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Abstract: To solve the problems of measurement errors led by mismatches of dense feature matching
in machine vision structural deflection measurement, this paper proposes a dense feature extraction,
matching, and dual-step mismatch-removal-based full-field structural dynamic deflection measure-
ment method. First, the of dense feature detection and matching theory is introduced to extract
the SIFT feature points on a structural surface in an image sequence and matched by FLANN to
trace the structure movement, and the mechanisms and causes of mismatches are analyzed. Then, a
dual-step mismatch removal method combining RANSAC and Structural Displacement Continuity
Restriction (SDCR) is introduced to achieve full-field dynamic beam deflection measurement. The
proposed method is validated through indoor cantilever beam experiments, and results show that
the method can effectively eliminate a large number of SIFT feature mismatches (accounting for
approximately 55% of the total matched feature points). The full-field dynamic displacement field
of the beam can be measured with the correctly matched dense feature points by converting dense
feature point displacements into continuous and uniform spatiotemporal deflections of the structure.
A comparison with the GOM Correlate Professional DIC measurement system was conducted, and
the maximum measurement error of the cantilever beam dynamic displacement of the proposed
method is between 0.024 and 0.053 mm, the root mean squared error of displacement is approximately
0.01 mm, and the correlation coefficient between two deflection–time curves reaches 0.9964. The
proposed algorithm is proven to be effective in full-field displacement measurement and has great
potential in future structural health monitoring of bridges.

Keywords: machine vision; dense feature points; feature matching noise reduction; dynamic
displacement measurement

1. Introduction

Health monitoring of large-scale infrastructure such as highways and railway bridges
are crucial for public safety [1], and structural dynamic displacement measurement is an
important parameter in structural health monitoring. Traditional contact displacement
sensors can only measure single point displacements, and their installation and calibration
processes are cumbersome, damaging to structures, and have high maintenance costs [2].
Other non-contact measurement technologies of total stations, laser rangefinders, and GPS
are limited by sampling frequency, measurement accuracy, or cost [3–5].

Machine vision measurement technology has advantages of non-contact use, cost
effectiveness, and full-field measurement, and it does not require sensor installation or cable
laying, providing an economic and rapid solution for structural health monitoring [6–8].
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Ye [9] reviewed the research and application of structural displacement detection methods
by computer vision and pointed out that future research should focus on reducing the
measurement error and improving the application efficiency. Catbas [10] proposed a
machine-vision-based structural health monitoring method for bridges which detects
and tracks the image sequence of the vehicles crossing the bridge and obtains the unit
influence lines. Sladek [11] proposed a vision-based method for deflection measurement
of structures by Digital Image Correlation methods. Busca [12] analyzed the advantages
and disadvantages of template recognition, edge detection, and Digital Image Correlation
(DIC) in the measurement of the dynamic response of a vehicle passing over the bridge.
Billie [13] detected and monitored structural defects in infrastructure to explore intelligent
recognition through dynamic and static measurements in displacement monitoring. Xiu [14]
proposed an estimation method of structural displacement response based on the fusion
concept of contact acceleration monitoring and non-contact displacement identification
and obtained structural vibration response and modal information. Wang [15] proposed
a new multiple-camera machine vision bridge modal detection method and achieved the
extraction of the structural displacement and modal of a bridge through indoor and outdoor
experiments. Pan [16] proposed high-precision structural top displacement measurement
using drone photography technology and the optical flow method and achieved high-
precision measurement of large-range structural top displacement in model vibration
table tests.

In traditional machine vision, structural displacements are achieved by tracing the
preinstalled marker on the structure surface as a feature, but the monitoring locations
are limited because of the cumbersome marker installation. Therefore, researchers have
aimed to study a marker-free machine vision structural displacement measurement method.
Song [17] proposed a marker-free displacement measurement method based on background
segmentation and DIC technology, and results showed that the measurement was accurate
and strongly illumination-invariant. Tan [18] proposed a marker-free dynamic displacement
measurement method to measure the large-span beam vibration displacements and modals,
and the results were compared and verified with Linear Variable Displacement Transducer
(LVDT) measurements. Dong [19] proposed a multi-point structural dynamic monitoring
framework combining marker-free feature tracking and optical flow tracking methods and
conducted displacement extraction and modal identification through large-scale indoor
and outdoor structural experiments.

