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Abstract: Binaural audio synthesis (BAS) aims to restore binaural audio from mono signals obtained
from the environment to enhance users’ immersive experiences. It plays an essential role in building
Augmented Reality and Virtual Reality environments. Existing deep neural network (DNN)-based
BAS systems synthesize binaural audio by modeling the overall sound propagation processes from
the source to the left and right ears, which encompass early decay, room reverberation, and head/ear-
related filtering. However, this end-to-end modeling approach brings in the overfitting problem for
BAS models when they are trained using a small and homogeneous data set. Moreover, existing
losses cannot well supervise the training process. As a consequence, the accuracy of synthesized
binaural audio is far from satisfactory on binaural differences. In this work, we propose a novel
DNN-based BAS method, namely DIFFBAS, to improve the accuracy of synthesized binaural audio
from the perspective of the interaural phase difference. Specifically, DIFFBAS is trained using the
average signals of the left and right channels. To make the model learn the binaural differences, we
propose a new loss named Interaural Phase Difference (IPD) loss to supervise the model training.
Extensive experiments have been performed and the results demonstrate the effectiveness of the
DIFFBAS model and the IPD loss.

Keywords: binaural speech synthesis; binaural differences; interaural phase difference; deep neural network

1. Introduction

Humans can locate sound sources due to their ability to perceive differences in sound
signals transferred to their left and right ears [1]. However, audio signals are usually
recorded in mono channels, which cannot provide realistic spatial cues for the listener
without any processing. Binaural Audio Synthesis (BAS) aims to synthesize binaural audio
from mono audio based on given spatial information, such as a relative position of the
sound source to the listener so that the synthesized binaural audio can provide immersive
auditory experiences to the listener [2]. It is crucial, especially in the fields of virtual reality
(VR) and augmented reality (AR) because it can restore real-world sound environments [3].

Most BAS methods rely on traditional digital signal processing (DSP) techniques [4] to
model the true propagation process from the sound source to each ear, producing binaural
audio with spatial information. As shown in Figure 1a, the propagation modeling can be
decomposed into a series of components, including HRTF (head-related transfer function),
room reverberation (e.g., RIR(room impulse response)), and environmental noise, each
of which is modeled as a linear time-invariant system (LTI) [5–7]. To generate binaural
audio, the DSP-based BAS methods often perform a series of convolutions with these
systems. Among them, HRTF represents the transmission path of sound from a certain
position in space to the listener’s eardrum in the free field, which is a key component for
binaural audio to have a sense of space. Due to its high computational cost for accurate
numerical simulation [8–10], people tend to collect general discrete HRTF databases[11,12]
in anechoic chambers.
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Traditional DSP methods are easy to understand and relatively easy to model mathe-
matically. However, the actual sound propagation process has non-linear characteristics
that are not appropriately modeled by LTI systems [13]. In addition, since existing HRTF
databases are discrete, inaccurate interpolation algorithms [14] will cause distortion of
continuously moving sound sources. Therefore, in order to synthesize more realistic and
natural binaural audio, DSP-based methods are far from satisfactory.

（b）The DNN-based BAS system
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Figure 1. Binaural audio synthesis systems. (a) The DSP-based BAS model. Input mono signal
from source xsource(t) is filtered by HRTF hL/R

hrt f (t) and room impulse response hroom
rir (t) respectively

and then superimposed with environmental noise ωnoise(t) to produce the binaural signals ŷL(t)
and ŷR(t); (b) The DNN-based BAS method directly models the propagation process from the
sound source to the left and right ears to produce ŷL(t) and ŷR(t); (c) The framework of proposed
DIFFBAS model.

With the emergence of deep learning techniques, researchers set to utilize deep neural
networks (DNN) to address the limitations of DSP-based methods. An end-to-end BAS
model utilizing geometric and neural warping techniques was first proposed by Richard
et al. [15]. It takes mono audio and spatial information (e.g., relative position information
between the sound source and listener) as inputs to produce binaural audio which correlates
with people’s hearing experience (see Figure 1b). The model has been trained and tested on
the first and only continuous binaural dataset, comprising paired monaural and binaural
audio recordings captured in the real world. Based on this dataset, considering the limited
frequency distribution of training samples, Lee et al. [16] rendered speech in the Fourier
domain to improve the model’s generalization to out-of-distribution audio. Although the
introduction of DNN has brought significant advantages in addressing the nonlinear effects
of sound propagation, the complexity of the sound propagation process and the supervised
end-to-end training process may lead to model overfitting on small binaural datasets.

