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Featured Application: Python application that uses data science and machine learning to estimate
the main properties of acid tars. Its main advantage is that determinations for acid tar properties
are no longer necessary, thus saving time and money. However, good machine learning estimations
are highly dependent on the number and quality of the training data, meaning that the larger and
more consistent the training database, the better the estimations.

Abstract: Hazardous petroleum wastes are an inevitable source of environmental pollution. Leachates
from these wastes could contaminate soil and potable water sources and affect human health. The
management of acid tars, as a byproduct of refining and petrochemical processes, represented one
of the major hazardous waste problems in Romania. Acid tars are hazardous and toxic waste and
have the potential to cause pollution and environmental damage. The need for the identification,
study, characterization, and subsequently either the treatment, valorization, or elimination of acid
tars is determined by the fact that they also have high concentrations of hydrocarbons and heavy
metals, toxic for the storage site and its neighboring residential area. When soil contamination with
acid tars occurs, sustainable remediation techniques are needed to restore soil quality to a healthy
production state. Therefore, it is necessary to ensure a rapid but robust characterization of the degree
of contamination with hydrocarbons and heavy metals in acid tars so that appropriate techniques can
then be used for treatment/remediation. The first stage in treating these acid tars is to determine its
properties. This article presents a software program that uses machine learning to estimate selected
properties of acid tars (pH, Total Petroleum Hydrocarbons—TPH, and heavy metals). The program
uses the Automatic Machine Learning technique to determine the Machine Learning algorithm that
has the lowest estimation error for the given dataset, with respect to the Mean Average Error and Root
Mean Squared Error. The chosen algorithm is used further for properties estimation, using the R2

correlation coefficient as a performance criterion. The dataset used for training has 82 experimental
points with continuous, unique values containing the coordinates and depth of acid tar samples
and their properties. Based on an exhaustive search performed by the authors, a similar study that
considers machine learning applications was not found in the literature. Further research is required
because the method presented therein can be improved because it is dataset dependent, as is the case
with every ML problem.

Keywords: acid tar lagoon—ATLs; total petroleum hydrocarbons—TPH; heavy metals and As;
machine learning algorithms; hyperparameters

1. Introduction

The diversity of the operations and increasing growth of the petroleum industry has
resulted in huge amounts of various waste materials that need proper disposal and/or
valorization [1,2]. Among the existing types of petroleum waste, this paper studied the acid
tars from a refinery storage lagoon in Romania. Acid tars are residual materials that result
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from refining and petrochemical technologies applied at the beginning of the oil industry
development and which, by now, are abandoned [3–5].

Once formed, acid tars were stored in large-scale pits the size of a football field, called
lagoons, which thus became permanent and potential pollution sources for the air, soil,
subsoil, and water [6–8].

In addition to countries such as the USA, Russia, United Kingdom, Netherlands,
Belgium, Germany, Latvia, Slovenia, Slovakia, China, Zimbabwe, and Ukraine, which store
acid tar in the open air in spent pits, storage ponds, lagoons, or near landfills, there is also
Romania [7–9]. On the problem of ATLs, scientific reports can be found in the literature, for
example, in the USA, Germany, Belgium, Russia, UK, Slovenia, France, Latvia and Ukraine
while the extent of the problem has not been limited to these countries [4,5,7,8].

The reason for conducting the research developed and described in this article is the
historical existence of acid tar lagoons in five refineries in Prahova County, four being in the
immediate vicinity of Ploiesti city, refineries put into operation at the beginning of the 20th
century [9–11]. At present, although the quantity of acid tars generated has been greatly
reduced due to the development of efficient catalytic processes in the refining industry, an
effective treatment method is needed for existing acid tars lagoons [6].

The composition of the acid tars stored in the lagoons varies with the period of
production, the product treated with sulfuric acid, and the age of the tars [12–15]. Acid tars
have a variable composition between sites and even within one lagoon [15]. The need to
study, characterize, and stabilize/dispose of the acid tars from these huge storage lagoons
is determined by the fact that they have an extreme acidity (pH 1–2), high concentrations of
hydrocarbons and heavy metals, with significant mobility and easily leachable, dangerous
for the storage site and its neighboring residential area [7,8,15]. The low pH is an important
chemical factor that influences the increase in the mobility of metals and their interaction
with natural minerals [16].

