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Abstract: As the number of long-distance oil and gas pipelines crossing rivers increases, so does
the risk of river oil spills. Previous research on oil spills in water mainly focuses on the oceans,
and there are relatively few studies on oil spills in rivers. This study established two-dimensional
hydrodynamic and oil spill models for the Lancang River crossing pipeline basin and verified the
model’s accuracy. The oil spill transport process under different scenarios was simulated, and the oil
spill transport state data set was established. The effects of river flow, wind, and leakage mode on the
transport behavior of oil spills were studied. The results show that an increase in flow rate accelerates
the migration, diffusion, and longitudinal extension behavior of oil spills; Changes in wind speed
have less effect on the transport behavior of oil spills under downwind and headwind conditions. The
mode of leakage mainly affects the diffusion and longitudinal extension of the oil spill. The oil spill
transport state prediction model was established using machine learning combination algorithms.
The three combined machine learning algorithms, PSO-SVR, GA-BPNN, and PSO-BPNN, have the
best performance in predicting the oil spill migration distance, oil spill area, and the length of the
oil spill contamination zone, respectively, with the coefficient of determination (R2) and the 1-Mean
Absolute Percentage of Error (1-MAPE) above 0.971, and the prediction model has excellent accuracy.
This study can provide support for the rapid development of emergency response plans for river
crossing pipeline oil spill accidents.

Keywords: oil spill; transport behavior; oil spill transport state prediction model; river crossing pipeline

1. Introduction

The rising demand for oil and gas in society implies a greater need for transportation
via pipelines, vessels, and other means, thereby escalating the frequency and scale of
energy transportation activities. With the amplification of energy transport operations, the
probability of oil spill incidents during transportation also increases. Factors contributing
to this include natural environmental conditions during navigation, potential equipment
and facility malfunctions, as well as human error [1–3]. On 26 July 2010, a crude oil pipeline
rupture of the Canadian pipeline company Enbridge located in the territory of Michigan
resulted in the flow of at least 4000 cubic meters of crude oil into the Kalamazoo River,
which has become one of the largest crude oil spills in the history of the United States [4].
On 22 November 2013, an oil pipeline rupture occurred at the Qingdao Oil Transmission
and Storage Company (QOTSC), with some of the crude oil entering the Jiaozhou Bay along
a stormwater pipeline, resulting in the contamination of approximately 3000 square meters
of sea surface in the Jiaozhou Bay. Subsequently, a huge explosion occurred, resulting in
63 deaths and 156 injuries [5]. On 5 July 2020, the Japanese cargo ship Wakashio spilled off
the southeast coast of Mauritius, with more than 1000 tonnes of fuel oil leaking into the
Indian Ocean, threatening many rare species [6]. Oil spills not only cause serious pollution
to the environment but also cause serious damage to the flora and fauna in the watershed
and even to human life [7–9].

The study on oil spills in waters began in the 1960s. With the long-term development
of hydrodynamic modeling, oil spill modeling, and numerical methods, the observation
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of the physical behavior of oil spills in watersheds using numerical simulation has been
widely applied [2,10–19]. Zhen and Li et al. [20] established a two-dimensional hydrody-
namic model of Daya Bay in the South China Sea and studied the behavior and fate of oil
spills in both clockwise and anticlockwise currents. Liu et al. [5] established a model of the
oil spill in Jiaozhou Bay and verified the accuracy of the model with the “11.22” oil spill in
Huangdao Island, and studied the effects of wind speed, tidal currents, and the location
of leakage on the drifting and diffusion movements of oil spills. Periáñez [21] established
the Red Sea Lagrangian oil spill transport model to simulate the migration of oil spills in
winter and summer seasons, different oil spill locations, and different current environments.
Bozkurtoglu [22] developed a trajectory modeling of the oil spill in the Bosphorus Strait, in-
vestigated the short-term spreading behavior of the oil spill under different wind directions,
and made recommendations for the oil spill contingency plan in the basin. Kuang [18]
developed a two-dimensional hydrodynamic and oil spill transport model for the Yangtze
River estuary, which mainly investigated the effects of wind and wave current interactions
on the drift and diffusion behavior of oil spills under strong wind conditions. Da Cunha
and De Abreu et al. [23] developed a hydrodynamic model and Lagrangian transport model
for the Santana channel watershed in the lower Amazonian River flow, which simulated the
spatial and temporal displacements of oil spills and the contaminated area of the oil sheen
in the dry and rainy seasons and pointed out the critical contaminated zones and sensitive
areas under the spill. Jiang and Tong et al. [24] established an oil spill model for an inland
waterway and calibrated and validated the model by using flume experiments. The model
was applied to the Luoqi section of the Yangtze River, and the migration trajectories of the
oil spill were simulated under two scenarios of high flow and low wind speed and low
flow and high wind speed. Although the volume of oil spills in inland rivers is relatively
small, they serve as habitats for numerous wildlife species, and spills in these rivers can
still have significant impacts on local ecosystems and biodiversity. Additionally, inland
riverwater bodies are often used for drinking water, irrigation, fishing, and tourism. Thus,
oil spill contamination may directly threaten the health and livelihoods of local residents.
Despite the smaller scale of inland river pollution, the cleanup and restoration efforts may
be constrained by geographical location and environmental conditions, resulting in more
challenging and complex cleanup processes. Therefore, in-depth research on inland river
oil spills is imperative [2,24,25].