In order to simplify the sound propagation process, Leng et al. [17] suggested that
the sound propagation process can be modeled in two stages which include a common
path modeling (i.e., early sound propagation from the source to the listener’s front head)
and specific path modeling (i.e., the sound propagation from the listener’s front head
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to left/right ears). They also suggested using the generative model DDPM (Denoising
Diffusion Probabilistic Model) [18] to enhance the naturalness of synthesized audio. How-
ever, they jointly trained these two stages, and the model may still cause overfitting in the
common path modeling part, thus affecting the accuracy of the specific path modeling.

In fact, the spatial sense of human hearing mainly lies in the binaural differences
perceived by the listeners [19] which is closely related to the specific path modeling instead
of common path modeling. The overfitting problem in common path modeling may
favor simulations of early attenuation and reverberation establishment, thus affecting the
modeling of binaural differences and deviating from the original intention of the BAS
task. In view of this, we propose the DIFFBAS method to decompose existing DNN-based
methods (see Figure 1c). The design of DIFFBAS is intended to eliminate the modeling of
common paths in the sound propagation process (such as reverberation effects), and focus
on the modeling of specific paths, especially the filtering effects of the head and ears. This
method not only reduces dependence on the dataset but also more accurately reproduces
differences between ears. Specifically, DIFFBAS takes the mono audio at the point of the
front head as input and adopts the newly proposed interaural phase difference (IPD) loss to
supervise the model training. Such an operation is also reasonable in practice: the common
path model can be trained separately and output a decayed mono signal which can be used
as the input of DIFFBAS. Based on the decayed mono signals, DIFFBAS only has to focus
on modeling the specific path to generate more accurate binaural audio which contains
better spatial information. Meanwhile, the addition of IPD loss can better supervise the
modeling of binaural differences based on the original loss supervision.

Our contributions are summarized as follows:

• A novel DNN-based BAS method, DIFFBAS is proposed. By focusing on modeling the
specific path, DIFFBAS can avoid the overfitting problem caused by environmental and
sound source diversity. The model employs new loss supervision for supplementary
supervision and consequently improves the accuracy of synthesized binaural audio
referring to the interaural phase difference between two ears.

• To better train the DIFFBAS model, a new loss, namely IPD loss, is proposed. This
loss fits the perceptual characteristics of the human ear and ensures that the model
will not lose too much spatial information during the training process. In addition,
IPD is regarded as a new evaluation metric that reflects the accuracy of binaural phase
difference in synthesized audio. It is the first objective metric that can quantify the
spatialization degree of binaural audio.

• The performance of DIFFBAS has been validated on the only binaural dataset captured
in the real world [15]. Sufficient contrast and ablation experimental results further
demonstrate the effectiveness of DIFFBAS and IPD loss.

The source code and the datasets are available at https://github.com/tongjiRain/DIFFBAS.

2. Methodology
2.1. Problem Definition

Given a single-channel source audio xsource ∈ R1×T of length T and the relative
position p = (Ps, Rα) between the source and the listener, the objective of a BAS system is
to generate binaural audio as

(ŷL(t), ŷR(t)) = f (xsource(t), p) (1)

where ŷL and ŷR ∈ R1×T, f denotes the transformation function parameterized by a DNN,
Ps = (x, y, z) is the spatial position that is indicated by the coordinates, and Rα = (qx, qy, qz, qw)
is a quaternion that indicates the head orientation from the listener to the source. Function
f models the overall sound propagation from the sound source to the left ear and right ear,
which mixes modeling of the common path (e.g., early decay during audio transmission
and the build of reverberation) and the specific path (e.g., the head/ear filtering). However,
since the sound propagation model of the common path can be trained separately and

https://github.com/tongjiRain/DIFFBAS


Appl. Sci. 2024, 14, 3385 4 of 15

shared by left and right channels in the two-stage solution, we remove the common path
modeling from f . Accordingly, we reformulate the problem as directly modeling the
specific path of the sound propagation, i.e., the sound transfer from the front head to each
ear, as follows

(ŷL(t), ŷR(t)) = f̃ (xmono(t), p) (2)

where xmono is no longer the mono audio collected from the sound source, but the mono au-
dio collected in front of the listener’s head. f̃ is in fact equivalent to a head/ear-related filter.