The ability to measure and extract structural displacements is closely related to the
density of marker placement. Sparse markers on large structures can result in insufficient
density of extracted feature points, leading to incomplete spatial field displacement infor-
mation and inadequate precision in structural displacement measurement. Additionally,
feature mismatches can also affect measurement results. Insufficient feature point quan-
tity and feature mismatches are two core challenges in machine-vision-based dynamic
displacement measurement of structures.

The accuracy of structural displacement measurement is closely related to the density
of marker placement, so sparse markers on large structures will result in insufficient
density of feature points and cannot ensure accurate full-field displacement measurement.
In addition, feature mismatches inducing measurement error can also affect measurement
accuracy. Insufficient feature point quantity and feature mismatches are two core challenges
in machine-vision-based full-field structural dynamic displacement measurement. To
address these issues, this paper proposes a full-field cantilever beam dynamic deflection
measurement method by dense feature extraction and matching with dual-step mismatch
removal (DFEM-DSMR).

The structure of this paper is outlined as follows: Section 2 introduces the theory of
dense feature extraction and matching by Scale-Invariant Feature Transform (SIFT) and the
Fast Library for Approximate Nearest Neighbors (FLANN) algorithm, and the analysis of
the causes of feature mismatch is presented. Section 3 elaborates on the full-field dynamic
displacement measurement of structures by dense feature extraction, matching, and a
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dual-step mismatch removal method combining Random Sample Consensus (RANSAC)
and Structural Displacement Continuity Constraints (SDCCs). Section 4 presents the indoor
cantilever beam dynamic deflection measurement experiments by the proposed method
and the validation with commercial DIC software. Finally, the paper is the concluded
and summarized.

2. Dense Feature Extraction and Matching Theory and Mismatch Cause Analysis

In machine-vision-based structural displacement measurement methods, structural
displacement is measured by extraction and tracking of feature points. Dense feature
extraction can enhance the quantity of detection points, facilitate the measurement of
subtle changes in structural global displacement, and detect minor defects in structure
health monitoring. This section introduces the basic theory of the SIFT and FLANN feature
matching algorithms and analyzes the causes of feature mismatches.

2.1. Scale-Invariant Feature Extraction Algorithm

SIFT [20,21] is a milestone feature extraction algorithm in image processing due to
its robustness to scale, illumination, noise, and rotation and is fundamental for image
motion tracking and image stitching as it can extract a much larger number of feature
points than other methods, which is advantageous in full-field structural displacement
measurement. SIFT feature points are multiscale features [22], and images of different scale
L(x,y,σ) are obtained by convolving the original images I(x,y) with a variable-scale Gaussian
convolution kernel G(x,y,σ):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

where the Gaussian convolution kernel is calculated using the Gaussian convolution
function:

G(x, y, σ) =
1

2πσ2 exp

(
−
(x − m

2 )
2 + (y − n

2 )
2

2σ2

)
(2)

where (x,y) is the pixel position of the image, the values of m and n are generally determined
by the scale parameter σ, and ∗ denotes convolution operation. After determining the
size of the Gaussian convolution kernel as well as the scale factor σ, the values at each
position of the convolution kernel can be calculated with normalized Gaussian kernel. The
image scale space is represented by the Gaussian pyramid as shown in Figure 1a, and the
Gaussian difference is obtained by the Difference of Gaussians (DoG) shown in Figure 1b.
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In the scale space, each sample point is compared to its eight neighbors in the current
image and nine neighbors in the scale above and below to detect the extreme point repre-
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senting a scale-invariant feature point, and the gradient distribution characteristics within
the neighborhood of a feature point are illustrated in Figure 2a. The statistical gradient
information of the neighborhood is represented by a gradient direction histogram shown
in Figure 2b, and the peak of the histogram serves as the main orientation of the feature
point. Feature points extracted by SIFT algorithm are rotation-invariant and scale-invariant
and are dense feature points.
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2.2. Image Feature Matching Algorithm