Milne [3], Frolov et al. [12], Nieuwenhuis [17], and especially Kolmakov et al. [5,13] and
other [18,19] reviewed various methods for the processing of acid tars into useful products
but concluded that none of the approaches are satisfactory and thus, it is necessary to apply
an effective remediation method of acid tars lagoons [20–24].

Evaluation and choosing a technology for the remediation of acid tar lagoons is
a complex activity that requires the consideration of numerous factors: the type and
properties of the emerging contaminants, their quantity, the dynamics of the pollutants, the
hydrogeological characteristics of the soil, the climatic factors [8,9,15]. Finally, the economic
aspects, namely the costs of remediation, also matter.

This work is associated with complex research that refers to a composition and process
for the physical and chemical stabilization, in situ, of acid tars and of soil contaminated with
acid tar from one selected lagoon through neutralizing, stabilization, and encapsulation
procedure [25,26]. Acid tar samples from the studied lagoon were sampled, and the
following steps were taken:

• Acid tar and leachate analysis from the stabilized tars is done by determining the
following indicators: pH, TPH, and metals content, as well as As.

• Identification, testing, and determination of the optimal recipes for stabilizing the acid
tar in the lagoon.

• Characterization of stabilized tar leachate and classifying it according to the Council
Decision of December 2002 and Romanian Ministry Order 95 12 February 2005 [27].

• The identification of the conditions for the capitalization of the research and the
obtained results for the treatment of the acid tars in the studied lagoon.

The characterization of untreated and treated acid tars in each site is conventionally
accomplished through expensive sampling and testing of numerous borehole samples using
highly sensitive and specific analytical procedures involving extraction and subsequent
gravimetric or chromatographic techniques [4,13,28]. These procedures are laborious,
expensive, time-consuming, and inadequate when high spatial and temporal resolutions of
petroleum hydrocarbon content are required [15].



Appl. Sci. 2024, 14, 3382 3 of 22

To overcome these limitations, a machine learning model was used in this work to
predict pH, petroleum hydrocarbon concentrations, heavy metals, and As in the source area.
The presented method estimates some selected properties of acid tar (pH, TPH, five heavy
metals and a metalloid—As) based on the geographical location and depth of where the
sample was taken. To achieve this purpose, a training database was created that contains
data from other acid tar samples whose geographic coordinates and depth are already
known. The Automatic Machine Learning technique determines the algorithm that offers
the best estimation (smallest error) for every acid tar property that was estimated. Eight
response variables from the field survey and database were considered as output variables
for machine learning to train and test the models.

Artificial intelligence (AI) represents the simulation of human intelligence by com-
puting machines, which are programmed to think and act as a human would [29]. AI
is presented in different forms in our everyday lives in fields like games, stock market
predictions, aeronautics, or electronic commerce.

The application of AI is an important issue in chemical, process, and petroleum en-
gineering. Thus, they have been widely used in various applications in the chemical
engineering field, including modeling, process control, classification, fault detection, and
diagnosis [30]. The application of AI in important issues in oilfield development, including
oilfield production dynamic prediction, developing plan optimization, residual oil identifi-
cation, fracture identification, and enhanced oil recovery [31]. Also, with AI, refineries can
leverage large datasets to help provide analytics that produce actionable insights [32,33].

In a similar manner, artificial intelligence and machine learning are essential to control-
ling or managing land contamination through prediction, clustering, data-centric analysis,
and soil quality evaluation [34,35].

The prediction of soil petroleum hydrocarbon concentration is achieved by machine
learning and the resistivity tomography method [36]. Since the field measurement of soil
heavy metal content involves significant costs, methods have been developed to estimate
soil heavy metals based on remote sensing images and machine learning [37–39]. Also,
some measurements were studied and published using machine learning predictions of
soil pH [40].

Unfortunately, there is limited research on predicting soil pollution, let alone the
hydrocarbons and heavy metal content of acid tar lagoons; most research estimates air and
water pollution. The concentration of hydrocarbons, heavy metals, and soil acidity does
not change significantly without appropriate remedial measures, and this is based on the
knowledge of the level of contamination of the soil with these contaminants. There have
been numerous studies worldwide on the qualitative analysis, prevention and control, and
remediation of soil pollution; however, there have been few studies on the quantitative
analysis of soil pollution. It has become extremely important to evaluate and accurately
predict the content of hydrocarbons and heavy metals in soil via acid tars lagoons.