With the massive construction of oil and gas pipelines, the increase in the number
of pipelines laid along rivers and crossing rivers has increased the risk of river oil spill
accidents [26,27]. Unlike the marine environment, the migration trajectory of oil spills in rivers
is relatively unidirectional, the river channel is relatively narrow, the flow and water level
of the river are highly variable, and the transport behavior of oil spills is more significantly
affected by water flow and wind [28]. In most of the existing river oil spill studies, the
oil spill transport behavior of transient spills under some specific scenarios is addressed.
The river flow and the wind conditions in the basin usually vary seasonally [29], and the
spills from long-distance pipelines are continuous. Therefore, the study of oil spill transport
behavior in rivers under the effects of multiple factors can provide more effective support for
emergency response to oil spill accidents. In addition, after the occurrence of a sudden oil
spill, emergency response measures in the short term can largely reduce the consequences
of the accident [23,30]. The use of numerical simulation to predict the transport state of oil
spills takes up a lot of time, which prolongs the emergency response time. With the rapid
development in the field of data science and AI, machine learning modeling approaches have
been heavily researched in various fields, and new methods have been provided for accurate
and efficient prediction of river oil spill transport state [31–33].

In this study, a two-dimensional hydrodynamic and oil spill model of the Lancang
River crossing pipeline section basin was established based on Mike 21 software to simulate
the oil spill transport process in the river. The oil spill head location, oil film diffusion area,
and pollution zone length were obtained over time. The effects of river flow, wind, and
leakage mode on oil spill transport behavior were discussed. An oil spill transport state
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dataset was established, and an oil spill transport state prediction model was developed
using a machine learning algorithm. This study can support the rapid development of
emergency response plans for river crossing pipeline oil spill accidents.

2. Materials and Methods
2.1. Hydrodynamic Model

MIKE 21 is a simulation tool for physical, chemical, or biological processes in two-
dimensional waters developed by the Danish Hydrodynamic Institute [34,35]. It is widely
used in ocean, bay, lake, and river environments. The system is based on the numerical
solution of the two-dimensional incompressible Reynolds-averaged Navier-Stokes equa-
tions, invoking the Boussinesq assumption and the hydrostatic pressure assumption [34].
Integrating the horizontal momentum and continuity equations in the depth direction
yields the following shallow water equations, and the integral form of the shallow water
system of equations can be written as:

∂U
∂t

+∇·F(U) = S(U) (1)

where U is the vector of conserved variables; F is the flux vector function, and S is the
vector of source terms.

In Cartesian coordinates, the system of 2D shallow water equations can be written as:
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(3)

where x and y are the Cartesian co-ordinates; h is the total water depth, h = η + d, η and d are
the surface elevation and the still water depth; u and v are the velocity components
in the x and y direction; A is the horizontal eddy viscosity; f is the Coriolis parame-
ter, f = 2ωsin φ, ω and φ are the angular rate of revolution and the geographic lati-
tude; ρ and ρ0 are the density of water and the reference density of water; pa and g are
the atmospheric pressure and the gravitational acceleration; (τsx, τbx) and (τsy,τby) are the
x and y components of the surface wind and bottom stresses; (sxx, sxy) and (syx, syy) are
components of the radiation stress tensor; (us, vs) is the velocity by which the water is
discharged into the ambient water; the depth-averaged velocities u and v are defined by:

hu =
∫ η

−d
udz, hv =

∫ η

−d
vdz (4)
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Integrating Equation (1) over the ith cell and rewriting the flux integral using Gauss’s
theorem yields: ∫

Ai

∂U
∂t

dΩ +
∫

Γi

(F·n)ds =
∫

Ai

S(U)dΩ (5)

where Ai is the area of the cell and Ω is the integration variable defined on Ai; Γi is the
boundary of the ith cell and ds is the integration variable along the boundary; n is the unit
outward normal vector along the boundary. Evaluating the area integrals by a one-point
quadrature rule, the quadrature point being the centroid of the cell, and evaluating the
boundary integral using a mid-point quadrature rule, Equation (5) can be written as:

∂Ui
∂t

+
1
Ai

NS

∑
j

F·n∆Γj = Si (6)

where Ui and Si are the average values of U and S over the ith cell and stored at the cell
center; NS is the number of sides of the cell; ∆Γj is the length of the jth interface.

The 2D model uses an approximate Riemann solver (Roe’s scheme) to compute the
convective flux at the cell interface. The problem is reduced to a scalar fluctuation problem
by linearising the conservation equation. The approximate solution to the problem is
achieved by representing the problem in terms of eigenvalues, right eigenvectors, and
left eigenvectors using linear algebra [36]. The mean gradient is estimated using the
method proposed by Jawahar and Kamath, 2000 [37]. To avoid numerical oscillations, a
second-order total variation diminishing (TVD) slope limiter is used [38].

2.2. Oil Spill Model

The MIKE 21 Oil Spill Model is used to simulate the fate of oil spilled or discharged
into waters, including its transport processes and changes in physical and chemical properties.
The model uses the Lagrangian method to track the motion of each oil spill particle and the
follow-along method to describe the turbulent diffusive motion caused by shear and turbulence.

2.2.1. Diffusion and Drift of Oil Film

Crude oil enters the river and rapidly expands into an oil film under the action of
gravity, inertial forces, viscous forces, and interfacial tension. A modification of Fay’s theory
of oil film expansion proposed by Mackay and Paterson et al. [39] was used to calculate the
diffusion behavior of the oil film:

dA
dt

= KSpread ·A
1
3 ·
[

V
A

] 4
3

(7)

where KSpread is a rate constant, taken as 150 s−1; A and V are t area and volume of oil
particles in river.