2.2. Framework of DIFFBAS

As shown in Figure 2, DIFFBAS accepts the mono audio x̃mono and the relative position
p as the inputs, and warps the mono audio to produce two synthesized audio for the left
and right ears. The backbone network of DIFFBAS can be any DNN. To illustrate, select
two networks to implement DIFFBAS, including WarpNet [15] which encodes audio in the
temporal domain and NFS [16] which encodes audio in Fourier space. The networks are
trained under the supervision of a loss function composed of three terms.
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Figure 2. The overall framework of DIFFBAS. Our method takes mixed monaural audio (the mean
value of binaural audio) and sound source location information as input. We adopt a joint loss for
supervision, where the IPD is designed to enhance the recovery of interaural differences. We apply
our method on two open-source backbone networks, including WarpNet [15], which encodes position
information as time-domain convolution weights, and NFS [16], which encodes position information
as frequency-domain masks.

The first term is the L2 which is defined as

L2 =
1

2T

T

∑
t=1

{
[ŷL(t)− yL(t)]

2 + [ŷR(t)− yR(t)]
2
}

(3)

where T is the audio length, yL and yR are the ground truth signals from left and right
channels. ŷL and ŷR are the synthesized binaural audio. L2 guarantees the synthesized left
and right ear audio is close to the ground truth in the overall waveform.

The second term Lphs is the phase spectrum difference between the synthesized audios
and ground truth, which is defined as follows

Lphs =
1

2Fs · Ts

Fs

∑
w=0

Ts

∑
t=0

(∣∣∠ŶL −∠YL
∣∣+ ∣∣∠ŶR −∠YR

∣∣) (4)

where YL and YR are the results of Short Term Fourier Transform (STFT) on yL and yR, ŶL
and ŶR are the results of STFT on ŷL and ŷR, and Fs and Ts are the frequency and time
resolutions of STFT. ∠ means performing phase calculations on the spectrogram to obtain
the phase spectrum. Lphs helps to better model sound time delay.



Appl. Sci. 2024, 14, 3385 5 of 15

The third term is a newly proposed loss, namely LIPD, which is used to supervise
model training from the perspective of the interaural phase difference to retain better spatial
information. It has been explained in more detail in Sections 2.3 and 2.4.

We want to stress that during the training process, the input of DIFFBAS xmono is
approximated by the average signals of the collected signals from the left and right ears, i.e.,
xmono =

yL(n)+yR(n)
2 . Such approximation is reasonable, because Leng et al. [17] pointed out

that the signals collected at the front of the head can be represented by the average signals
from the left and right ear channels. In addition, Gao et al. [20] also used the average
signals from the left and right channels as the approximation of the mono audio collected
near the head. Experimental results have demonstrated that by replacing the training input
signals and incorporating the new IPD loss term, the synthesized binaural audio exhibits
more accurate spatial cues to the listener.

2.3. Definition of IPD

The human’s ability to localize sound sources predominantly relies on interaural
time differences(ITD) between the signals received by the left and right ears. Different
incident angles of sound waves will lead to different time differences, allowing humans to
perceive relevant spatial information. Taking the horizontal plane as an example, as shown
in Figure 3a, if the role of the head is omitted, the ears are approximated as two points
2a apart (a is approximately the radius of the head). For plane sound waves incident in
direction θ (can be regarded as generated by a point sound source at infinity), ITD can be
calculated as

ITD(θ) =
2a
c

sinθ (5)

where c is the speed of sound, and if ITD is greater than 0, it means it reaches the right ear
first. If ITD is less than 0, it means it reaches the left ear first.

If we further consider the shape of the head, as shown in Figure 3b, the head is approx-
imated as a sphere with a radius a, and the ears are approximated as two opposite points
on the spherical surface. The formula for the binaural time difference is approximately

ITD(θ) =
a
c
(sinθ + θ) (6)

From Equations (5) and (6), it can be seen that ITD is related to the azimuth angle and
is a key factor for human spatial positioning.

Left ear Right ear

𝜃

𝜃
2𝑎

Incident sound wave

𝑎

𝜃
𝜃

𝑎𝑠𝑖𝑛𝜃

𝑎𝜃

Incident sound wave

（a）Time-difference model ignoring head shape （b） Time-difference model considering head shape

Left ear Right ear

Figure 3. Schematic diagram of horizontal ITD (interaural time difference) calculation.

The moment a sudden or transient sound reaches the basilar membrane of the human
ear, the hair cells in the ear become excited and sensitive, so that the human ear can keenly
distinguish the difference in arrival time [21]. However, due to the human ear’s adaptability
to sound, a continuous audio sequence may cause subsequent sounds to arrive at the same
ear and mask previous sounds, thus weakening the significance of temporal differences.
In this case, the human ear mainly infers the interaural time difference by analyzing the
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interaural phase difference (IPD) of the sounds in the left and right ears [22]. According to
Equation (6), IPD can be defined as

IPD(θ, ω) = 2πω
a
c
(sinθ + θ) (7)

where ω is the frequency of the sound wave. The human auditory system realizes the
perception of sound direction by comprehensively processing the information of perceived
sound frequency and interaural phase difference. Therefore, in the digital signal of binaural
audio, we can use STFT to analyze the phase spectrum difference of short-term audio to
quantify the spatial information contained in it.