The selected parameters in the present application of ML (pH, TPH and the content
of heavy metals and As) have not been fully studied and correlated in any other study
regarding, first of all, the initial composition of the acid tars in the lagoon and their values
after the application’s stabilization-encapsulation procedure. Artificial intelligence with
machine learning has never been applied before to measure the pH, TPH, and heavy metal
content of acid tar in a lagoon. The lack of data was noted while it was being obtained. I
specified that, with the exception of a few works in the literature, the uses of ML algorithms
are published separately for soil pH, TPH, and heavy metals [34–38]. We specified that with
the exception of a few works in the literature, the uses of the ML algorithm are published
separately for soil pH, TPH, and heavy metals. Among the chemical substances identified
in the potentially concerning acid tars under study in this paper, the concentrations of TPH
and metals were determined experimentally and then estimated.
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2. Materials and Methods

Sampling, preparation, and coding of the acid tar samples from the lagoon. The
sampling procedure was done according to BS EN 14899:2005. Characterization of waste.
Sampling of waste materials. Framework for the preparation and application of a sampling
plan. This method is applicable for samples of untreated acid tar, neutralized tar, or
stabilized tar in force (Order no. 95/2005).

Experimental layout. A lagoon area of 10.55 ha was used for this study. Sampling was
carried out in acid tar sampling points from 5 cm, respectively, 30 cm depth, and following
the STEREO 70 coordinates of the sampling points.

The characterization of the acid tar and the finite treated products was made by
the determination of the following key indicators: pH, THP content, metals, chlorides,
dissolved organic carbon (DOC), sulfites, total of dissolved solids (TDS), and total of
organic carbon (TOC) [26]. According to Order 95 from 2005, to be deposited and accepted
in deposits, the waste must have certain chemical properties [27]. This is why a specific
analysis was conducted for the studied and treated acid tars. Also, the validation of the
treatment process necessitated the performing of the leachate test.

Treatability testing program. The treatability studies specific to the studied lagoon and
studies performed at a laboratory scale offered the necessary data for feasibility treatment
recipe determination.

The working program had the following steps [26]:

• Sample collection;
• Initial samples characterization;
• Sample homogenization;
• Performing the chemical tests;
• Performing the treatability tests;
• Performing the test by mixing the reactants with the contaminated material and the

formulation preparation for the next tests;
• Blending the design optimization;
• Selection of the mixture design verifying phase;
• Design and final test preparation;
• Data analysis, evaluation, and validation of recipes proposed and applied to the

studied acid tars.

Laboratory analysis
Determining the TPH content. The determination of the TPH content was made

using the gas-chromatographic method (GC-FID), according to the SR EN ISO 16703:2011
testing method.

Heavy metals and As concentrations. Metal concentrations were established accord-
ing to the SR EN ISO 15586:2004 Analysis Method: Determination of Trace Elements by
Graphite Furnace Atomic Absorption Spectrometry using a Graphite Furnace Atomic
Absorption Spectrometer.

Our proprietary acid tar stabilization technology consists of the following [25,26]:

• Mixing the acid tar with powdered hydrated lime by bringing the pH to alkaline values
(pH = 9–10) and passing the heavy metals into insoluble combinations, following the
neutralization reaction with additives to stabilize the pH.

• The solidification and stabilization of acid tar by mixing with hydraulic binders
and emulsifiers, which produces the encapsulation of contaminants in granular and
uniform particles, blocking the possibility of their spreading in the environment.

The final validation of the recipes proposed and applied to the acid tar in the studied
lagoon is being done by comparing the leachate/eluate indicators with the maximum
allowed values for the leachate obtained from the acid tar, according to Order 95/2005 [27].
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3. Machine Learning Algorithm Description

During the investigation, monitoring, and remediation of a site polluted with acid tars,
the concentration of pollutants is an important factor in identifying the pollution level and
spatial distribution [28].

Determining the treatment/elimination technologies of acid tars from the refineries
and evaluating their feasibility was done by laboratory testing. Among the most important
indicators of an acid tar sample and after applying the required treatment test, this paper
focuses on the following: pH, TPH content, and heavy metals contents (Pb, Cd, Cu, Cr, Ni)
and As.

A software program was developed to estimate the properties of new acid tar samples
without measuring them. It was written in Python 3.11.6, using PyCharm Community
Edition as IDE [41].

