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Featured Application: Estimation of the error model parameters of a wavelet transform algorithm’s
input quantities, which are required to calculate uncertainty of its output values.

Abstract: This paper presents an error model of a measurement chain containing a link that executes
a discrete wavelet transform algorithm, which is most often the last stage of measurement signal
processing. The goal is to determine the uncertainty budget of the input quantities of the wavelet
transform algorithm. The error model takes into account parts of analog, analog-to-digital and digital
processing, describing the properties of subsequent fragments of the chain using their transmittance
and processing functions. The proposed model enables the description of both the deterministic and
non-deterministic properties of signal errors. The proposed model was validated using an example
measurement chain created for this purpose.
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1. Introduction

Wavelet transform (WT) algorithms find their practical applications in many areas.
They are used in finance, medicine, power engineering, geology and computer science
computations, among others [1–4]. The continuous wavelet transform (CWT) algorithm,
described in more detail in the textbook in [5], in the case of processing a time-varying
signal x(t), the implementations of which belong to the domain of real numbers, can be
presented using the following equation:

wa,b =
1√
a

∫ ∞

−∞
x(t)ψ

(
t − b

a

)
dt, (1)

where wa,b is a wavelet transform coefficient calculated for a scale parameter a and a time
shift parameter b, where a ∈ (0; ∞), b ∈ (−∞; ∞) and ψ(t) is the mother wavelet function.
In the case of a discrete wavelet transform (DWT) there is an additional limitation on the
available scale and shift parameters values as a = 2m, b = n2m for m, n ∈ N where m is
scale number and n is shift number (window number) [5]. The contemporary literature
describes many types of wavelets, but the equation for this function is not always defined
explicitly for each mother wavelet function ψ(t) (usually the description of the family
includes assumptions regarding the mutual relations of the scaling factors cn related to the
selected wavelet [6,7]).

The wavelet transform algorithm is, therefore, a tool that allows signal analysis to be
carried out simultaneously in the frequency and time domains. The possibility of using
various wavelets enables the properties of this algorithm to be adjusted to the specificity
of the analyzed phenomenon or process. Unfortunately, the above-mentioned features
mean that an analysis of the properties of metrological measurement chains that use the
discussed algorithms in their structure is not easy, which is why it is often omitted, as was
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the case, for example, in [8–10]. It should be noted that the person using these algorithms
is usually an expert in the field of the phenomenon under study and does not have expert
knowledge in the field of wavelet transform algorithms. Omitting the analysis of the
metrological properties of the algorithm used, which constitutes a very important part
of the measurement chain, makes it impossible to estimate the uncertainty budget of this
chain, which means that decisions made on the basis of the value of the output values may
be inappropriate.

Currently, no proposals for a unified error model have been presented in the literature
that would adequately describe the metrological properties of measurement chains using
the wavelet transform algorithm. The authors’ previous works assumed the presentation
of the wavelet transformation algorithm in a matrix form and indicated how to identify
the values of the transformation matrix in the case of an existing implementation of any
algorithm. However, the proposed method requires the indication of the uncertainty
budget for the input quantities of the algorithm used, and therefore it is necessary to
present an error model for part of the measurement chain, which is the source of the input
quantities of the wavelet transform algorithm. This algorithm is usually the last part of the
measurement chain.

Taking into account the comments indicated above and the current state of knowledge,
the article proposes a general error model that is suitable for measurement chains containing
wavelet transform algorithms in their structure. This model is based on the definition of
the error signal and assumes the division of error signals due to their properties. The
purpose of using the proposed model is to enable the determination of the uncertainty
budget for the input values of the WT algorithm in such a way that it is possible to apply
the previously proposed description of the impact of this algorithm on the errors contained
in the signal it processes and ultimately determine the uncertainty budget of the entire
measurement chain. In addition to theoretical considerations describing the proposed error
model, the paper also contains tips regarding the practical application of this model. For
the purpose of this work, an exemplary measurement chain was created, for which the
parameters of the indicated error model were identified and the uncertainty budget of the
input quantities of the WT algorithm was determined.