2.4. IPD Calculation of Binaural Audio

Given binaural audio y(t) = [yL(t), yR(t)], the corresponding spectrograms [YL, YR] ∈
CFs×Ts can be computed as

YL(ω, t) = AL(ω, t) · ejφL(ω,t)

YR(ω, t) = AR(ω, t) · ejφR(ω,t) (8)

where AL(ω, t) and AR(ω, t) denote the amplitudes of the left and right ear signals at time t
and frequency ω, φL(ω, t) and φR(ω, t) represent their initial phases. The IPD ∆φ between
two ears can be computed as

∆φ(ω, t) = φL(ω, t)−φR(ω, t) ∈ [−2π, 2π] (9)

We need to limit the phase difference within one cycle. Leveraging Euler’s theorem
and Equation (8), the spectral disparity between the left and right ears can be computed as

YL(ω, t)
YR(ω, t)

=
AL(ω, t)
AR(ω, t)

· (cos ∆φ(ω, t) + j sin ∆φ(ω, t)) (10)

Furthermore, ∆φ can be obtained by calculating the phase angle of this complex matrix

∆φ(ω, t) = ∠
(

YL(ω, t)
YR(ω, t)

)
∈ [−π, π] (11)

where ∠ is the depression angle for calculating the complex matrix, and ∆φ represents the
initial phase difference between the left and right ears that we ultimately calculate.

Therefore, for an arbitrary binaural audio y(t) = [yL(t), yR(t)], the IPD can be repre-
sented by a complex matrix

IPD(y(t)) = ∠
(

YL
YR

)
∈ CFs×Ts (12)

where Fs and Ts are the frequency and time resolutions of STFT. Using this formula, the
phase difference of binaural signal yL(t) at a specific time and frequency after STFT trans-
formation can be calculated. Combined with Equation (7), it can be shown that the phase
difference contains the orientation information of the sound source at a certain moment.

2.5. Overall Loss Function

In addition to the ITD mentioned above, the human ear’s ability to localize sound
sources also depends on the ILD (interaural level difference) and the spectral cues gen-
erated by the pinna. Under ideal circumstances, by accurately modeling the time delays
and energy attenuation during the sound source propagating to both ears, the synthe-
sized binaural audio can have ITD, ILD and spectral cues consistent with the real audio,
thereby achieving higher sound localization accuracy. Richard et al. [15] underscored the
significance of accurate phase estimation for binaural audio by introducing a phase loss
term Lphs. They also revealed that the L2 loss on waveforms combined with Lphs loss
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can effectively supervise the time delays and energy reductions in sound propagation.
However, these two losses are only used to supervise the training of propagation models
for each ear. Since these two losses cannot be completely optimized to 0, even if the loss is
well optimized, it cannot ensure that the difference between the two ears is fully restored.
Therefore, additional loss is needed to compensate for this deficiency to intuitively compute
disparity cues between ears

According to Sections 2.3 and 2.4, we infer that the IPD of binaural audio contains
spatial information and can be quantified by calculating the phase spectral difference.
Ideally, the predicted IPD of binaural audio should be highly consistent with the actual
IPD of binaural audio to obtain a consistent spatial experience. Therefore, we introduce an
additional loss named LIPD to better supervise the model to learn more accurate binaural
differences. According to Equation (12), LIPD can be defined as

LIPD =
1

Fs · Ts

Fs

∑
w=0

Ts

∑
t=0
|IPD(ŷ(t))− IPD(y(t))| (13)

where ŷ(t) is the predicted binaural audio signal and y(t) is the actual binaural audio, and
Fs and Ts are the frequency and time resolutions of STFT. According to Equation (7), we
calculated that the binaural phase difference may exceed 2π at high frequencies, causing
confusion in human positioning. Therefore, it is necessary to focus on the low-frequency
range and filter the frequency distribution with lower energy when calculating IPD, since
real sound is usually concentrated at specific frequencies with high energy.

The backbone network is trained by minimizing the following loss:

L(ŷ(t), y(t)) = λ1L2 + λ2Lphs + λ3LIPD (14)

where λ1, λ2 and λ3 are the hyperparameters during training.