The developed software uses machine learning techniques to estimate the following
eight properties of acid tars:

• Initial pH of the acid tar sample;
• Total Petroleum Hydrocarbons (TPH) of the acid tar;
• Initial lead concentration of the acid tar (mg/kg);
• Initial cadmium concentration of the acid tar (mg/kg);
• Initial copper concentration of the acid tar (mg/kg);
• Initial chrome concentration of the acid tar (mg/kg);
• Initial nickel concentration of the acid tar (mg/kg);
• Initial arsenic concentration of the acid tar (mg/kg).

These eight properties are the dependent or response variables.
The following properties are the predictor variables:

• The X- and Y-coordinates of the places where the soil samples were extracted. The
stereographic 70 projection was used to represent those coordinates.

• The tar samples extraction depth (cm). A total of 82 samples were extracted either
from 5 cm depth or 30 cm depth (41 samples each for the two depths of 5 and 30 cm).

The algorithm used for the developed program was taken from [42]. It is the preferred
method of the authors because it is simple to understand and implement. The chosen
method has the following steps:

• Obtaining the data.
• Data visualization.
• Preparing the data for the machine learning model.
• Selecting and training a machine learning model.
• Hyperparameter tuning.
• Evaluating the model on the test set.

Obtaining the data. This step involves obtaining the available data, which will be used
for training the chosen algorithm. The data set contains 82 samples with the predictor and
response variables mentioned above. Each row represents an acid tar sample, and each
column represents one of the variables involved in this machine-learning project.

The main statistical characteristics of every acid tar sample property are presented in
Table 1.

Table 1. Main statistical characteristics of every acid tar sample property.

Property Minimum Value Maximum Value Mean Value Standard Deviation

X-coordinate 385,380.6 385,533.507 385,451.47 45.96
Y-coordinate 581,167.73 581,268.73 581,213.77 30.42

Sample depth 5 30 17.5 12.58
Initial pH 0.2 5.28 1.12 1.12

TPH 48,333 477,062 169,685.37 80,568.12
Initial Pb concentration 42 2235 343.07 372.91
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Table 1. Cont.

Property Minimum Value Maximum Value Mean Value Standard Deviation

Initial Cd concentration 1 126 20.34 19.82
Initial Cu concentration 5 789 46.59 101.9
Initial Cr concentration 3 452 27.35 60.51
Initial As concentration 1.4 589 96.13 137.37
Initial Ni concentration 2 859 28.5 109.67

After the data were obtained, it was divided into training and testing data. A total of
70% was used as training data, and 30% was used as testing data.

Data visualization is the next step. Its purpose is to offer visual insight into the
obtained data, which may assist in solving the machine learning problem.

The geographic coordinates of the obtained samples are presented in Figure 1.
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Figure 1. The placement of the acid tar sample sampling points.

Figure 1 shows that the samples were taken from a well-defined, enclosed area. This
means that there is a very high chance for the data to be consistent, and it will be helpful
for future versions of the program to obtain training data from inside the area.
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The following steps can be performed either manually or automatically. In the first
option, the people conducting the machine learning make every choice along the way
and write the appropriate lines of code. In the second case, the computer is responsible
for making every decision and choice based on mathematical and statistical criteria. This
technique is called “AutoML” (which comes from “Automatic Machine Learning”).

For the development of the machine learning software, Automatic Machine Learning
was chosen by the authors for the following reasons:

• Automation and speed;
• Efficiency;
• Reduced human bias;
• Coding volume.

To implement AutoML, the PyCaret library was used. PyCaret is an open-source
machine-learning library in Python that automates ML workflows [43]. This library auto-
mates the entire workflow, testing a very large number of algorithms and possibilities in a
short amount of time. Because everything is automated, the results are objectively the best
as they are chosen through mathematical and statistical values.

The parameters used in the PyCaret library are the default parameters unless speci-
fied otherwise.

Also, it is worth noting that PyCaret does not accept multivariate estimation. This
means the next steps were executed for every response variable considered.

Preparing the data for the machine learning model is a very important step, which
is essential for ensuring the accuracy, performance, and effectiveness of machine learning
algorithms. It helps improve the quality and usability of the resulting insights and predictions.

For the training data obtained, the only data preparation needed was normalizing the
predictor data for both the training and testing sets. The following normalization methods
were chosen:

• Z-score normalization;
• Minmax normalization.