The drift behavior of the oil spill in a river is driven by a combination of current and
wind forces, and the drift velocity of its oil particles is calculated by the following equation:

UP = Uc + Cw·Uwsin(αw − π + θw)
Vp = Vc + Cw·Uwcos(αw − π + θw)

(8)

where (UP,Uc) is the particle velocity along x and y directions; (Vp,Vc) is the surface cur-
rent speed in x and y directions; Cw, Uw, and αw are the wind drift coefficient, the wind
speed, and direction; θw is the wind drift angle, which can be calculated by the following
formulation:

θw = βexp

(
α|Uw|3

gγw

)
(9)

where γw and g are the kinematic viscosity and the gravity acceleration; α and β are the
empirical coefficients, −0.3 × 10−8 and 28

◦
38′, respectively.
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In addition, there is a turbulent diffusion behavior of oil particles in rivers, which can
be viewed as stochastic. Assuming that the turbulent diffusion is isotropic, the diffusion
distance of oil particles per unit time can be expressed as:

So =
[

R]1−1

√
6Do∆t (10)

where
[
R]1−1 is a random number from 1 to −1; Do is the diffusion coefficient.

2.2.2. Weathering of Oil Spill

Oil spills entering the river are affected by factors such as water flow, wind, and light
radiation, and undergo processes such as evaporation, emulsification, dissolution, sedimen-
tation, photo-oxidation, and biodegradation, resulting in changes in the physicochemical
properties of the oil [20]. This study focuses on the evaporation and emulsification behavior
of oil spills.

Where oil evaporation is a short-term weathering process, evaporation will be more
obvious in the early stage after the oil spill enters the water body. The Reed model [40] was
used to calculate the evaporation of an oil spill with the following equation:

EVAP =
K2·Pvp·A

R·T · f ·MW (11)

where Pvp and A are the vapor pressure and the slick area of each particle in contact with the
water surface; R is the gas constant, R = 8.206 × 10−5; T, f , and MW are the temperature,
the fraction of the evaporative oil component, and the molecular weight; K2 is mass transfer
coefficient, which can be calculated by:

K2 = 0.0292·w0.78·D−0.11·Sc−0.67·
√

MW + 29
MW

(12)

where w and D are the wind speed and the diameter of each particle area in contact with
the water surface; Sc is Schmidt number, Sc = 2.7.

Emulsification is the process by which oil and water mix to form a mixture, and it is
encouraged by wind and river turbulence, which usually occurs a few hours after the oil
spill enters the water column. The emulsification process uses a first-order water release
equation [41]:

wateruptake = Kem ∗ (U + 1)2· (Ymax − Yw)

Ymax
(13)

waterrelease = −α·Yw (14)

where Yw and Ymax are the water fraction and the maximum water fraction; Kem is the
emulsification rate constant, Kem = 2 × 10−6 s/m2; U is the wind speed; α is water release
rate which is related to the emulsion stability index S.

α =


α0 − (α0 − α0.67)S/0.67 for S < 0.67

α0.67[(1.22 − S)/(1.22 − 0.67)] for 0.67 ≤ S < 1.22
0 for S ≥ 1.22

(15)

where α0 and α0.67 are the water release for unstable emulsion with S = 0 and the mesostable
emulsion with S = 0.67. The stability index S is given by:

S = Xa·exp
[
Kao·(1 − Xa − Xw)

2 + Kaw·X2
w

]
·exp[−0.04·(T − 293)] (16)

where subscript a, w, and o represent asphaltene, wax, and other chemical components;
Kao and Kaw are 3.3 and 200 at 293 K; Xa and Xw are the fractions of asphaltenes and
wax; T is the temperature.
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2.3. Model Construction

The China-Myanmar Crude Oil Pipeline Lancang River crossing pipeline is located
in Baoshan City, Yunnan Province, China. The China-Myanmar pipeline is an important
strategic energy corridor for China. The pipeline starts from Kyaukphyu City on the
west coast of Myanmar, enters China from Ruili City in Yunnan Province, and ends in
Chongqing City. The Lancang River crossing pipeline basin is located at the western edge
of the Yunnan-Guizhou Plateau and in the longitudinal valley of western Yunnan in the
southern section of the Hengduan Mountains. The mountains on both sides of the river
are high and steep, the riverbed is narrow, and the water flow is turbulent, which belongs
to the rapid-flow type of rivers in high mountain canyons. The valley is “V” shaped, and
the slope angles of the left and right banks of the mountain are 53◦ and 60◦, respectively;
the real picture is shown in Figure 1. This zone has a subtropical monsoon climate with an
average annual rainfall of more than 800 mm. The environmental conditions in this basin
are complex, and in the event of disasters such as mudslides or landslides during the rainy
season, the pipeline will likely be damaged, and crude oil will leak into the river.
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Figure 1. Actual view of Lancang River crossing pipeline.