3. Experiments and Results
3.1. Experiment Settings
3.1.1. Dataset

The binaural speech benchmark dataset is used in all the validation experiments. This
is the only paired binaural audio dataset currently collected in dynamic scenes. It comprises
approximately 2 h of monaural-binaural paired audio data with a sampling rate of 48 kHz.
Data set characteristics and training, validation and testing splitting are shown in Table 1.
The binaural audio was recorded using the KEMAR anthropomorphic model in a semi-
anechoic room, featuring source speech from eight distinct subjects (different speakers).
The ‘acoustically adapted room’ is an acoustically treated room that has partially anechoic
walls and floors, but does not achieve the level of complete anechoics. Figure 4 shows the
detailed dataset capture layout. The KEMAR is located in the center of the room and is set
as the coordinate origin in OptiTrack’s motion capture settings. Different speakers can walk
within a 1.5-m radius circle around KEMAR and move their heads up and down to simulate
the area coverage of a normal social conversation and the OptiTrack system tracked the
position and orientation of the speaker at a frequency of 120 Hz, synchronized with the
audio timestamps. The gender ratio of different speakers is the same, and the collection
time of each of them is about 16 min. We adhere to the initial training-validation-testing
splits as Richard et al. [15] and Lee et al. [16] for a fair comparison.
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1.5m

Figure 4. Side view of capture layout. The speaker speech is recorded with a head-mounted micro-
phone and the binaural audio is captured with binaural microphones on the ears of the mannequin.
Mannequin and participant positions are tracked with OptiTrack cameras mounted on the walls of
the room.

Table 1. Dataset characteristics and training, validation and testing splits. The unit of time length is
minutes: seconds.

Time Length
Speaker Listener Gender Room Characteristics

Train Test

subject1 male 13:17 1:55
subject2 female 14:24 1:59
subject3 female 13:26 1:55
subject4 female 13:12 1:54
subject5 male 13:29 1:59
subject6 male 13:16 1:58
subject7 male 13:51 1:57
subject8 female 13:14 1:49

validation

KEMAR

male

acoustically adapted room

1:24

3.1.2. Baselines

The proposed framework is denoted as DIFFBAS. In order to prove the superiority
of this method in modeling binaural differences among neural network-based methods,
we select two baseline models with obvious differences in network structure. The first one
is WarpNet [15], which uses the idea of dilated convolution in WaveNet [23] and mainly
encodes position information as time-domain convolution weights. The second is NFS [16],
which uses the Fourier shift theorem [24] to model the time delay and energy attenuation
of the sound propagation process in the frequency domain space. Both networks use
geometric warping modules in the early stages to roughly model the time warp from the
sound source to the listener’s left and right ears while respecting physical properties.

3.1.3. Evaluation Method

In our experiments, IPD is introduced as an additional evaluation metric for assessing
the spatial performance of the synthesized audio in addition to the previously used metrics,
i.e., L2, amplitude spectrum, and Lphs [15–17]. Therefore, four metrics are adopted to
evaluate the models’ performances:

• L2, which represents the mean square error between the synthesized binaural audio
and the golden binaural recording.

• Amp, which measures the mean absolute error between the synthesized binaural audio
and the binaural recording on the amplitude after performing STFT on the wave.

• Lphs, which captures the mean absolute error between the synthesized binaural audio
and the binaural recording on the phase after performing STFT on the wave.
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• LIPD, which quantifies the mean absolute error on IPD between the synthesized
binaural audio and the binaural recording. The smaller the metric, the closer the spatial
information carried by the synthesized binaural audio is to the binaural recording.

3.1.4. Training Details

The backbone network of DIFFBAS utilizes two open-source BAS systems WarpNet
and NFS separately. Their geometric warp module used for early delay modeling is re-
moved. Therefore, two versions of DIFFBAS were implemented, i.e., DIFFBAS + WarpNet
and DIFFBAS + NFS. Table 2 shows the configurations of these models used in the ex-
periments. They all use the Adam optimizer to optimize the model and use the same
learning rate, with a value of 0.001. However, the learning rate decay strategy is slightly
different. DIFFBAS + WarpNet will adaptively decay at a decay rate of 0.5 according to
gradient changes, while DIFFBAS + NFS will decay at a decay rate of 0.1 after each epoch
training. For performance comparison, WarpNet and NFS were also trained and tested on
the same dataset. The training details are as follows. WarpNet and DIFFBAS + WarpNet
were trained using two NVIDIA 3090Ti GPUs with a batch size of 24 for 100 epochs, and
NFS and DIFFBAS + NFS were trained using two NVIDIA 3090Ti GPUs with a batch size
of 16 for 100 epochs.

Table 2. Configuration of two binaural audio synthesis models.