The main aim of the work is to indicate how to quantitatively determine the metro-
logical parameters of a measurement chain containing a block that performs WT. This
action is intended to enable a quantitative description of the measure of inaccuracy in
the output quantities of the analyzed measurement chain. The presented analysis then
makes it possible to indicate which source of error is the most important, and therefore
gives the designer of the measurement chain the opportunity to improve the metrological
properties of this path. The considerations presented in this work are limited only to the
identification of error sources and the identification of the parameters of the error model
associated with them, which is necessary to determine the expanded uncertainty values of
the output quantities of this chain.

The article is divided into six sections. The Section 1 is an introduction to the work
and contains its most important assumptions. The Section 2 focuses on the definition
and quantitative description of the properties of error signals. The Section 3 describes the
error model for the measurement chain and presents the most important relationships
between its subsequent fragments. The Section 4 contains an example of the application
of the discussed analysis method using a measurement chain built for this purpose. The
Section 5 discusses the results of the measurement experiment and indicates the reasons for
the discrepancies between the results obtained using the discussed analysis method. The
Section 6 contains the most important conclusions from the work.

2. Definition of the Signal Error and Its Properties

Errors contained in the processed measurement signal can be divided in many ways,
but in the most general case, random and deterministic errors can be distinguished [11].
Random errors result from the implementation of a stochastic process, the operation of
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which cannot be described in a deterministic way. Such errors can, therefore, only be
described using a probabilistic description, since the course of the error signal is unknown.
The second group of errors is deterministic errors, the origin of which usually results from
the nonideal transmittance of a fragment of the measurement chain located in front of
the wavelet transformation algorithm. These errors can be described by an appropriate
equation, which can be derived by knowing the model of the measurement chain and the
estimated spectrum of the processed signal.

A slightly more detailed division in the literature includes groups of static, dynamic
and random errors [12]. This division refers to the nature of the error from the size of the
point of view of the measurement window. The realizations of the static error within the
measurement window do not change (or change slightly), and therefore the transmittance
of subsequent fragments of the measurement chain does not affect the propagation of these
errors. In the case of dynamic and random errors, their implementation changes within the
measurement window, while, unlike random errors, dynamic errors can be described in a
deterministic way.

In the general case, the error signal ex,Σ(t) for the quantity x(t) can be defined as the
difference between the ideal ẋ(t) and the actual x̃(t) course of this quantity:

ex,Σ(t) = x̃(t)− ẋ(t). (2)

In addition to the time course of the presented error signal, which it may not always be
possible to indicate, this signal will also be associated with parameters such as variance,
expected value, the probability density distribution of obtaining the indicated value of the
realization of this signal and expanded uncertainty, depending on the adopted confidence
level [13]. Each fragment of the measurement chain, by processing the signal in question,
can modify the indicated parameters in accordance with its properties. Additionally, the
analyzed signals may be mutually correlated, which should also be taken into account
during the analysis. From the point of view of the process of creating the uncertainty
budget, the most important information will be the signal variance σ2

x,Σ, the associated
standard uncertainty σx,Σ and the expanded uncertainty Ux,Σ, depending on the value of
the standard uncertainty σx,Σ and the expansion coefficient cx,Σ, depending on the shape
of the density function of the probability of the occurrence of selected error signal values
ex,Σ(t) [13]. Therefore, it can be noted that the course of the ex,Σ(t) signal itself does not
have to be known to be able to develop an uncertainty budget.

As wavelet transform algorithms constitute a set of filters with a specific transmittance
resulting from the adopted algorithm parameters, the parameters of signal errors should
be analyzed in the frequency domain [14–16]. In the case of non-deterministic signals, the
relationship between the variance values of these signals as a function of pulsation should
be determined, as presented, among others, in [17], while in the case of deterministic signals,
the resultant value of the variance in the selected pulsation of the resulting deterministic
error signal should be indicated. We assume that x(t) can be described as the sum of the
successive harmonics x(t, ω) of this signal and ẋ(t) is described by the equation:

ẋ(t) =
∞

∑
i=0

ẋ(t, ωx,i), (3)