2.3.1. Hydrodynamic Model Construction

The length of the modeled reach for this study is 33 km, and the crossing point is
located in the middle and upper reaches of the modeled reach. Riparian boundary data and
river elevation scatter data were obtained from actual measurements. Hydrological data,
including flow, level, and velocity data, were provided by hydroelectric and hydrological
stations in the basin, and wind data were provided by the local airport. Firstly, the terrain
data was converted to map projection coordinates, imported into the mesh generator
in Mike Zero to create an unstructured triangular mesh, and the bathymetry data was
interpolated into the mesh. The maximum triangular grid area is 2600 square meters, the
minimum allowable angle is 30◦, there are 3580 nodes and 5884 units in the computational
area, and the time step is set to 30 s. The overall topography and local grid map of the river
channel in the simulation area are shown in Figure 2, in which the local grid map includes
crossing point and validation points (M and N are the validation sites of the hydrodynamic
model in the following section) and three oil spill interception and recovery points.
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2.3.2. Model Validation

To verify the reliability of the established hydrodynamic model, the measured hydro-
logical data on 26 April and 5 August 2022 are selected for comparison with the model
calculation results. The average flow rate on 26 April is 1210 m3/s, and the average flow
rate on 5 August is 5130 m3/s. The validation results are shown in Figure 3, which shows
that the simulated values of flow rate and water level at M, N are in good agreement with
the measured values, and the mean absolute error (MAE) of the flow rate is 0.054 m/s, and
that of the water level is 0.062 m. The results show that the established hydrodynamic
model can be used for the oil spill in this river basin. The hydrodynamic model can provide
reliable hydrodynamic conditions for the study of oil spill transport behavior in this basin.
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3. Results and Discussions
3.1. Simulation
3.1.1. Simulation Scenario Setting

To study the transport behavior of oil spills in the basin of the Lancang River crossing
pipeline section, three influencing factors, including river flow, wind (wind speed and
direction), and leakage mode, were considered according to the hydrological and environ-
mental conditions and the pipeline itself in the basin. The range of values for each of these
parameters is given below:

1. River flow. As a typical monsoon river, the Lancang River has a large variation of
flow under different water periods. According to the hydrological data of the basin,
the value of the river flow in this study is selected between the minimum flow in the
dry season and the maximum flow in the abundant season, ranging from 500 m3/s to
7000 m3/s;

2. Wind, including wind speed and direction. Based on the wind data provided for 2021
and 2022, a rose wind map was produced, as shown in Figure 4. The average annual
wind speed in the region is 2.1 m/s, and the main wind direction is southwest. The
variables of wind speed were set from 1 m/s to 7 m/s, and the variables of wind
direction were set in 8 directions;

3. Leakage modes. Leakage modes include fracture leakage and perforation leakage.
According to the researched literature [42], when the pipeline section is fractured,
from the beginning of the accident to the upstream and downstream valve closure, all
the crude oil in the pipeline will be leaked into the Lancang River within 0.5 h; when
the pipeline is perforated and leaked, the maintenance personnel can complete the
emergency blocking operation within 2 h. The amount of leakage under the fracture
leakage mode was calculated to be 2600 t; under the perforation leakage mode, the
leakage hole size was set to be 5%D, 10%D, and 15%D (D is the outer diameter of the
pipe of 813 mm), and the amount of leakage was 180 t, 720 t, and 1630 t, respectively.
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3.1.2. Simulation Results

Taking the spill scenario with a river flow of 5000 m3/s, a south-west wind of 2.1 m/s,
and a rupture spill (spill volume of 2600 t, spill time of 0.5 h) as an example, Figure 5 shows
the state of oil spill transport at each time point. After the crude oil was spilled into the
river, the oil spill continued to migrate downstream along the north bank of the river under
the action of the water current and the southwest wind. In the early stage of the spill at
t = 1 h, the oil film is more aggregated, the area and length of the oil spill contamination
zone are A = 8.19 × 104 km2 and L = 3.37 km, respectively, and the average thickness of
the oil film is T = 1.07 mm. In the migration process, the oil spill will diffuse and extend
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continuously along the river channel under the hydrodynamic force of the river, the pulling
force of the wind, and the obstructing force of the river bank. When t = 5 h, the oil spill
head migrates to the tail of the simulated river section; at this time, the area and length of
the oil spill pollution zone are A = 77.41 × 104 km2 and L = 10.11 km, respectively, and the
average thickness of the oil film T = 0.40 mm.
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Figure 5. Oil spill transport state at each moment in time.

Figure 6 shows the variation of oil spill head migration distance (D), oil film area (A), oil
spill contamination length (L), and average oil film thickness (T) with time (from the moment
when the crude oil spill stops to the moment when the oil spill head flows out of the modeled
river section). It can be seen that D, A, and L vary monotonically and incrementally with time,
and the existence of fluctuations is caused by the irregularity of the river topography. T is
monotonically decreasing with time. In the pre-spill period, the oil spill aggregation degree
is large, and the easy diffusibility of the crude oil itself makes the oil film thickness decrease
rapidly, and the decrease rate slows down obviously after 1 h.
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3.2. Oil Spill Transport Behavior under Various Influencing Factors

The changes in D, A, L, and T are all time-dependent, with different spill scenarios
having different times for the oil spill head to flow out of the modeled river section. In
this paper, the average migration rate of oil spill head—v (m/s), the growth rate of oil
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spill contaminated zone area per unit time—a (104 km2/h), and the growth rate of oil spill
contaminated zone length per unit time—l (km/h) are used as the labels for analyzing
the migration, diffusion and longitudinal extension behaviors of the oil spills under the
various influencing factors. Because of the small degree of change in T in the middle and
late periods, it is not considered in the analysis of the impact pattern.