After extracting a large number of SIFT features from two frames of images, fea-
ture matching is performed to identify the same points in both frames. Frequently used
feature matching methods are the Brute Force (BF) matching algorithm and the FLANN
algorithm [23]. FLANN can quickly locate the nearest neighbors to search similar feature
descriptors and perform matching and is more often used in feature matching applications
that demand a large number of feature points. FLANN constructs an index for all feature
descriptors in the reference image and automatically selects the nearest neighbor based on
the characteristics of the feature descriptor set. For each feature descriptor in the detected
image, FLANN searches for the nearest neighbor from the established index, finding the
most similar feature descriptor in the reference image. FLANN performs an approximate
search instead of accurate matching, so the absolute accuracy of the matching cannot be
guaranteed for the nearest neighbor it finds, which can meet the requirements of traditional
image processing. The approximations between two feature vectors in feature nearest
neighbor search are measured by the Euclidean distance, which is expressed as:

d(x1i, x2i) =

√√√√128

∑
i=1

(x1i − x2i) (3)

where x1i and x2i (i = 1, 2, . . ., 128) are the coordinates of the 128-dimensional feature
vectors in the two images, respectively. In the FLANN algorithm, the shorter the Euclidean
distance between two feature vectors, the more similar these two feature vectors. When
this distance is zero, the two features are identical. The FLANN algorithm performs well
in terms of accuracy and efficiency in high-dimensional feature matching, meeting the
requirements in real-time health monitoring and also maintaining a sufficient number of
feature point matches.

2.3. Mismatch Mechanism and Causes of Mismatch Analysis in SIFT Algorithm

SIFT and FLANN can still perform well in feature point extraction and matching with
varying shooting angle, distance, and illumination during image capture. However, slight
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image grayscale variations inevitably change the value of feature point descriptors, and
the distances between corresponding points in two images are not zero. Therefore, if the
distance between two features is small enough, and if the ratio of the nearest neighbor
distance d1 to the second nearest neighbor distance d2 satisfies:

d1

d2
< τ (4)

where τ is usually taken as 0.8, and it is considered as the nearest neighbor matching.
FLANN is an approximation algorithm and may lead to matching errors, and SIFT

features are multiple scale features imperceptible to the human eye, making it difficult to
check and interpret matching outliers in practical applications.

Moreover, numerous matches can be obtained even between two completely unrelated
images of a panda and a calf, as shown in Figure 3a, which are inexplicable, meaningless,
or even absurd. In Figure 3b, the left and right parts are symmetric along the central axis,
and the right part can be obtained by clockwise rotating the left part by 90 degrees. There
are ambiguities in matching results between the two parts of the image, and the symmetry
or the rotation of the matching results is inconsistent. For example, point A and point D
both have two matching results and show the presence of mismatches.
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The mismatches generated by the aforementioned feature extraction and matching
methods can lead to errors in structural deformation measurement, which require high
accuracy and unique matches. Therefore, it is essential to introduce more explicit con-
straints to remove the mismatches and ensure the accuracy of structural displacement
measurements.

3. Structural Full-Field Dynamic Deflection Measurement Method Based on Dense
Feature Mismatch Removal

A sufficient number of markers pre-installed on structures is a prerequisite for struc-
tural health monitoring and damage localization [24,25]. In machine vision method, feature
extraction and tracking algorithms such as Shi–Tomasi can extract only a finite number of
feature points, which limits their application in structural health monitoring. Therefore, it is
necessary to develop dense feature extraction and matching algorithms to trace the motion
of a large number of displacement measurement points. The feature extraction method
based on SIFT and FLANN matching may lead to mismatches and errors in structural
displacement measurement. This paper proposes a full-field dynamic structural deflection
measurement method by dual-step mismatch removal (DSMR) of the RANSAC algorithm
and Structural Displacement Continuity Constraints (SDCCs).