DIFFBAS + WarpNet DIFFBAS + NFS

loss function
hyperparameters

λ1 1 1
λ2 0.01 0.001
λ3 0.01 0.001

Optimizer

activation Tanh Relu
type Adam Adam

learning_rate 1.0 × 10−3 1.0 × 10−3

learning_rate_decay 0.5 0.1
weight_decay 0 0

3.2. Experiment Results
3.2.1. Loss Evaluation

In order to verify the effectiveness of our added IPD loss in modeling binaural differ-
ences, we train WarpNet withL2 +Lphs losses and with the losses proposed in Equation (14).
The results are shown in Figure 5, which illustrates the development of phase error and
interaural phase difference (IPD) error as L2 decreases during training. The model trained
with L2 + Lphs (see Figure 5a) shows this phase is actively optimized during training, but
IPD is optimized slowly at first. In Figure 5b, it can be seen that adding in LIPD loss, the
model of IPD error decreases more smoothly and reaches lower value under consistent
changes of Lphs and L2 losses. This indicates that the supervision of LIPD does not conflict
with other losses, and can effectively supplement the supervision of the binaural phase
difference. Various audio losses have been proposed over time, ranging from optimizing
the power spectrum only and copying the input’s phase [25,26] over a multiscale STFT
loss for high frequency and high time resolution [27] to optimization of the scale-invariant
signal to distortion ratio (Si-SDR) [28–30]. In order to better illustrate the superiority of IPD
loss in BAS tasks, we make a full comparison with different loss functions in Table 3. As can
be seen from the results, all the loss functions mentioned above fail to predict an accurate
phase. Although people later use L2 +Lphs losses to greatly reduce the phase error [15–17],
these two losses are only used to supervise the training of propagation models for each
ear. They cannot guarantee the correct relative differences between signals in two ears.
Overall, our additionally introduced IPD loss preserves accurate phase estimation and far
outperforms other methods in terms of error in interaural phase difference.



Appl. Sci. 2024, 14, 3385 10 of 15

0.20.30.40.50.6
2

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

 P
ha

se
 E

rro
r 

ph
s

(a) training with  2 + phs

phs

0.20.30.40.50.6
2

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

 P
ha

se
 E

rro
r 

ph
s

(b) training with 2 + phs + IPD

phs

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

 In
te

ra
ur

al
 P

ha
se

 D
iff

er
en

ce
 E

rro
r 

IP
D

phs

IPD

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

 In
te

ra
ur

al
 P

ha
se

 D
iff

er
en

ce
 E

rro
r 

IP
D

phs

IPD

Figure 5. Development of phase error (Lphs) and interaural phase difference error (LIPD) as the
L2-loss decreases during training on WarpNet [15] using different loss functions. The blue line
represents the changing trend of Lphs, and the orange line represents the trend of LIPD.

Table 3. Comparison of commonly used losses for audio modeling to our proposed loss. The ↓
symbol indicates that the lower the metric, the better the effect. The optimal value of each metric is
shown in bold.

L2× 103 ↓ Amp ↓ Lphs ↓ LIPD ↓

power spectrum+phase copy [25] 1.276 0.048 1.563 -
multiscale STFT [15] 2.279 0.043 1.996 -

Si-SDR [28] 0.798 0.222 1.507 -
L2 0.146 0.033 0.894 1.217

L2 + Lphs 0.145 0.036 0.815 1.064
L2 + Lphs + LIPD (Equation (14)) 0.142 0.036 0.819 0.967

3.2.2. Quantitative Evaluation

Comparative experiment

We compared the quality of binaural audio synthesized by the following systems:

• Geo-Warp, which performs time translation and amplitude alteration on the left and
right ear signals based on the geometric information and attenuation formula of the
distance from the sound source to both ears.

• WarpNet, which transforms the time-domain waveform to obtain binaural audio
through geometric warp and neural warp.

• NFS, which generates frequency domain masks based on position information to
obtain binaural audio.

• DIFFBAS + WarpNet, the backbone network of DIFFBAS is WarpNet.
• DIFFBAS + NFS, the backbone network of DIFFBAS is NFS.

To demonstrate the deficiency of previously used metrics, we add two dummy BAS
systems for comparison:

• Mono-Mono, which produces binaural audio simply by copying the mono audio of
the sound source to the left and right channels.

• Avg-Avg, which produces binaural audio by copying the average signals of left and
right channels.

