots were scaled according to the known limits, but the separation related to the overshoot
was lost. In such a case, there is no way to determine between high and low κ values using
the LMRD(l2, τ3). This meant that the control performance could not be fully assessed using
the LMRD(l2, τ3).

Finally, we introduced a new type of LMRD that compares L-kurtosis with L-moment
l2. Figures 11 and 12 show the LMRD(l2, τ4) plots related to the overshoot and settling time.

We still observed a good separation for the settling time, while high overshoot per-
formance detection was hard to accomplish. We may conclude that any single LMRD
does not allow solving the assessment issue. There are two reasons for this: the overshoot
detectability, and there being three statistical factors related to the control performance:
scale, skewness, and kurtosis.Therefore, it is suggested to use a combination of two plots:
the LMRD(τ2, τ3) and the LMRD(l2, τ4) or LMRD(τ3, τ4).

Further simulation analysis was conducted for two other transfer functions: G4(s)
and G5(s). The way the simulations were run was similar to the G1(s) plant. For the
G4(s) transfer function, the kp ∈ ⟨0.2; 1.6⟩ changed its value every 0.2, the integration time
Ti ∈ ⟨0.1; 5.1⟩ changed every 0.5, and the derivative time was kept constant at Td = 0.2121.
Thus, we obtained 88 points for the assessment analysis. For the G5(s) transfer function,
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the kp ∈ ⟨0.02; 1.02⟩ changed every 0.1, the integration time Ti ∈ ⟨0.05; 2.3⟩ changed every
0.25, and the derivative time Td = 0.0808. Thus, we obtained 110 points for the assessment
analysis of the G5(s) plant.
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Figure 9. The LMRD(l2, τ3) for G1(s) related to overshoot.
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Figure 10. The LMRD(l2, τ3) for G1(s) related to settling time.
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Figure 11. The LMRD(l2, τ4) for G1(s) related to overshoot.
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Figure 12. The LMRD(l2, τ4) for G1(s) related to settling time.

In order to protect this document from being overloaded with an unnecessary amount
of charts, each process is only assessed with three plots, only allowing the two above com-
binations of diagrams with their relationship to one selected known index. Figures 13–15
show diagrams allowing the assessment of the G4(s) process.
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Figure 13. The LMRD(τ3, τ4) for G4(s) related to IAE.

The first combination of the LMRD(τ2, τ3) and the LMRD(l2, τ4) allows a relatively
good detectability, while the second one might be somehow unclear, due to the properties
of the LMRD(τ3, τ4) plot. These plots show the optimal well-tuned parameter set (the
yellow square). It was close to the similar tuning, and the poor ones were distant from it.



Appl. Sci. 2024, 14, 3331 13 of 21

0.05 0.1 0.15 0.2 0.25 0.3 0.35

L-variance l2

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

L-
sk

ew
ne

ss
 =

3

0.2 0.25 0.3 0.35 0.4 0.45
IAE

empirical
optimal

Figure 14. The LMRD(l2, τ3) for G4(s) related to overshoot.
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Figure 15. The LMRD(l2, τ4) for G4(s) related to overshoot.

Figures 16–18 show the analogous analysis for the G5(s) transfer function. These plots
show the relation to the overshoot. In this case, we may observe that the scale factor l2
allowed detecting a high overshoot. This observation points out that this issue requires
further investigations.

It must be noted that the simulation experiments were designed in such a way so
as to not introduce any unneeded asymmetrical effects into the data. This was done
intentionally, as we did not want to introduce another degree of freedom into the analysis.
Generally, such asymmetric properties might be introduced by operating point changes, i.e.,
changes in the setpoint or by process nonlinearities, such as actuator saturation or a wrong
definition of the operating point close to the process technological constraints. These effects
are not directly associated with the loop tuning. Setpoint fluctuations originate from the
plant operation requirements, and actuator saturation is caused by the actuating element,
while operation close to the constraints is the result of an inappropriate design or external
production demands, such as a need to work with an over- or under-loaded production.