The remaining steps of the program’s algorithm will be repeated two times, with the
dataset being normalized using each of the two algorithms. More information about the
two types of normalizations can be found online [44,45].

Both normalization algorithms were used with their default parameters.
Selecting and training a machine learning model uses the prepared data to be given

to a machine learning model for training and, later, testing. The purpose of this step is to
choose an algorithm from a list of candidates that offers the best fit for the training data.

The best algorithm to use was determined by using the PyCaret AutoML library. This
library can automatically test and tune 19 machine-learning algorithms that come with it.
Other algorithms can be tried, but the authors considered the default number of algorithms
to be enough and did not use this option [43,46–52].

Hyperparameter tuning is the operation of finding the set of algorithm parameters
that give the best estimation for a training dataset. The hyperparameters are chosen by the
programmer (or the AutoML library), and a set of candidate values must be given for each
chosen hyperparameter. For each combination of hyperparameters, the algorithm is trained
using the same training dataset, and the estimation accuracy is stored. The hyperparameter
tuning algorithm stores the set of hyperparameters that give the best estimation accuracy.

The PyCaret AutoML library automatically does the job of hyperparameter tuning for
each tested algorithm and choosing the hyperparameter set that fits the training dataset best.

Because the training dataset was normalized, as stated above, two different hyperpa-
rameter sets were obtained, one for each case of normalization.

To improve the machine learning estimation accuracy, each of these candidate algo-
rithms was trained using the cross-validation technique. For this program, a fourfold
cross-validation was chosen, the default setting for the used AutoML library.
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To determine the best model from the candidate models, there are a couple of criteria
one can choose from from the PyCaret library. In this work, two selection criteria were
chosen: the mean average error (MAE) and root mean square error (RMSE). The values of
both criteria must be minimized.

Because the training dataset considered two cases (the two types of normalization),
each of these cases will yield its own results.

Evaluating the model on the test set is the last step of the developed software program.
Evaluating the model on the test set involves, for each of the two performance criteria
considered, the following steps:

• The best model for each of the two performance criteria (MAE and RMSE) is considered;
• The chosen model is fitted on the training data set;
• The model predicts the output values for the inputs in the test set;
• The predicted values and the real (ground truth) values are used to evaluate the

model’s prediction accuracy.

4. Results and Discussion

As stated above, the presented methodology was used separately for every response
variable. Below, the obtained results will be presented. For brevity, the determined
hyperparameters of the best algorithm are not presented.

The obtained results for the initial pH response variable are presented in Table 2.

Table 2. Performance metrics values on the training and testing set for initial pH.

Normalization Method Criterion Best Algorithm Value on Training Set Value on Testing Set

Z-score MAE Gradient Boosting 0.3836 0.2018
Z-score RMSE Gradient Boosting 0.524 0.2574
Minmax MAE Gradient Boosting 0.3836 0.2018
Minmax RMSE Gradient Boosting 0.524 0.2574

The results presented in Table 2 show that data preprocessing was not considered
when estimating the value of the initial pH. In addition, the chosen normalization method
or criterion is of little consequence.

The obtained results for initial THP are presented in Table 3.

Table 3. Performance metrics values on the training and testing set for initial THP.

Normalization Method Criterion Best Algorithm Value on Training Set Value on Testing Set

Z-score MAE K-neighbors 59,842.65 71,864.85

Z-score RMSE Orthogonal Matching
Pursuit 75,832.14 95,668.57

Minmax MAE K-neighbors 59,842.65 71,864.85

Minmax RMSE Orthogonal Matching
Pursuit 74,026.66 95,668.57

The results presented in Table 3 show that two algorithms provide the best estimation,
depending on the chosen criterion. The K-neighbors algorithm provides better results
when using MAE. For RMSE, the Orthogonal Matching Pursuit is the better choice.

The obtained results for the initial lead are presented in Table 4.
The results from Table 4 show that the Passive Aggressive algorithm fares better with

MAE as a criterion. However, the Orthogonal Matching Pursuit is the better choice for
RMSE minimizing, as shown in Table 3.

The obtained results for initial cadmium are presented in Table 5.
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Table 4. Performance metrics values on the training and testing set for the initial lead.