3.2.1. River Flow

To study the effects of flow rate on oil spill behavior, the model only changes the
flow rate data, and the wind and leakage parameters are kept fixed at 0 m/s and fracture
leakage-2600 t (0.5 h), respectively. Figure 7 shows the variation of v, a, and l with river
flow, with all three increasing with flow. As a carrier of oil spill migration, the higher the
flow rate of the river, the faster the water velocity, the stronger the turbulence of the water
flow, the faster the migration of the oil spill, and the more obvious the behavior of the
oil spill in terms of diffusion and longitudinal extension. The increase of a is accelerated
because the water level of the river will rise with the increase of flow; the increase of the
basin area makes the oil spill diffusion space bigger, so the oil spill pollution area increases
faster; l is slowed down, the increase of the flow, the water will overcome more resistance
of the river bank to the migration of the oil spill, so the increase of the length of the oil spill
pollution zone will be slowed down.
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To take emergency response measures as soon as possible after the occurrence of a
sudden oil spill accident, the pipeline’s subsidiary units have set up three oil spill intercep-
tion and recovery points along the river and stored the required emergency materials, the
specific location of which is shown in Figure 2. After the accident, it would take three hours
for emergency teams to reach the various interception points and commence interception
operations. For sudden oil spill accidents under the condition of static wind, take the
flow rate of 1000 m3/s and 5000 m3/s as an example; when the flow rate Q = 1000 m3/s,
the time of oil spill migrating to the three oil spill interception points is 3.5 h, 6.5 h, and
15 h respectively; and when the Q = 5000 m3/s, it is 1.2 h, 2.2 h, and 3.6 h. Under the two
flow rates, the rescue team should be rushed to the 1# and 3# interception points to carry
out interception and recovery operations, respectively. In addition, the higher the river
flow, the shorter it takes for the oil spill pollution zone to pass through the interception
point. When Q = 1000 m3/s, the time for the oil spill pollution zone to pass through the 1#
interception point is 1.3 h; when Q = 5000 m3/s, the time for the oil spill pollution zone
to pass through the 3# interception point is 0.8 h. When the flow of the river is higher, the
impact of the water on the boom is greater, and the interception efficiency of the boom will
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be reduced, requiring more human and material resources to be invested in emergency
operations. Therefore, the size of river flow directly affects the difficulty of emergency
response to oil spill accidents. Managers should select oil spill interception and recovery
points according to the river flow and reasonably equip personnel and emergency supplies.

3.2.2. Wind

The effects of wind on the oil spill behavior of rivers include two factors: wind speed
and wind direction. Firstly, to explore the effects of wind speed, the wind direction was
fixed as the main wind direction southwest in the basin, three river flow rates were set,
1000 m3/s, 3000 m3/s, 5000 m3/s, and the leakage parameter was fracture leakage-2600 t
(0.5 h). Figure 8 shows the curves of v, a, and l as a function of wind speed for three river
flows. In (a) and (b), the v and a both decrease continuously with the increase of wind speed.
Under the southwest wind, the oil spill will continuously migrate and diffuse downstream
along the upper boundary of the river channel. The higher the wind speed, the faster
the oil spill accumulates to the upper boundary of the river bank, and the wind’s pulling
force makes the river bank more obstructive to the oil spill, thus limiting the migration
and diffusion of the oil spill. In (b), the downward trend of a is faster at Q = 1000 m3/s
because the smaller the river flow, the faster the oil spill accumulates upward to the upper
boundary, and it also indicates that the smaller the river flow, the greater the effects of wind
on the oil spill diffusion behavior. In (c), l increases and then decreases with increasing
wind speed. The combined effect of water flow, wind, and riverbank obstruction causes
the oil spill to extend longitudinally faster in the river channel compared to the no-wind
condition, so the length of the oil spill contamination zone is longer. Although under the
same flow rate, the larger the wind speed is, the longer the oil spill contamination zone
is, the rate of change is related to the migration rate of the oil spill, and v decreases to a
certain extent, l will also be smaller.
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Exploring the effects of wind direction, the wind speeds were fixed at 2.1 m/s and
5 m/s, the flow rate was 5000 m3/s, and the leakage parameter was 2600 t (0.5 h). Figure 9
shows v, a, and l for different wind directions. The modeled river section is oriented
northwest to southeast. For the direction of oil spill transport, northwest winds can be
defined as downwind; north, west, and southwest winds as partial downwind, and vice
versa for headwind and partial headwind. In (a), (b), and (c), it can be seen that the values
of v, a, and l are higher than those of the opposite wind direction for the same wind speed in
downwind and partial downwind conditions, indicating that the migration, diffusion and
longitudinal extension behaviors of oil spills are faster in downwind and partial downwind
conditions; The reason that v, a under downwind and headwind is larger and l is smaller
compared to partial downwind and partial headwind and does not change much with
wind speed is that under downwind and headwind conditions, the oil spill accumulates to
a lesser extent on the river bank side and is less obstructed by the river bank, so the oil spill
migrates and diffuses faster and extends along the river channel more slowly. Combining
the effects of wind speed and wind direction on the oil spill transport behavior under
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downwind and headwind conditions, the effects of wind speed on the oil spill transport
behavior are relatively small; under the rest of the wind directions, the migration and
diffusion behaviors of the oil spill will slow down with the increase of wind speed, and the
longitudinal extension behaviors of the oil spill will be accelerated firstly and then slowed
down with the increase of wind speed.
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Figure 9. v, a, and l for different wind directions.