The results of the comparative experiments are summarized in Table 4.
It can be seen that DNN-based methods are better than Geo-Warp, which shows that

rough time translation and amplitude alteration based only on geometric information
cannot model accurate and real binaural audio, and can only retain fuzzy spatial infor-
mation. In terms of binaural difference recovery, compared with WarpNet, the IPD error
of DIFFBAS + WarpNet is greatly reduced from 1.064 to 0.834. Similarly, the IPD error
of DIFFBAS + NFS is also reduced from 1.250 to 1.083. Therefore, DIFFBAS can signif-
icantly improve the accuracy of the synthesized audio referring to its interaural phase
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differences. At the same time, the losses of other metrics are also reduced, which means
that the introduction of IPD loss will not impact the supervision of other losses.

Table 4. Performances of six BAS models on the four evaluation metrics. We reproduced the results
using the official codes for WarpNet and NFS. The ↓ symbol indicates that the lower the metric, the
better the effect. The optimal value of each metric is marked with an asterisk (·)∗ and bolded, and
the suboptimal value is marked with a (·)† and bolded.

Model L2× 103 ↓ Amp ↓ Lphs ↓ LIPD ↓

Mono-Mono 1.340 0.063 1.564 1.472
Avg-Avg 0.200 0.031 0.598 1.472
Geo-Warp 0.408 0.052 1.156 1.414

WarpNet [15] 0.145 0.036 0.815 1.064 †

DIFFBAS + WarpNet 0.033 ∗ 0.018 ∗ 0.358 ∗ 0.834 ∗

NFS [16] 0.163 0.040 0.869 1.250
DIFFBAS + NFS 0.049 † 0.018 ∗ 0.431 † 1.083

In addition, the human auditory system is most sensitive to the phase difference
information of low-frequency signals, especially for the high-energy parts. Therefore, we
randomly selected a 2-second audio segment and performed STFT, screened out the low-
frequency parts, and calculated the frequencies with peak energy at different time points.
We compute the IPD of synthesized audio at the frequency with the peak energy at each
time. Then, the IPD values of synthesized audio are compared with the IPD values of the
ground truth audio, the results of which have been shown in Figure 6. It can be seen that
DIFFBAS can synthesize binaural audio whose IPD is almost consistent with the ground
truth at the frequency with the highest energy.
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Figure 6. Comparison of IPD(interaural phase difference) at frequencies with peak energy over a
two-second period compared to recording audio. The range of IPD is [−π, π]. The blue line represents
the changing trend of recording audio, and the red line represents the changing trend of binaural
audio synthesized by the model.

In addition, Figure 7 shows the IPD error heatmaps at different frequencies for the same
four models as above during the same time period. The color of each position represents
the model’s IPD error in the corresponding frequency/time pair. A darker color indicates a
smaller IPD error. It can be seen that Figure 7a–d(ii) are darker than Figure 7a–d(i), which
indicates that DIFFBAS can reduce IPD errors in the entire time-frequency domain. People
usually use IPD at lower frequencies for spatial localization because high frequencies
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can cause perceptual confusion. Further observations of Figure 7b,d shows that in the
low-frequency band of 0–2000 Hz, DIFFBAS can effectively reduce IPD errors and outliers,
which is more in line with human perception characteristics.
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Figure 7. IPD error heatmaps of four BAS models in the time-frequency domain. The darker the point,
the lower IPD error of the model. (a) IPD error heatmap across the entire frequency range. (i) IPD
error of WarpNet. (ii) IPD error of DIFFBAS + WarpNet. (b) Heat map of IPD error in low-frequency
range. (i) IPD error of WarpNet. (ii) IPD error of DIFFBAS + WarpNet. (c) IPD error heatmap across the
entire frequency range. (i) IPD error of NFS. (ii) IPD error of DIFFBAS + NFS. (d) Heat map of IPD error
in low-frequency range. (i) IPD error of NFS. (ii) IPD error of DIFFBAS + NFS.

Other evaluation metrics, such as L2, Amp, and Lphs, cannot be used alone to evaluate
the performance of BAS systems. Take the dummy Avg-Avg system as an example. Its
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performance on the first three metrics has been significantly improved. In Table 4, compared
with WarpNet, the values of Amp and Lphs have been reduced from 0.036 and 0.815 to 0.031
and 0.598, respectively. However, the synthesized audio has no spatial information at all
because its left and right channel signals are always the same and listeners cannot use it to
localize the sound source. However, the IPD metric can measure such deficiency of spatial
information. The IPD error of the Avg-Avg model is 1.472, which is much larger than the
IPD error of WarpNet 1.064. As a comparison, the IPD error of DIFFBAS + WarpNet is
0.834, which means the binaural audio synthesized by DIFFBAS + WarpNet provides more
accurate spatial information. Similar results are also found when comparing Avg-Avg, NFS,
and DIFFBAS + NFS models.