3.1. Coarse Mismatch Removal Using RANSAC

The RANSAC algorithm [26] is a method based on the principles of probability theory
to remove outlier data. The best model to describe the data was achieved through iterative
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correction, and it can retain the corresponding correct data and minimize the influence of
noise and outliers. The number of iterations n in RANSAC is calculated as follows:

n =
log(1 − p)
log(1 − εs)

(5)

where ε is the proportion of outliers in the data, p is the expected probability, and s is the
minimum number of samples required to estimate the model. RANSAC randomly selects
s points from all data to estimate the model and calculates the points that fit the current
estimated model. When the number of points exceeds the threshold set or the iteration
number reaches the upper limit, the correcting process stops, and the output information is
contained in the best model.

In structural motion detection, the RANSAC algorithm can remove a large number of
feature point pairs whose displacement is clearly different from that of correct matches,
achieving the elimination most of the mismatches after SIFT feature extraction and FLANN
matching. However, it is a statistical mismatch removal method, and the iterative model
process is random, the outlier data cannot be completely removed, and further removal
should be introduced.

3.2. Secondary Removal of Feature Mismatches Based on SDCCs

With the matched feature set obtained after coarse removal with the RANSAC method,
the displacements of these feature points can be calculated, and wrong displacements
reveal that mismatched feature points pairs still exist, for example, point G in Figure 3b,
which can be effectively removed with prior information of structural displacement. Prior
knowledge of structural displacement is the information of the structural geometric size,
mechanical properties, and external load distribution, for example, the displacement di-
rection, distribution, and angle of measured points. The prior information can be utilized
in the analysis and evaluation of the feature point displacement calculated and can be
utilized to effectively remove the remaining mismatches. The continuity assumption is
a fundamental deformation hypothesis in structural mechanics assuming that the object
maintains continuum during deformation without cracking or overlapping, or the displace-
ments of adjacent measurement points within an infinitesimal range are continuous and
uninterrupted.

Taking the example of a cantilever beam in the initial and deformed states shown in
Figure 4a, where the initial point P deforms to P’, and any point P1 within an infinitesimal
range ∆x around this point deforms to P1’ as shown in Figure 4b. The difference ∆dy
between the vertical deformations dy1 and dy of these two points should be approximately
zero, according to the continuity deformation assumption; that is:

∆dy = dy − dy1 ≈ 0 (6)
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For continuous medium deformation, the continuity assumption within an infinitesi-
mal region can also be expressed in strict terms of displacement d, angle θ, and curvature κ:

∆d ≈ 0
∆θ ≈ 0
∆κ ≈ 0

(7)

The above conditions of Equation (7) are called the Structural Displacement Conti-
nuity Constraints (SDCCs), and multiple constraint conditions need to be introduced to
completely remove mismatches. When the dimensions, material properties, and external
loads are known, the maximum deformation D of the beam structure can be calculated by
the relevant theorems and formulas of material mechanics, and the feature points whose
displacements are larger than D should be considered mismatches. For simplicity, the
vertical displacements dy1, dy2, and ∆dy are calculated from two adjacent feature points
and establish structural vertical displacement consistency constraints in the spatial field,
referring to Equation (5) as follows:{

dy1 ≤ D and dy2 ≤ D
∆dy = |dy1 − dy2| ≤ ε

(8)

where ε is a value lower than D and can be empirically selected between 0 and D. In
structural vertical displacement consistency constraints, the value of ε should be taken
according to the specific experimental situation or actual project situation, and it indicates
the displacement difference of two adjacent feature points or the continuity of the displace-
ment field. The smaller the value of ε, the stricter the requirements. Theoretically, a value
of ε less than 0.5D can obtain good results. However, excessively strict requirements of ε
does not lead to more precise results, and a smaller value of ε will lead to the removal of
some the feature matching pairs with good accuracy as mismatches, which will result in
the sparsity of final retained feature pairs and is unfavorable for high-precision full-field
displacement measurement.

Similarly, for the same feature point, the displacements calculated from two consec-
utive frames in the image sequence are dy1t and dy2t, and the structural displacement
consistency constraints in the temporal field can also be established as:{

dy1t ≤ D and dy2t ≤ D
∆dyt = |dy1t − dy2t| ≤ εt

(9)

where εt is the temporal empirical value.