Through the above analysis, it can be seen that the wind will affect the migration
speed and transport state of the oil spill. Taking the scenarios of Q = 5000 m3/s and wind
speed of 5 m/s with northeast, southwest, and northwest winds as an example, as shown
in Figure 10, under northeast and southwest winds, the oil spill will migrate along the
south and north banks of the river channel respectively, and the migration time to the 2#
interception point will be 4.2 h and 3.8 h; under the northwest winds, the oil spill will
migrate to the 3# interception point will be 3.2 h. Emergency personnel can select the
interception and recovery point according to the migration speed of the oil spill under the
current wind conditions and reasonably deploy personnel and equipment on both sides of
the river according to the gathering orientation of the oil spill to improve the efficiency of
interception and recovery of the oil spill.
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3.2.3. Leakage Mode

To explore the oil spill transport behavior under different leakage modes, three leakage
volumes of 180 t (2 h), 720 t (2 h), and 1630 (2 h) were assumed under perforated leakage
mode, and 2600 t (0.5 h) under fracture leakage. The river flows are 1000 m3/s, 3000 m3/s,
and 5000 m3/s, and the wind speed is 0 m/s. Figure 11 shows v, a, and l for different
leakage parameters, and it can be seen that the variation of v is not significant in both
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leakage modes. Under perforated leakage, a and l increase with the increase of leakage
volume. This indicates that the spill mode has less effect on the oil spill migration rate;
under perforated leakage, the increase in oil spill volume causes the oil spill to diffuse
and extend longitudinally in the river channel more quickly. In (b), the value of an under
the scenario of perforated leakage-1630 t (2 h) is larger than that of fractured leakage-2600
(0.5 h) for Q = 5000 m3/s and 3000 m3/s because, under perforated leakage, the initial
dispersion of the oil spills is large. There is more space for the diffusion of the oil film, so
the rate of diffusion of the oil spills is faster within a short period.
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The difference in the timing of the oil spill in different spill modes results in different
lengths of the oil spill contamination zone. For the oil spill accident under two kinds of
leakage modes, under static wind conditions, with Q = 3000 m3/s, fracture leakage-2600
t (0.5 h) and perforation leakage-1630 t (2 h), for example, the head of the oil spillage
migrates to 2# oil spill interception point after 3.3 h, and the distribution of oil spills in
the river is shown in Figure 12. At this time, the length of the oil spill pollution zone is
1.97 km and 6.92 km, respectively. In the case of perforated leaks, emergency personnel
can go to both 1# and 2# interception points to conduct interception operations. Therefore,
emergency managers can develop emergency response plans for simultaneous interception
and recovery operations at multiple interception points according to different spill modes.
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3.3. Prediction of Oil Spill Transport Behavior Based on Machine Learning

In the case of a sudden river oil spill, in order to intercept and recover the oil spill
quickly and efficiently, it is necessary to accurately predict the location of the oil spill and
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the extent of pollution. Traditional numerical simulation calculations are complex and
time-consuming, which undoubtedly prolongs the emergency response time. Given the
advantages of machine learning, such as fast computation speed, good model stability, and
low dependence on physical mechanisms, this paper adopts the machine learning method
to establish the oil spill transport state prediction model to guide the decision-making
support of oil spill accidents.

In this paper, based on the value range of each variable in Section 3.1.1, a total of
320 sets of numerical tests were conducted, and eight times node data were recorded for
each set of tests, which resulted in a total of 2560 sets of oil spill transport state data, and an
oil spill transport state data set was established. Among them, the characteristic variables
include a total of six dimensions: flow rate, wind speed, wind direction, leakage mode,
leakage amount, and time; and the labels include the oil spill migration distance D, oil spill
area A, and oil spill contamination zone length L, as shown in Table 1.

Table 1. Data set description table.

Flow Rate
(m3/s)

Wind Speed
(m/s)

Wind
Direction (◦)

Leakage
Mode

Leakage
Amount (t) Timing (h) D

(km)
A

(104 km2)
L

(km)

Mean 4380 2.1 - - 1721 13.5 9.97 170.08 6.21
Min 500 0 0 0 180 0.5 0.81 4.29 0.81
25% 1500 1 135 0 720 4.5 4.99 47.65 2.31
50% 4000 2 225 1 1630 12 9.83 150.39 5.49
75% 5000 4.5 225 1 2600 33 15.94 226.38 9.45
Max 7000 7 315 1 2600 112 21.6 433.25 13.45

Because of the small amount of sample data, training with deep learning models
is prone to lead to the problem of overfitting, which will instead impair the final model
results [43]. Therefore, in this paper, traditional machine algorithms are used for predictive
modeling. In this paper, using a posteriori thinking to select the optimal combination of
algorithms, the dataset is divided into training and testing sets in the ratio of 8:2, and four
typical learners, namely Random Forest (RF), Back Propagation Neural Network (BPNN),
Extreme Gradient Boosting (XG Boost), and Support Vector Regression (SVR), are used
for modeling and analysis [44–47], and the coefficient of determination (R2) and 1-Mean
Absolute Percentage Error (1-MAPE) are used as the model evaluation metrics to evaluate
the prediction performance of the model. Table 2 shows the computation process of the
four learners.

The modeling scheme is as follows:
Step 1: Four learners, RF, BPNN, XG Boost, and SVR, are used for modeling respec-

tively, and the Random Search algorithm is applied to select the optimal hyper-parameters,
analyze the prediction performance of different learners, and achieve the preliminary
selection of learners.