Normalization Method Criterion Best Algorithm Value on Training Set Value on Testing Set

Z-score MAE Passive Aggressive 212.96 225.37

Z-score RMSE Orthogonal Matching
Pursuit 320.79 306.27

Minmax MAE Passive Aggressive 212.51 205.22

Minmax RMSE Orthogonal Matching
Pursuit 320.79 306.27

Table 5. Performance metrics values on the training and testing set for initial cadmium.

Normalization Method Criterion Best Algorithm Value on Training Set Value on Testing Set

Z-score MAE Orthogonal Matching
Pursuit 12.711 12.38

Z-score RMSE Orthogonal Matching
Pursuit 16.26 19.74

Minmax MAE LGBM 12.55 12.92
Minmax RMSE Lasso 16.68 20.01

In Table 5, the best algorithm for Z-score normalizing is the Orthogonal Matching
Pursuit. If the Minmax normalization was chosen, the best algorithm would depend on the
criterion between LGBM and Lasso.

The obtained results for initial copper are presented in Table 6.

Table 6. Performance metrics values on the training and testing set for initial copper.

Normalization Method Criterion Best Algorithm Value on Training Set Value on Testing Set

Z-score MAE Random Forest 12.37 65.25
Z-score RMSE Random Forest 14.82 182.43
Minmax MAE Random Forest 12.35 65.24
Minmax RMSE Random Forest 14.81 182.43

The results in Table 6 show that the Random Forest algorithm is the best choice for
estimating the initial copper, regardless of the normalization algorithm and criterion.

The obtained results for initial chromium are presented in Table 7.

Table 7. Performance metrics values on the training and testing set for initial chromium.

Normalization Method Criterion Best Algorithm Value on Training Set Value on Testing Set

Z-score MAE Ada Boost 6.64 38.17
Z-score RMSE Ada Boost 8.38 110
Minmax MAE Ada Boost 6.57 38.17
Minmax RMSE Ada Boost 8.23 110.05

As can be seen in Table 7, the Ada Boost algorithm is the best option for the given
training database is the Ada Boost algorithm.

The obtained results for initial arsenic are presented in Table 8.
The results from Table 8 show that minimizing RMSE is done best by the K-neighbors

algorithm. The Passive Aggressive and Huber algorithms are better when minimizing
the MAE.

The obtained results for initial nickel are presented in Table 9.
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Table 8. Performance metrics values on the training and testing set for initial arsenic.

Normalization Method Criterion Best Algorithm Value on Training Set Value on Testing Set

Z-score MAE Passive Aggressive 59.32 94.69
Z-score RMSE K-neighbors 89.73 144.49
Minmax MAE Huber 60.49 93.63
Minmax RMSE K-neighbors 89.73 144.49

Table 9. Performance metrics values on the training and testing set for initial nickel.

Normalization Method Criterion Best Algorithm Value on Training Set Value on Testing Set

Z-score MAE Catboost 5.77 59.71
Z-score RMSE Catboost 8.25 198.35
Minmax MAE Catboost 5.77 59.71
Minmax RMSE Catboost 8.25 198.35

In Table 9, the Catboost algorithm is the best choice for the normalization methods
and criteria considered.

Also, the following conclusions can be drawn by studying Tables 2–9.

• The normalization method has little impact on the criterion values on both training
and testing sets. This is to be expected because normalization is the same process.
These methods were considered for the program because the Z-score normalization
is sensitive to outliers, while the Minmax is not so sensitive. For the other training
databases, it is possible that the choice of normalization method will bring significantly
different results.

• The choice of the training criterion matters to the computed values. This is not
only because of the way these criteria are computed but also because of the outlier
sensitivity. MAE is not very sensitive to outliers, but RMSE is. If the training database
has a lot of outliers, MAE may be a better choice than RMSE.

• In Tables 6–9, the criterion values for the training set are much lower than for the
testing set. There are many possible causes for this behavior. The authors believe that
it is a sign of underfitting due to the small size of the training database.

• There are also cases where the values for the training dataset are higher than those for
the testing dataset. Because the differences are not large, the authors cannot conclude
that this is a case for overfitting. The training database size also rules out overfitting.

To make the obtained performance more suggestive, graphs between the determined
and the real (ground truth) values will be presented. Because there are many combinations
considered and for brevity reasons, graphs for only a part of the obtained results will be
presented. More precisely, the graphs show the obtained and ground truth values for every
response variable, using Z-score normalization and MAE as optimization criteria. Each
graph will also contain the R2 correlation coefficient for every prediction.