The simulation analysis enabled changing the controller tuning as we wished, and we
did not have to worry about poor system performance, which might cause economic losses
in the installation operation or might even cause instabilities. In real situations, we do not
have such comfort and we only have a single controller tuning set (or maybe only a few,
which have been used during the controller tuning procedure). Therefore, an assessment
with a LMRD plot becomes tougher, as we need to perform an assessment using one point.
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Its placement in the diagram depends on the control performance on the one hand, but
is also affected by the process behavior. Thus, we cannot definitely say that any obtained
position in the LMRD point is better or worse and what is the cause: the controller or the
plant. An analogous conclusion follows from the use of IAE or ISE. Any single value of the
integral index has no practical meaning.
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Figure 16. The LMRD(τ3, τ4) for G5(s) related to IAE.
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Figure 17. The LMRD(l2, τ3) for G5(s) related to overshoot.
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Figure 18. The LMRD(l2, τ4) for G5(s) related to overshoot.

The above does not mean that LMRDs have no practical value. We need to extend
the comparison. We may introduce into the picture the time or space. Using the time, we
may consider how the loop performance changes over time. We have to be aware that a
plant is not immutable or constant. It varies all the time, due to the products used and
their changing properties, variations in production demands, atmospheric fluctuations,
the wear and tear of the installation components, plant failures, and human impacts. But
the control loop often remains unmodified, and therefore one would like to know how the
control performance accommodates to these changes. We would like to make the control
loop robust enough to not lose performance. This effect is known in engineering practice
as controller sustainability.

The extension in space means the comparison between various loops in complex
multi-loop systems. Such a task is called loop benchmarking or homogeneity analysis, as
we would wish to have all the loops operating similarly, because the ones which behave
in a different way (so-called discordantly) may cause the whole system to deteriorate in
performance. These aspects have already been introduced and analyzed [45].

4. Industrial Validation

We used data from the ammonia production installation located at Grupa Azoty
Zakłady Azotowe “Puławy” SA in Poland. The production utilizes technology of the
autothermal reforming of methane CH4 with the utilization of oxygen: pure and in the
form of processed air [45]. Figure 19 presents a schematic diagram of the considered
ammonia production plant.

The plant is equipped with a modern control system that uses a hierarchical advanced
process control strategy with a basic layer utilizing PID control algorithms, which are su-
pervised using model predictive control [46]. All PID loops are well-tuned and maintained.
The supervisory dynamic optimization allows optimal system operation.

As the data selection was crucial for the subsequent analysis, much attention was
given to using comparable and credible time series from normal operating regimes. We
used a dataset from 14 consecutive months (July 2020–August 2021), satisfying a 1 min
sampling time. To allow data comparability assumptions, it was ensured that the natural
gas consumption within these periods varied at most ±1.5%. The load was constant and
its fluctuations were process related. Time series were taken from the plant information
system. The dataset comprised control error records from 22 PID loops: 12 flow, 2 level, 1
pressure, and 7 temperature controls. Detailed information about these loops is limited by
the Grupa Azoty security regulations.

Such construction of data files, i.e., 22 loops collected in 14 months, allowed two
analytical perspectives. First, we could compare the homogeneity between the loops.
Therefore, we used a single month (July 2020) and plot LMRDs for 22 loops. Two LMRDs
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were plot. Figure 20 shows the L-skewness versus L-Cv LMRD(τ2, τ3) diagram, while a
L-kurtosis versus L-skewness LMRD(τ3, τ4) plot is sketched in Figure 21.

Catalytical methan conversion 
Pre-heaters 

autothermalreforming 
steam 2.9MPa generation

CO conversion (shift reaction)
CO converters

steam generation : 1.4MPa and 0.4MPa

CO2 removal (Benfield unit)
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AIR

OXYGEN
NATURAL GAS

steam 2.9MPa

steam 3.2MPa

steam 2.9MPa

steam 1.4MPa

steam 0.4MPa

steam 0.4MPa

steam 0.4MPa

CO

CO2

WATER

CO2

CO

steam 1.4MPa

Figure 19. Schematic diagram of the ammonia production plant.