Step 2: To further improve the prediction performance of the learner, an intelligent
optimization algorithm is used instead of the traditional Random Search algorithm for the
optimization of hyperparameters. The prediction performance of different combinations of
machine learning algorithms is analyzed, and the optimal algorithm is selected to achieve
the prediction model.

The predictions of the four training models are shown in Figure 13. For the three labels
D, A, and L, the average R2 of the four training models are 0.677, 0.873, 0.717, 0.880; the
average 1-MAPE is 0.713, 0.860, 0.707, 0.863. The prediction performance of the BPNN and
SVR is significantly better than that of the RF and the XG Boost, and so the BPNN and SVR
are initially chosen as the benchmark. Therefore, BPNN and SVR are initially selected as
the benchmark models.
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Table 2. The computation process of the RF, XG Boost, BPNN, and SVR.

Arithmetic Basic Principle and Computation Process Hyperparameter

RF

Classification or regression by constructing multiple decision trees and combining their results.
Step 1: Random sampling.

• The random sampling process is expressed
as: Di = {(xi1, yi1), (xi2, yi2), . . . , (xin, yin)}, i = 1, 2, . . . , T.

Step 2: Construct a decision tree.

• Each decision tree is constructed through a decision tree algorithm, which includes steps such as
feature selection, tree growth and pruning.

Step 3: Calculate the predictions (regression task averaged).

• The final prediction is: ŷ = 1
T ∑T

i=1 yi .

Number of trees,
maximum depth of

tree, minimum
number of split

nodes, minimum
number of leaf
nodes, random

seeds, etc.

XG Boost

The model performance is gradually improved by serially training multiple decision trees and using
gradient boosting.
Step 1: Model initialization.

• Initialize the model parameters, including the number of trees, tree depth, learning rate, etc.

Step 2: Construct the initialized prediction model.

• A simple model (e.g., a tree containing only one leaf node) is used as the initial predictive model.

Step 3: Repeat until the maximum number of iterations is reached or the loss function converges.

• Calculate the negative gradient (residual) of the loss function: rti = − ∂
∂ŷti

L(yi , ŷti).

• A tree was fitted to represent the residuals of the model using the negative gradient as the target variable.
• Update the predictions of the model: ŷt+1,i = ŷti + η· ft(xi).

Learning rate,
number of trees,

maximum depth of
the tree, leaf nodes

per tree,
regularization

parameters,
sampling ratio, etc.

BPNN

The input signal is passed to the output layer through forward propagation, and then the network
weights and biases are adjusted to minimize the prediction error using a back-propagation algorithm.
Step 1: Model initialization.

• Randomly initialize network parameters including weights and biases for multiple hidden layers.

Step 2: Repeat until convergence or the maximum number of iterations is reached.
(1) Forward propagation

• Compute the inputs and outputs of the 1st hidden layer: z(1) = W(1)x + b(1); h(1) = σ
(

z(1)
)

.

• Compute the inputs and outputs of each subsequent hidden

layer: z(l) = W(l)h(l−1) + b(l); h(l) = σ
(

z(l)
)

.

• Calculate the inputs and outputs of the output layer: z(L) = W(L)h(L−1) + b(L); h(l) = σ
(

z(L)
)

.

(2) Back propagation

• Calculate the output layer and each hidden layer

error: δ(L) = (y − o)⊙ σ′
(

Z(L)
)

; δ(l) = σ′
(

z(l)
)
⊙
(

W(l+1)Tδ(l+1)
)

.

• Update the weights and biases of the output layer and each hidden layer: W(L)
new =

W(L) + ηδ(L)h(L−1)T , b(L)
new = b(L) + ηδ(L); W(l)

new = W(l) + ηδ(l)h(l−1)T , b(l)new = b(l) + ηδ(l)

Number of hidden
layers, number of
neurons per layer,
activation function

type, learning
rate, etc.

SVR

The data is fitted by finding the maximum interval in the feature space by means of a support vector machine.
Step 1: Kernel function selection.

• Select the kernel function to map the input features to the high dimensional space and aquire the
mapped feature vector ϕ(x).

Step 2: Construct and solve the optimization problem.

• T The objective function of the optimization problem is: Loss = 1
2 ∥ w ∥2 +C∑n

i=1
(
ξi + ξ∗i

)
; The

constraints are:

 yi − wTϕ(xi)− b ≤ ε + ξi
wTϕ(xi) + b − yi ≤ ε + ξ∗i
ξi , ξ∗i ≥ 0, i = 1, 2, . . . , n

.

Step 3: Model predictions.

• After the model training is completed, the new samples can be predicted by Equation After
mapping the new samples to the high dimensional space using the optimized model parameters
and, and kernel function: f (x) = wTϕ(x) + b.

Kernel functions,
regularization

parameters, ε, etc.
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The selection of hyperparameters in the above models all use the traditional Random
Search algorithm, and the model accuracy is relatively low. To further improve the predic-
tion performance of the learner, this paper adopts an intelligent optimization algorithm for
hyperparameter preference. Considering the problems of local optimum and insufficient
search capability, three intelligent optimization algorithms, Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), and Differential Evolution (DE), are introduced [48–50],
which form a combination of six classes with BPNN and SVR respectively algorithms.
Table 3 shows the computation of the three optimization algorithms. The prediction effect
of the combined model is shown in Figure 14.