ẋ(t, ω) = Ex,o(ω) sin(ωt + φx,o(ω)), (4)

where ωx,i is pulsation of i-th harmonic of this signal, Ex,o(ω) is the amplitude and φx,o(ω)
is the phase shift in the harmonic corresponding to pulsation ω. In the real case, however,
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it is assumed that the signal x(t) disturbed by the resultant error signal ex,Σ(t) can be
presented as:

x̃(t) = ẋ(t) + ex,Σ(t) = ex,r(t) +
∞

∑
i=0

s̃(t, ωx,i), (5)

x̃(t, ω) = ẋ(t, ω) + Ex,e(ω) sin(ωt + φx,e(ω)). (6)

According to Equation (5), the resultant error signal ex,Σ(t) related to the signal x(t) can
be divided into components related to the share of random errors ex,r(t) (non-deterministic)
and a component related to deterministic errors which, in turn, can be divided into static
ex,s(t) and dynamic ex,d(t). Due to the above assumptions, describing the single n-th
harmonic of the error signal ex,d(t) with the equation:

ex,d,n(t) = Ex,e,n sin(ωx,e,nt + φx,e,n), (7)

the variance of the analyzed error component in the case when ωx,e,n > 0 rad/s can be
determined according to the relation [18,19]:

σ2
x,d,n =

E2
x,e,n

2
. (8)

In the absence of a correlation between the successive components of the error signal, the
resulting error variance is equal to the sum of the error variances [13]. However, under
certain conditions these waveforms are correlated with each other, and therefore these
correlations should be taken into account, which is discussed in the next section, presenting
the method of determining the parameters of the resultant error, which is the result of all
partial error waveforms.

Based on Equation (7), it is possible to introduce an additional division due to the
nature of the error waveform. For a pulsation value close to zero, successive realizations of
the error within a single measurement window will not change. Therefore, this error can
be classified into the group of static errors described as:

ex,s(t) = ex,d,0(t) = Ex,e,0, (9)

assuming that φx,e,0 = π. In cases where subsequent implementations will change sig-
nificantly, these waveforms should be classified as dynamic errors. For errors of a static
nature, attention should be paid to the fact that their variance within a single measurement
window will be zero, while for subsequent measurement implementations within multiple
measurement windows, it will be nonzero when these errors occur. Therefore, this group
of errors can be analyzed separately. In further considerations, it is assumed that, in the
case of a dynamic error signal ex,d(t), all harmonics of this signal with non-zero pulsation
will be analyzed, while the role of the constant component Ex,e,0 in this signal, the value
of which may change for subsequent window numbers measurement, will be analyzed
within the static error signal ex,s(t).

According to the properties of WT algorithms, described earlier in [17], in the case of
random error signals, the only important information is the value of the variance σ2

x,r in the
resulting random error signal ex,r(t) contained in the input quantities x(t) of the algorithm
used. This value can be determined by knowing the variance values of the subsequent
components of the random error signal and the values of the correlation coefficients of
these signals based on equation [13]:

σ2
Σ =


σ0
σ1
...

σN−1


T

1 r0,1 · · · r0,N−1
r1,0 1 r1,N−1

...
. . .

...
rN−1,0 · · · · · · 1




σ0
σ1
...

σN−1

, (10)
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where σ2
i is the variance of the i-th random error signal ei(t) and ri,j = rj,i is the Pearson

correlation coefficient of the pair of signals ei(t) and ej(t), equal to:

ri,j = rj,i =
σ2

i,j − σ2
i − σ2

j

2σiσj
, (11)

where σ2
i,j is variance in signal ei,j(t) = ei(t) + ej(t). This indicated property of WT algo-

rithms results from the assumptions of the central limit theorem and the fact that these
algorithms process many samples of the same input quantity [3,12,13,17,20].