3.3. Structural Full-Field Dynamic Deflection Measurement Method Based on DFEM-DSMR

After SIFT feature extraction and FLANN matching, the DSMR can effectively remove
mismatched feature pairs in dense feature matching, the displacements can be calculated
from the dense feature points, and the method is called as dense feature extraction and
matching with dual-step mismatch removal (DFEM-DSMR). The DFEM-DSMR method
can measure the structural full-field dynamic deflection and can plot dynamic deflection–
time curves for any location of the structure as well as the deflection curves of the entire
structural spatial field at any time. The process of high-precision extraction of structural
full-field dynamic deflection based on DFEM-DSMR is illustrated in Figure 5.
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4. Indoor Dynamic Beam Deflection Measurement Experiment and Validation

To validate the proposed method for structural full-field dynamic deflection measure-
ment, an indoor cantilever vertical beam vibration experiment was conducted, and results
were compared with those of the Digital Image Correlation (DIC) method.

4.1. Cantilever Vertical Beam Vibration Experiment Setup

In the indoor full-field dynamic deflection experiment, a Basler a2A5320-7gmBAS
industrial camera was used to measure the displacement of a 100 cm long cantilever
vertical beam, and the location of the beam and the camera as well as the geometric size
and connection are shown Figure 6a. The experimental equipment and the structure on
site are shown in Figure 6b, and the equipment types and parameters are listed in Table 1.
Vibration was stimulated by excitation (lateral impact with a hammer) at the top of the
steel cantilever beam, and the camera captured the image sequence of the mid-span section
at a distance of 1.5 m from the cantilever beam, with the camera lens parallel to the ground
for orthogonal shooting. In the proposed method, the SIFT algorithm can rely solely on the
texture information of the image to detect feature points, while speckles were prefabricated
on the beam surface in the experiment to facilitate the operation of the DIC method for
validation purposes, for which the proposed method works well.
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Table 1. Equipment types and main parameters.

Equipment Manufacturer/Model Main Parameters Main Usage

Industrial
camera Basler/a2A5320-7gmBAS Resolution 5320 × 3032 px;

Frame rate 50 fps Data acquisition

Lens C11-1220-12M Lens focal length 12.0 mm;
Aperture F2.0-F16.0

Auxiliary
devices

Computer MSI/GL62M Intel(R) Core (TM) i5;
7300HQ CPU @ 2.50 GHz Data storage

In the experiment, the 4096 pixels × 3072 pixels images were captured at the speed
of 50 fps, and the image bit depth was 24. The thickness of the cantilever beam in the
capture area was 2 mm, with 98 corresponding pixels in the image, and the orthogonal
photogrammetric scale factor s can be calculated as:

s =
T
t

(10)

where T is the thickness of the beam (mm) and t is the pixel number of the thickness in
the image. The calculated scale factor was 0.02 mm/pixel. In the experiment, an image
sequence comprising 100 frames was captured. The 20th frame image is shown in Figure 7a,
and the image without the background is illustrated in Figure 7b.
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4.2. Structural Full-Field Dynamic Displacement Field Measurement
4.2.1. Dense Feature Point Extraction, Matching, and Dual-Step Mismatch Removal

Using SIFT feature extraction and FLANN matching to measure the structural dis-
placement between two images, a large number of feature matching pairs can be obtained.
Taking the 1st and 20th frames as examples, the feature matching results between the two
frames are shown in Figure 8, with a total of 6838 pairs of matched features.
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The RANSAC algorithm was applied to coarsely remove the mismatches from all
6838 pairs, and a total of 2513 mismatched pairs were removed, as shown in Figure 9a.
After the coarse mismatch removal, 4325 remaining matching pairs were left as shown in
Figure 9b.
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A secondary mismatch removal was further performed with the SDCC method, with
a total of 1272 mismatch pairs being removed as shown in Figure 10a and 3053 pairs with
correctly matched feature points reserved as shown in Figure 10b.
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Results show that the DFEM-DSMR method significantly improves the matching
accuracy, and there are no obvious mismatches remaining after DSMR mismatch removal.
In outlier removal using DSMR, the number of mismatches removed by the RANSAC and
the SDCC accounts for 36.75% and 18.60% of the total number of dense feature pairs (6838),
respectively. To further illustrate the applicability and effectiveness of the DFEM-DSMR
structural displacement measurement method, the 10th, 20th, 40th, 60th, 80th, and 100th
frame image, corresponding to six different times of 0.2, 0.4, 0.8, 1.2, 1.6, and 2 s were
analyzed and calculated, and the number of mismatches removed by the RANSAC and
SDCC is shown in Table 2.
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Table 2. Mismatch removal at different times.