As can be seen from the figure, the prediction performance of the model is significantly
improved after the hyperparameters are preferred by the intelligent optimization algorithm.
For label D, PSO-SVR has the highest R2 and 1-MAPE, 0.980 and 0.977, respectively. For
label A, GA-BPNN has the highest R2, and DE-SVR has the highest 1-MAPE. The R2

and 1-MAPE of GA-BPNN are 0.982 and 0.971, respectively, and those of DE-SVR are
0.929 and 0.979, respectively. Combining the two model evaluation metrics of R2 and
1-MAPE, the GA-BPNN has a predictive performance is better. For label L, PSO-SVR has the
highest R2, and PSO-BPNN has the highest 1-MAPE. The R2 and 1-MAPE of PSO-SVR are
0.978 and 0.940, respectively, and those of PSO-BPNN are 0.972 and 0.975, respectively, so
that PSO-BPNN has a better prediction performance. In summary, the PSO-SVR, GA-BPNN,
and PSO-BPNN combination models were finally selected as the prediction models for the
oil spill transport state in the Lancang River Crossing Pipeline Section Basin in this study,
respectively. The differences between the predicted and true values of D, A, and L by the
three combined models are shown in Figure 15.

Table 3. The computation process of the PSO, GA, DE.

Arithmetic Basic Principle and Computation Process

PSO

Simulating the behaviour of a group of organisms such as a flock of birds or a school of fish, each individual
(particle) adapts to its own experience and information about its neighbours in the search space in order to
find the optimal solution.
Step 1: Initialise the position and velocity of the particle swarm.
Step 2: Calculate the fitness of each particle (objective function value).
Step 3: Update the velocity and position of each particle.

• The velocity of the particles updates

Eq: vi,j(t + 1) = w·vi,j(t) + c1·r1·
(

pbesti,j(t)−xi,j(t)
)
+ c2·r2·

(
gbestj(t)− xi,j(t)

)
• The position of the particle updates Eq: xi,j(t + 1) = xi,j(t) + vi,j(t + 1)

Step 4: Repeat the above steps until the stop condition is met.
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Table 3. Cont.

Arithmetic Basic Principle and Computation Process

GA

Simulating the process of biological evolution, populations evolve through operations such as selection,
crossover and mutation to produce better individuals.
Step 1: Initialise the population.
Step 2: Evaluate the fitness of each individual.
Step 3: Select the operation.

• Parent individuals were selected based on fitness: P(i) = f (i)
∑N

j=1 f (j)
.

Step 4: Crossover operation.

• Crossover was performed on the parent individuals to produce offspring individuals.

O f f spring(i) =

{
Parent1(i) if rand() < CrossoverRate
Parent2(i) otherwise

Step 5: Mutation operation.

• Variation on offspring individuals.

O f f spring(i) =

{
1 − O f f spring(i) i f rand () < MutationRate
O f f spring(i) otherwise

Step 6: Repeat the above steps until the stop condition is met.

DE

The optimal solution is found by generating candidate solutions and updating them using a difference
operation based on the results of the fitness evaluation.
Step 1: Initialise the population.
Step 2: Generate new candidate solutions based on the difference operation.

• Three different individuals from the population are randomly selected as base vectors, and then a new
candidate solution is generated using a difference operation: xi,G+1 = xr1,G + F·(xr2,G − xr3,G)

Step 3: Evaluate the fitness of the candidate solution.
Step 4: Update the candidate solution based on the result of the fitness evaluation.
Step 5: Repeat the above steps until the stopping condition is satisfied.
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4. Conclusions

In this study, a two-dimensional hydrodynamic model and an oil spill model of the
Lancang River crude oil crossing pipeline basin were developed based on Mike 21. The
oil spill transport behavior was simulated under different river flow rates, wind speeds
and directions, and spill modes. The oil spill transport state dataset was established, and
the oil spill transport state prediction model was built using a combined machine learning
algorithm. The main conclusions are as follows:

(1) For the two-dimensional hydrodynamic model of the Lancang River crude oil crossing
pipeline basin, the flow velocity and water level of the model were verified according
to the measured hydrological data. The MAE of the flow velocity is 0.054 m/s, and
the MAE of the water level is 0.062 m. The simulated values are in good agreement
with the actual values. It shows that the model is suitable for the study of oil spill
transport behavior in this basin.

(2) The transport behavior of oil spills under different spill scenarios was simulated.
It was found that the higher the river flow, the faster the migration, diffusion, and
longitudinal extension behavior of the oil spill; under downwind and headwind
conditions, the effects of wind speed on the oil spill transport behavior are small.
In the remaining wind directions, the migration and diffusion behaviors of the oil
spill will slow down with the increase of wind speed, and the longitudinal extension
behaviors of the oil spill will speed up firstly and then slow down with the increase
of wind speed; the effects of leakage mode on the migration rate of the oil spill are
small. Under the perforation leakage, the increase in oil spill volume will make the
oil spill diffuse and extend longitudinally in the river channel faster. The simulation
results can provide guidance for the development of emergency response plans for
river crossing pipeline oil spill accidents.

(3) An oil spill transport state dataset was established through 320 sets of numerical
experiments. The oil spill transport state prediction model was established by machine
learning combination algorithms. The three machine learning algorithms, PSO-SVR,
GA-BPNN, and PSO-BPNN, have the best performance in predicting the oil spill
migration distance, oil spill area, and oil spill contaminated zone length, respectively,
with the R2 and 1-MAPE above 0.971, and the accuracy of the prediction model is
high. The model can provide support for rapid emergency response to sudden oil
spill accidents of river crossing pipelines.
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