In the case of deterministic error signals, each component of these signals should be
analyzed separately, but in the case of dynamic error signals, it is possible to determine
the resulting variance value for the selected pulsation value. The first case considered is
a situation where there are several error components with the same pulsation, but with
different phase shifts and amplitudes. The papers [14,20] propose a way to determine the
variance of the resultant error in this case, while the presented method does not allow the
resultant phase shift to be determined, the knowledge of which is sometimes necessary
in the case of analyzing subsequent fragments of the measurement chain. Therefore, the
paper proposes the use of the description of successive N harmonics of the error signal
with the same pulsation in the vector form:

ei =
[
ei,a ei,b

]
=
[
Ei cos(φi) Ei sin(φi)

]
, (12)

on the basis of which the resultant vector for the error signal can be determined in the form

eΣ =
[
eΣ,a eΣ,b

]
=
[
∑N−1

i=0 ei,a ∑N−1
i=0 ei,b

]
. (13)

Then, the resultant amplitude and phase shift of the error signal with the analyzed pulsation
can be determined in the form

EΣ =
√

e2
Σ,a + e2

Σ,b, (14)

φΣ = arctan
(

eΣ,b

eΣ,a

)
. (15)

The correlation coefficient of successive error signals composed in this way can be deter-
mined on the basis of their phase shift, which is described by the equation [19]:

ri,j = cos
(

φj − φi
)
, (16)

where i and j are the harmonic indexes of the error signal for which the correlation coeffi-
cient ri,j is determined, assuming that ωi = ωj.

It is also necessary to consider the combination of the received error signals with
different pulsations, where ωi ̸= ωj occurs. In this case, there is no need to consider the
correlation of the successive components of the error signal, because they are linearly
independent of each other and therefore uncorrelated [14] unless they are caused by the
same phenomena. A universal way to determine the variance in the resultant error, which
proves the above thesis, is the method described by the following equation [14,18]:

σ2
Σ = lim

T→∞

1
2T

∫ T

−T

(
N−1

∑
i=0

Ee,i sin(ωe,it + φe,i)

)2

dt, (17)
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where N is the number of components in the error signal. To determine the variance of the
resultant error ex,d(t) of all its harmonics, it is also possible to apply equation (10) in which
the correlation coefficients are equal to

ri,j =

{
cos
(

φj − φi
)

where ωi = ωj

0 where ωi ̸= ωj
. (18)

Assuming that these quantities represent the variances in the successive harmonics of the
dynamic error signal, determined in accordance with Equation (8), the values of succes-
sive correlation coefficients are zero, which results from the previously described linear
independence of these waveforms [19]. It should be noted that, according to Equation (10),
it is possible to determine the resultant variance in the error signal composed of both
signals with identical and different pulsations: for the same pulsation value, the value of
the correlation coefficient is determined according to Equation (16), while for a different
pulsation value, the value of the correlation coefficient is equal to zero, as described in
Equation (18).

From the point of view of analyzing the metrological properties of the WT algorithm
and its impact on the identified error signals, it is necessary to determine:

• The value of the variance σ2
x,r in the resultant random error signal ex,r(t);

• The values of the variances σ2
x,s,i in the subsequent components ex,s,i(t) of the static

error signal ex,s(t), and, if it is necessary, to determine the expanded uncertainty, the
shape of the distribution of the realization of these signals should be indicated;

• The variance values σ2
x,d,i of subsequent components ex,d,i(t) of the dynamic error

ex,s(t).

Determining the resultant parameters for subsequent groups of error signals or deter-
mining the parameters of the resultant error signal ex,Σ(t) is not necessary, but the analysis
of the impact of the WT algorithm on the resultant error signal ex,Σ(t) is impossible without
knowledge of the component parameters of this signal.

3. Measuring Chain Error Model

Considering the properties of the measurement chain that depend on the transmittance
of fragments of this chain, it is worth analyzing these properties in the frequency domain.
This approach enables a deterministic description of the influence of the transmittance on
the input and processing of errors, while this description takes into account the spectrum
of the processed measurement signal [18]. Let us assume that the analyzed measurement
chain processes a physical quantity that changes over time, marked as s(t). This quantity
is converted by the analog part of this circuit into a voltage signal y(t), which in the
quantization process is converted into its discrete representation. Subsequent samples of
this signal are marked with the symbol x(i). The y(t) signal is sampled with the frequency
fs, and N samples of this signal are taken in the measurement window, and then applied to
the input of the stage computing the discrete wavelet transform algorithm. The algorithm
discussed provides the output of the measuring chain which is a vector of M output
quantities, marked as X(j). A block diagram of the measuring chain is shown in Figure 1.