Time
Total

Match
Number

Coarse
Mismatch
Removal
Number

Coarse
Mismatch
Rate m1

Secondary
Mismatch
Removal
Number

Secondary
Mismatch
Rate m2

Total
Mismatch

Rate

t = 0.2 s

6838

4579 33.03% 3455 16.44% 49.47%
t = 0.4 s 4325 36.75% 3053 18.60% 55.35%
t = 0.8 s 4464 34.72% 3221 18.18% 52.90%
t = 1.2 s 4444 35.01% 3186 18.40% 53.41%
t = 0.6 s 4090 40.19% 2693 20.43% 60.62%
t = 2.0 s 4319 36.84% 3095 17.90% 54.74%

4.2.2. Spatiotemporal Deflection Data Processing

The high-precision displacement of a large number of densely measured points on
the surface of vertical beams at different times can be achieved by the method proposed,
and the deflection variation in a measured point in the temporal field was calculated; as an
example, the displacement–time history curve of the mid-span point on the beam is plotted
in Figure 11.
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The spatial deflection along the beam at any time can also be calculated and extracted,
and the deflection curve of the 20th frame is plotted as illustrated in Figure 12, with an
enlarged view of the local deflection curve with unevenness and discontinuity due to
displacement measurement error in discrete data.
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After polynomial fitting, continuous and uniform deflection curves at five times were
obtained and are plotted in Figure 13.
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4.3. DIC Processing Result Comparison and Validation

Digital Image Correlation (DIC) is a classic machine-vision-based full-field displace-
ment and strain measurement method involving speckles, and several commercial software
has been developed. However, its application is limited by the requirement for preinstalled
high-quality speckles on the measurement object. The GOM Correlation Professional soft-
ware was used to measure and validate the DFEM-DSMR method proposed in this paper;
to be specific, five points on the left end, 1/4 length, mid-span, 3/4 length, and the right
end of the beam were selected as shown in Figure 14.
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where Xe is the deflection data obtained by the DFEM-DSMR method; Xt is the data 
calculated by the GOM software, both in mm; and i is the data number (i = 1, 2, 3, ..., n, n 
is the total image frame number). 

  

Figure 14. Measurement points on the beam.

First, the temporal displacement of the measurement was measured by the DIC method
of GOM software and the DFEM-DSMR method, and the comparison of two displacement–
time curves is shown in Figure 15, with the maximum errors being enlarged and shown in
the bottom right box. It can be seen that the two curves correlate well with each other.
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To quantitatively demonstrate the temporal displacement measurement accuracy of
the DFEM-DSMR method, the maximum error, average error, and root mean squared
error (RMSE) of the dynamic deflection–time curves at the five measurement points were
calculated and are listed in Table 3. The RMSE is defined as:

RMSE =

√√√√√ n
∑

i=1
(Xei − Xti)

2

n
(11)

where Xe is the deflection data obtained by the DFEM-DSMR method; Xt is the data
calculated by the GOM software, both in mm; and i is the data number (i = 1, 2, 3, . . ., n, n
is the total image frame number).

Table 3. Temporal displacement measurement error of DIC and DFEM-DSMR.