Also, to evaluate the prediction’s precision, each of the following graphs will contain
the R2 correlation coefficient between the real and the estimated data.

The R2 correlation coefficient is a number between −1 and 1 that represents the pro-
portion of variance of the response variable(s) that has been explained by the independent
variable(s) in the model. It provides an indication of the goodness of the fit and, therefore,
is a measure of how well the unseen samples are likely to be predicted by the model
throughout the proportion of the explained variance [53].

The R2 correlation was chosen because, in the authors’ opinion, it is a metric that is
easier to interpret than MAE or RMSE. This is because MAE and RMSE do not have a
ceiling, and it is much harder to assess the model’s accuracy only by looking at the MAE or
RMSE values. However, R2 is capped between −1 and 1, and the result interpretation is
more straightforward: the higher the value, the higher the correlation.
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A graphical comparison of the experimental and predicted pH values is presented in
Figure 2.
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The results of applying the presented method can be improved by increasing the
amount of data in the training database. Thus, the presented method can be used to
estimate the properties of acid tars.

The presented technique has its own limitations. The first limitation is that ML
algorithms are very dependent on the provided training dataset. Ideally, the training
dataset should be as large as possible (hundreds, thousands or even millions of records),
and its records should be as correlated as possible. The more data and the more correlated
the data from the dataset, the more reliable the ML algorithm that will process it.

The second limitation is in the choice of data preprocessing. The limitation is that
there is no set algorithm to determine which type of preprocessing is appropriate for the
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specific problem. A mix of trial and error, statistical analysis, and experience are used in
this case.

Another limitation is related to the candidate algorithms for ML modeling. In theory,
any ML algorithm for a specific kind of problem can work due to the Garbage In, Garbage
Out principle. In practice, only a couple of algorithms offer the best results. The limitation
here is that there is no algorithm to determine which algorithm(s) are the best for a specific
training database. Each algorithm has its own description, prerequisites, and strong and
weak points, but testing them on a computer will let the programmer know if it can be
applicable. This limitation is partially minimized by using AutoML technology.

Further research is required because the method presented therein can be improved.
Here are a few of the improvements:

• Data preprocessing. Besides scaling, other preprocessing can be used: imputations,
feature engineering, etc. It depends on the training data analysis.

• Choice of candidate algorithms. It is not mandatory to choose the algorithms presented
in this paper. Depending on the characteristics of the training dataset, other algorithms
may be tested as well. Some algorithms require dataset preprocessing, which must
be applied before the training phase. Also, PyCaret can be programmed to accept
machine learning algorithms other than its default.

• Choice of the hyperparameters for hyperparameter tuning. Each algorithm has a
myriad of hyperparameters to choose from, and thus, a wide range of values can be
tested. However, hyperparameter tuning will slightly improve the estimation power
of an algorithm. It will not yield fantastic results from a badly chosen one. This part is
facilitated by AutoML technology.

• Analyzing the possibility that there could be relationships between dependent vari-
ables. The PyCaret library does not allow multivariate regression using machine
learning, but a future version of the program will make the appropriate changes.

• Analyzing the importance of each set of predictor data offers the user the possibility
of eliminating the data that matters the least if they choose to.

Choice of the criteria to determine the best algorithm. MAE and RMSE are not the
only existing criteria. Other criteria can be chosen.

This is the first such investigation in the open literature and therefore justifies the
novelty of the current study.

5. Conclusions

Machine learning shows the potential to identify places where pollution is present in
contaminated soil. In this study, the authors presented a methodology that uses machine
learning to estimate the properties of the acid tars, knowing the place from which they
were sampled and the depth of the taken samples.

This methodology uses AutoML techniques to determine the best algorithm and its
hyperparameters for training and testing data.

In the next step, the above algorithms were chosen on a test set, with each acid tar
property (pH, TPH, heavy metals, and As) being chosen as the response variable. The
chosen performance criterion was R2.

The results show that the correlation between the experimental data and the estimated
data can be improved, mostly because of the low amount of data from the training database.
Based on an exhaustive search performed by the authors, similar studies in estimating
acid tar properties that consider machine learning applications remain unreported in
the literature.

Furthermore, with supportive measures like open-data policies and data integration,
AI/ML possesses the potential to revolutionize the practice of contaminated site remedia-
tion.
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