Analog to analog 
processing

Analog to digital 
processing DWT

s(t) y(t) x(i) X(j)

Figure 1. Scheme of an exemplary measuring chain.
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Further, the signal s(t) processed by the measurement chain is described as:

ṡ(t) =
∞

∑
i=0

ṡ(t, ωs,i), (19)

ṡ(t, ω) = Es,o(ω) sin(ωt + φs,o(ω)), (20)

where ωs,i is the pulsation of the i-th harmonic of this signal, Es,o(ω) is the amplitude
and φs,o(ω) is the phase shift of the selected harmonic of this signal with pulsation ω. In
the real case, the signal s(t) that is disturbed by the resultant error signal es,Σ(t) can be
represented as:

s̃(t) = ṡ(t) + es,Σ(t) = es,r(t) +
∞

∑
i=0

s̃(t, ωs,i), (21)

s̃(t, ω) = ṡ(t, ω) + Es,e(ω) sin(ωt + φs,e(ω)), (22)

where Es,e(ω) is the amplitude and φs,e(ω) is the phase shift in the selected harmonic of
the error signal, and es,r(t) is the signal associated with a random error. It is assumed that,
in Equations (19) and (21), the constant component of the described signals constitutes
harmonics with index i = 0, where ωs,0 = 0 rad/s and φs,0 = π rad. The properties of the
signal in question must be determined at the stage of designing the measurement chain or
identified in the case of an existing chain, which will be presented in an example later in
this paper.

3.1. Analog Part of the Measurement Chain

The analog part of the measurement circuit, which converts the signal s(t) into its
voltage representation, marked as y(t), can be described by a model using the transmittance
Gy(jω) and the processing function fy(x) in accordance with the diagram shown in Figure 2.
Based on the proposed scheme, the output quantity y(t) of the object can be described as:

ẏ(t) = ḟy(u̇(t)), (23)

ỹ(t) = ẏ(t) + ey,Σ(t), (24)

where ey,Σ(t) is the resultant error signal included in the output quantity y(t) which will be
discussed in more detail later in this paper.

Gy(jω)

Dynamic properties Static properties

fy(x)
s(t) u(t) y(t)

Figure 2. Model of a fragment of the analog part of the measurement chain.

Knowing the transmittance Gy(jω) makes it possible to determine the gain Ky(ω) and
the phase shift φy(ω) as a function of pulsation:

Ky(ω) =
∣∣Gy(jω)

∣∣ = √(ℜ(Gy(jω)
))2

+
(
ℑ
(
Gy(jω)

))2, (25)

φy(ω) = arctan

(
ℑ
(
Gy(jω)

)
ℜ
(
Gy(jω)

)), (26)
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and, based on the gain Ky(ω), it is possible to determine the variation σ2
u in the processed

signals at the output of the fragment representing the dynamic properties of the object in
accordance with the relationship [19]:

σ2
u(ω) = K2

y(ω)σ2
s (ω), (27)

where σ2
s (ω) is the variance in the signal s(t) as a function of pulsation. The presented

relationship can be used to determine the variance in both random and deterministic signals.
According to the diagram presented in Figure 2, the quantity u(t) can be described as:

u̇(t) =
∞

∑
i=0

u̇(t, ωu,i), (28)

ũ(t) = u̇(t) + eu,Σ(t), (29)

where subsequent harmonics of this quantity are described by the following equations:

u̇(t, ω) = K̇y(ω)Es,o(ω) sin
(
ωt + φs,o(ω) + φ̇y(ω)

)
, (30)

ũ(t, ω) = K̃y(ω)Es,o(ω) sin
(
ωt + φs,o(ω) + φ̃y(ω)

)
+

K̃y(ω)Es,e(ω) sin
(
ωt + φs,e(ω) + φ̃y(ω)

) , (31)

where K̇y(ω) is the ideal and K̃y(ω) the real gain value, while φ̇y(ω) is the ideal and φ̃y(ω)
the real phase shift. Analyzing Equation (31), two components of this equation can be
distinguished. The first component corresponds to the propagation of the ideal signal
s(t) through the analyzed fragment and, due to the imperfection of this object (i.e., the
discrepancy between the ideal Ġy(jω) and the real G̃y(jω) transmittance of the object),
is responsible for its own signal error being introduced into the signal u(t). The second
component is related to the propagation of the error signal contained in the processed
quantity s(t) through the analyzed part of the object.