Ablation experiment

We conducted two ablation experiments to evaluate the impact of the newly added
IPD loss and different mono audio inputs on the model performances separately, the results
of which have been shown in Table 5.

Table 5. Comparison of binaural audio synthesis quality under different modules. The ↓ symbol
indicates that the lower the metric, the better the effect. The optimal value of each metric is shown
in bold.

WarpNet [15] NFS [16]

Condition L2× 103 ↓ Amp ↓ Lphs ↓ LIPD ↓ L2× 103 ↓ Amp ↓ Lphs ↓ LIPD ↓

Baseline 0.145 0.036 0.815 1.064 0.163 0.040 0.869 1.250
xsource+LIPD 0.142 0.036 0.819 0.967 0.177 0.047 0.824 1.194
xmono-LIPD 0.033 0.018 0.358 0.865 0.049 0.019 0.434 1.087

DIFFBAS 0.033 0.018 0.358 0.834 0.049 0.018 0.431 1.083

In Table 5, xsource+LIPD represents the model using mono audio from the source as
the input and using the IPD loss in the training process. xmono-LIPD means using average
signals from the two channels as the input and removing the IPD loss from the training
process. It can be seen that, as an additional supervision loss, IPD can significantly improve
the modeling ability of binaural differences with almost no reduction in other metrics.
For example, using WarpNet, the IPD error of xsource+LIPD is reduced from 1.064 to 0.967
compared with the baseline. For xmono-LIPD, its IPD error is also reduced from 1.064 to
0.865 compared with the baseline, which indicates that using the average of the binaural
audio as the training inputs, models are able to model binaural differences in the sound
propagation more accurately. It demonstrates the effectiveness of specific path modeling.

4. Discussion

DNN-based modeling technology has been proven effective for binaural audio mod-
eling and captures nonlinear effects in dynamic sound propagation that traditional DSP
methods cannot handle. Currently, there are three neural network types used for BAS,
including WarpNet [15], NFS [16] and BinauralGrad [17], which have shown that syn-
thesized binaural audio is superior to traditional DSP methods in terms of clarity and
realism in subjective and objective evaluations. However, the potential of neural networks
in modeling binaural audio spatial information has not yet been fully explored. In order to
further improve the ability of the neural network-based BAS method to synthesize binaural
audio spatial information, we propose DIFFBAS. This method avoids over-fitting problems
caused by the diversity of environments and sound sources by focusing on modeling
sound propagation paths, thereby improving the accuracy of synthesizing binaural audio.
Combined with the characteristics of human auditory perception, we introduced the IPD
loss as a training loss for the first time in related tasks to effectively supervise the learning
of interaural phase difference information, which is highly related to the spatial information
in binaural audio.

Our method has significant improvements over existing baseline models. In terms of
binaural difference recovery, compared with WarpNet, the IPD error of DIFFBAS + WarpNet
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is significantly reduced from 1.064 to 0.834. Similarly, the IPD error of DIFFBAS + NFS
is also reduced from 1.250 to 1.083. These results not only prove the effectiveness of our
method but also show that it is suitable for different backbone networks, providing new
research ideas for DNN-based binaural audio synthesis tasks.

Furthermore, our study is also limited by the scarcity of dynamic continuous binaural
audio datasets, which makes it difficult for the model to account for the generalization
ability of audio rendering beyond the frequency domain of the training set. Additionally,
we are unable to objectively assess sounds distributed across different frequency ranges.
However, we have tested different types of sounds such as music, dog barking, and car
horns into the trained model. The synthesized binaural audio can obtain a sense of space
consistent with the input position information in the auditory experience. This shows to a
certain extent that our method also has a certain generalization ability when dealing with
other types of sounds.

5. Conclusions

In this work, we propose a novel DNN-based BAS method, DIFFBAS. By focusing
on modeling the specific path of the sound propagation process, DIFFBAS can avoid
overfitting problems caused by the diversity of environments and sound sources, and
improve the accuracy of synthesized binaural audio. A new training loss, namely IPD
loss, is first proposed in our method to effectively supervise the learning of interaural
phase difference information, which is highly related to the spatial information contained
in binaural audio. Furthermore, IPD can be used as a new objective quality assessment
metric for the level of spatial information contained in the synthesized binaural audio.
This provides a better quantification standard for BAS tasks. Experimental results have
demonstrated that DIFFBAS performs exceptionally well across different types of backbone
networks and achieves a significant improvement in binaural difference learning. Future
work will focus on two aspects: first, collecting a more general binaural audio dataset to
improve network training effect and generalization ability; second, exploring personalized
binaural audio synthesis, using the listener’s head and pinnae photometric information as
an additional conditioning parameter.
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