100 200 300 400 500 600 700

L-Cv =2

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

L-
sk

ew
ne

ss
 =

3

L-moment ratio diagram

 1

 2 3
 4 5

 6
 7 8

 9

10
1112 13

14

15

1617

18

19

20 21

22

Figure 20. The LMRD(LcV, τ3) for July 2020.
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Figure 21. The LMRD(τ3, τ4) for July 2020.

The second perspective, i.e., a single loop #15 but a showing a comparison on a
monthly basis is presented in the next plots. Figure 22 presents the LMRD(τ2, τ3) and
Figure 23 the LMRD(τ3, τ4) plot.
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Figure 22. The LMRD(LcV, τ3) for loop #15.
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Figure 23. The LMRD(τ3, τ4) for loop #15.

A review of the above plots allows making observations. First, all the loops worked
properly and they were well-tuned, as the LMRD(LcV, τ3) and LMRD(τ3, τ4) show a con-
centration of points around L-skewness equal to zero. Loop #15, which was selected for
the time perspective, seems to be the most challenging. This observation is confirmed with
two other diagrams, which show large variations, which were most probably related to
process nonlinearities.

Industrial validation justified the applicability of LMRDs in practice. In this project,
they were used to confirm the positive results of the control system rehabilitation, which
were associated with the comprehensive tuning activities and the implementation of the
APC system. Simulations allowed combining the loop control performance with the point
location in the diagram. As a consequence, this knowledge allowed the interpretation of
the industrial data.

5. Conclusions and Further Research

The main contribution of this paper is the introduction of L-moment ratio diagrams
into control engineering research and practice. Though they constitute a well-established
methodology in the life sciences, they remain unknown in control engineering. However,
their properties are very promising and might bring new perspective to the engineering
context. We also introduced a new LMRD(l2, τ4) that better fits the CPA task.

The simulation analysis showed the feasibility of the proposed approach. Simula-
tions allowed assess to and comparison of various theoretical scenarios, which enabled
generalizing the observations. It was shown that a proper combination of the diagrams
allowed determining poor and good tuning. We demonstrated that one plot, whichever we
used, was not enough. However, the combination of two diagrams, LMRD(τ2, τ3) and the
LMRD(l2, τ4) or LMRD(τ3, τ4) helped. The idea of using the LMRDs in control engineering
is novel, because the L-moments common in extreme analysis remain unknown in control
engineering. This works shows that the idea of moment ratio plots can be useful, because a
given loop can be described by a single point, whose location on the LMRD plot describes
certain loop properties. Moreover, in the case of more loops or data from different time
periods, we obtained an tool that allows their easy comparison.

Simulations give some theoretical hints that should be cross validated in practice.
Validation of the proposed technology was conducted using long-term industrial data from
a complex, multi-loop ammonia production plant. This demonstrated several facts. First
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of all, direct use of the LMRDs was not so meaningful, as we obtained a single point in
the two-dimensional plane that did not allow drawing decisive conclusions. However,
there was nothing to prevent expanding the research perspective. The introduction of
time into the analysis allowed observing and measuring loop performance fluctuations
in time—control sustainability. Benchmarking between numerous loops operating in a
single, but complex multi-loop system, allowed benchmarking them, to measure their
homogeneity and to detect the loops that stood apart from the rest. Such single outlying
loops might form performance bottlenecks, and their tuning might seriously improve the
overall system performance.

This paper showed that still there is much to be done in this research area, especially
in combining simulations with engineering practice. Further research should address two
areas. Theoretical investigations would help to analyze the LMRD plots themselves, in
order to label certain points or sectors in the LMRD plots as responsible for certain loop
behaviors. Further and extensive industrial validation would allow embedding practical
effects into the LMRD.In particular, observation of the loop time paths in an LMRD diagram
might be useful in loop (system) diagnosis and maintenance.
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MRD Moment Ratio Diagram
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