In the case of static error signals, which are part of the resultant error signal eu,Σ(t),
whose subsequent realization values do not change during a single measurement window,
the following relationships can be written:

eu,sw(t) =
(
K̃y(0)− K̇y(0)

)
Es,o(0), (32)

eu,sp(t) = K̃y(0)Es,e(0), (33)

where eu,sw(t) is the own static error signal and eu,sp(t) is the static error signal propagated
by the part of the object related to its dynamic properties. The dynamic error self signal
eu,dw(t) introduced into the u(t) signal can be expressed as the sum of the subsequent
harmonics of this signal as

eu,dw(t) =
∞

∑
i=1

K̃y(ωs,i)Es,o(ωs,i) sin
(
ωs,it + φs,o(ωs,i) + φ̃y(ωs,i)

)
−

∞

∑
i=1

K̇y(ωs,i)Es,o(ωs,i) sin
(
ωs,it + φs,o(ωs,i) + φ̇y(ωs,i)

) . (34)

The dynamic error signals contained in the input signal s(t) are propagated to the output
of the analyzed part of the object in such a way that they are amplified and shifted, which
is described by the following equation:

eu,dp(t) =
∞

∑
i=1

K̃y(ωs,i)Es,e(ωs,i) sin
(
ωs,it + φs,e(ωs,i) + φ̃y(ωs,i)

)
, (35)

where eu,dp(t) is the dynamic error signal propagated from the input to the output of the
fragment representing the dynamic properties of the analyzed fragment of the object. For
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propagated random error signals eu,rp(t), it is impossible to determine the deterministic
form of these signals, and therefore only their variances should be determined based on
Equation (27). In order to determine the average value of the variance σ2

u,rp in the signals
of propagated random errors in the pulsation interval ω ∈ [b; a], it is possible to use the
following equation [18]:

σ2
u,rp =

1
a − b

∫ a

b
K̃2

y(ω)σ2
s,r(ω)dω; (36)

however, this activity should be carried out only at the last stage of the analysis, where
subsequent fragments of the measurement chain will not affect the spectrum of the pro-
cessed random error signals. The error signals contained in the quantity u(t) described so
far constitute the resultant error signal eu,Σ(t) associated with this quantity, with

eu,Σ(t) = eu,sw(t) + eu,sp(t) + eu,dw(t) + eu,dp(t) + eu,rw(t) + eu,rp(t). (37)

The symbol eu,rw(t) denotes an additional component constituting a random error intro-
duced by the object, the variance of which is marked with the symbol σ2

u,rw.
Next, the signal u(t) is processed according to the object processing function fy(x); therefore

ẏ(t) = ḟy(u̇(t)). (38)

It should be noted that the real form f̃y(x) of the discussed function may actually differ
from the ideal form ḟy(x) assumed by the designer of the measurement chain. In the real
case we can write

ỹ(t) = f̃y(u̇(t) + eu,Σ(t)) + fz(z(t)) = ẏ(t) + ey,Σ(t), (39)

where fz(z) is a function that takes into account selected quantities disturbing the process
of determining the value of quantity y(t) (e.g., environmental parameters). Based on
Equation (39), one can distinguish the own error signal ey, f w(t), which results directly from
the imperfection of the object processing function, and the own error signal ey,zw(t), which
results from the participation of disturbing factors. These signals can be described as:

ey, f w(t) = f̃y(u̇(t))− ḟy(u̇(t)), (40)

ey,zw(t) = fz(z(t)). (41)

The error signal ey, f w(t) will be deterministic if the form of the function f̃y(x) is known.
Otherwise, it is possible to describe its parameters in a probabilistic category. The nature
of the error signal ey,zw(t) will depend on the properties of the analyzed object. In the
case of the influence of environmental parameters on the measurement process, it can
be assumed that these values will be slowly changing, hence this signal will usually be
included in the group of static error signals. The variance in the signal at the output of the
fragment representing the static properties of the object can, in general, be described by the
equation [19]:

σ2
y = Var

(
fy(eu(t))

)
= E

[(
fy(eu(t))− E

[
fy(eu(t))

])2
]
, (42)

where E[e(t)] is the expected value of signal realization e(t). If the processing function of
the object is a linear equation in the form f (x) = ax + b, this analysis is simplified. By
denoting the slope coefficient of the presented equation with the symbol sy, which can be
identified with the sensitivity of the analyzed object, Equation (42) takes the form [19]:

σ2
y = s2

yσ2
u . (43)
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It is important that the shift parameter b has no effect on the variance in the object’s output
signal. If the processing function described is additive (when fy(a + b) = fy(a) + fy(b)
occurs for any parameters a and b belonging to the domain of this function), it is possible
to analyze each of the error signals eu,i(t) included in the signal eu,Σ(t) separately. In this
case it may be written as:

ey,Σ(t) = ∑ f̃y(eu,i(t)). (44)

If the actual form of the processing function fy(x) is not known, the ideal form of this
function should be used in the calculations. This operation will result in an incorrect
estimation of the error signal parameters, but is not possible in any other way.

The presented relationships make it possible to determine the parameters of error
signals at the output of the analyzed object, both when the object processes errors that
already exist in the input signal and when it introduces its own errors resulting from the
imperfections of its properties. It should be noted that direct knowledge of the transmittance
of the object is not necessary to perform the analysis, it is enough to estimate the actual gain
and phase shift related to the dynamic properties of the object as a function of pulsation.

3.2. Properties of the Analog-to-Digital Converter

The analog-to-digital converter (ADC) has a discrete set of possible output values, and
therefore introduces an error eAC,q(x) related to quantization into the output signal x(i)
(where i = nTs, n ∈ N and Ts =

1
fs

). This error can be described in the form [21]:

eAC,q(x) = x − ŭAC(x) = x − q
⌊

x
q
+ 0.5

⌋
, (45)

where q is the value of a single quantum and ŭAC(x) is the value of the ADC output for the
input voltage value equal to x, expressed in the unit of the input quantity. It can be noticed
that the realization values of the discussed error signal depend on the realization values of
the ADC input quantities. According to the research results presented in [12,21–23], this
correlation can be neglected. Therefore, we propose describing the signal ex,q(i) associated
with the i-th realization of the quantization error using an uncorrelated additive noise
model with the same probability of obtaining each of the possible realization values in
the interval:

− q
2
≤ êx,q(i) ≤

q
2

, (46)

therefore, the variance in this signal can be determined according to the relationship [13]:

σ2
x,q =

q2

12
. (47)

Given the above assumptions, in the ideal case the output value x(i) of the ADC can
be given by the equation:

ẋ(i) = ẏ(ti), (48)

where ti is the selected time at which the input signal y(t) was sampled. In the real case,
the quantity x(i) can be described as:

x̃(i) = ẋ(i) + ex,Σ(i). (49)

The resulting error signal ex,Σ(i) at the output of the ADC can therefore be described as:

ex,Σ(i) ∼= ey,Σ(ti) + ex,q(i) + ex,w(i), (50)

where ex,q(i) is the error signal related to the rounding operations introduced in accordance
with Equation (45), the variances of which are described by Equation (47), while ex,w(i) is an
additional self-error signal. Moreover, for an ideal quantizer system ex,w(i) = 0. Therefore,
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the variance σ2
x in the signals at the output of the A/D converter can be described by

the equation:
σ2

x
∼= σ2

y , (51)

where σ2
y is the variance in the signal at the object input. These assumptions allow us to

assume that the analyzed object has no influence on the form of processed error signals:

ex(i) ∼= ey(ti), (52)

where ex(i) is the error signal at the output of the ADC related to the error signal ey(t)
at its input. The validity of the adopted assumptions was demonstrated, among others,
in [17,21].