Time Maximum Error
/mm

Average Error
/mm

RMSE/mm

DFEM-DSMR References

left end 0.032 0.005 0.007

0.1–0.2 [27]
0.1–0.3 [28]

1/4 point 0.053 0.009 0.012
mid-span 0.049 0.010 0.015
3/4 point 0.025 0.006 0.007
right end 0.034 0.013 0.015

Table 3 shows that the maximum errors range from 0.025 to 0.053 mm for the five
measured points, the maximum average error is 0.013 mm, and the RMSE is 0.01 mm, the
latter two of which are sub-pixel errors. From the perspective of temporal displacement
measurement, the DFEM-DSMR method demonstrates high measurement accuracy and is
consistent with the measured results of existing commercial software.

Then, the spatial displacement of the measurement was also measured by the two
methods, and the pixel-by-pixel deflection distribution curves at the times 0.4, 0.8, 1.2, 1.6,
2 s along the beam were plotted as shown in Figure 16.
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For clearer comparison, the spatial deflection curve of all measurement point at t
= 1.2 s was plotted as shown in Figure 17, and the maximum errors were enlarged and
are shown in the bottom left box. It shows that spatial deflection curves obtained by the
DFEM-DSMR method are smoother and indicate better accuracy.
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Furthermore, the maximum error, average error, and correlation coefficient ρ of the
two spatial deflection curves were calculated and are listed in Table 4, and the correlation
coefficient ρ is:

ρ =

n
∑

i=1
(Xei − Xe)(Xti − Xt)√

n
∑

i=1
(Xei − Xe)

2 n
∑

i=1
(Xti − Xt)

2
(12)

where Xe and Xt represent the mean values of the two sets of data.

Table 4. Spatial deflection measurement error of DIC and DFEM-DSMR.

Times Maximum Error
/mm

Average Error
/mm

Correlation Coefficient ρ

DFEM-DSMR References

t = 0.4 s 0.037 0.008 0.9994
0.9689–0.9887

[29]
0.9805 [30]

t = 0.8 s 0.047 0.011 0.9991
t = 1.2 s 0.038 0.010 0.9969
t = 1.6 s 0.046 0.012 0.9984
t = 2.0 s 0.047 0.012 0.9964

Table 4 shows that the maximum errors range from 0.037 to 0.047 mm of the five spatial
deflection curves, and the maximum average error is 0.012 mm, which is the sub-pixel
measurement error. The minimum correlation coefficient ρ of the five curves is 0.9964, and
it is close to 1. From the perspective of the spatial field, the deflection curve obtained by
the DFEM-DSMR method almost completely coincides with the DIC calculation results;
therefore, the method proposed in this paper exhibits high measurement precision.

5. Conclusions

In this paper, a dense feature extraction, matching, and dual-step mismatch-removal-
based full-field structural dynamic deflection measurement method was proposed, and the
method was validated through indoor cantilever beam experiments by commercial GOM
correlation software. The main conclusions are summarized as follows:

(1) This proposed method achieves full-field dynamic displacement measurement
of a vertical cantilever beam by dense feature extraction from the grayscale differences
of structural surface textures, using a dual-step mismatch removal method to eliminate
mismatched feature pairs, and the method shows good measurement accuracy and compu-
tational stability.
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(2) In the structure motion tracking using SIFT feature extraction and FLANN match-
ing, a large number of mismatches were found in the dense feature matching results, and
the mismatch proportion accounts for as much as 60.62%, varies over time, and cannot be
removed manually. The proposed DSMR method, combining the RANSAC and the SDCCs,
can efficiently and accurately remove approximately 37% and 18% of mismatched feature
pairs, respectively.

(3) Compared with GOM software, the DFEM-DSMR method shows good measure-
ment accuracy temporally and spatially. Temporally, the maximum error in the dynamic
deflection–time curves of measurement points at different positions ranged from 0.025 to
0.053 mm, the maximum average error was 0.013 mm, and the RMSE was 0.01 mm. Spa-
tially, the maximum errors in the deflection curves of the global structure at five different
times ranged from 0.037 to 0.047 mm, the maximum average error was 0.012 mm, and the
minimum correlation coefficient ρ was 0.9964.

The conclusions above were derived in stable indoor illumination conditions. While
the application of the proposed method in engineering should consider the influence of
complex weather conditions such as cloudy, foggy, or rainy weather, the contrast differ-
ences of the structural surface texture and the influence of environmental background still
necessitate further research.
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