In the case of a real ADC, it is necessary to determine the parameters of the self-error
signal, and this error most often results from ADC integral nonlinearity, differential nonlin-
earity, gain error, zero error, the heterogeneity of the internal structure of the converter or
the imperfection of the reference voltage source [24,25]. Additionally, parameters related to
the sample-and-hold circuit (S/H) should be considered separately. In this case, the model
proposed for the analog part of the measurement chain, the parameters of which will be
appropriate for the S/H circuit, will be used.

3.3. Digital Part of the Measurement Chain

If the input values of the wavelet transformation algorithm are processed by an
additional object implementing digital-to-digital (D/D) or simply purely digital processing,
it is proposed to describe the properties of this object in the same way as for the analog part
of the measurement chain. The transmittance of the object Hx(z) in the Z domain should be
transformed by substituting z = ejωTs , as described in [14]. The further part of the analysis
is analogous to the described case of the analog part of the measurement chain, so it will
not be considered further in this article.

4. Application of the Proposed Analysis Method

To verify the presented thesis, a prototype of a measuring circuit processing a time-
varying voltage signal s(t) from the range ŝ(t) ∈ [0; 1] V was built. The first part of the
measurement chain is an amplifier which adjusts the parameters of the processed signal
s(t) to the operating range of the ADC. This amplifier has a transmittance of Gy(jω),
which is responsible for introducing dynamic errors into the processed signal which can
be described in a deterministic way. The output signal y(t) of the amplifier is processed
by the ADC, whose successive output samples x(i) are processed by the discrete wavelet
transform algorithm. A diagram of the measurement circuit is shown in Figure 3. The
target gain of the analog part is K̇y(ω) = 3.29 V/V, and the phase shift φ̇y(ω) should be
zero. The processed signal is sampled with a constant frequency of fs = 48 kHz, and, on
the basis of N = 128 samples of the input value, M = 128 samples of the output values of
the measurement chain are determined. The additional D/D conversion element converts
the original output signal c(i) of the ADC into output samples x(i) where x̂(i) ∈ [0; 1] V,
which in effect eliminates the static gain of the measuring amplifier. According to presented
assumptions the x(i) quantity, which is a data source for the DWT algorithm, can be
described as:

ẋ(i) = ss,x ṡ
(
iTp
)
= ṡ
(
iTp
)
, (53)

x̃(i) = ṡ
(
iTp
)
+ ex,Σ(i), (54)

where static gain ss,x = 1 V/V and ex,Σ(i) is described in next part of paper.
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Figure 3. Schematic representation of the prototype of the measuring chain, being the object of
the experiment.

The exemplary measurement circuit was built on the basis of the STM32F411 micro-
controller and the 12 bit built-in ADC [26]. The DWT algorithm was implemented using
the DSP instruction and the “CMSIS DSP” library [27]. The amplifier was based on the
MCP 6002 operational amplifier [28], operating in a non-inverting configuration with a
gain of 3.29 V/V. The reference voltage source for the ADC, and, at the same time, the
power source of the operational amplifier, was the LD33CV integrated circuit [29]. The
reference voltage was additionally filtered to reduce noise.

4.1. Deterministic Errors Sources

The first step of analysis is to determine static and dynamic error signals parameters.
In the case of constant environment parameters (temperature, pressure, humidity) it can
be assumed that static errors do not exists in the presented system. In the case of any
possible change in the described parameters it is necessary to describe how the analyses’
parameters impact the measurement chain. In the case of a dynamic error, the origin of this
error will be the real transmittance G̃y(jω) of the measuring amplifier, which is different
from the transmittance Ġy(jω). Therefore, this transmittance must be determined or the
parameters marked with Equations (25) and (26) should be determined by experiments.
As the exact model of the operational amplifier used was unknown, an experiment was
carried out in which a sinusoidal signal was applied to the input of the amplifier its
gain and the phase shift was measured. The source of the s(t) signal was an RIGOL
DG1011 arbitrary waveform generator [30], while the s(t) and y(t) signals’ parameters
were measured with an RIGOL DS5062MA DSO [31] using mean value of 256 subsequent
samples. For the experiment described here, the frequency of input signal s(t) was within
range f̂s,o ∈ [0.1; 48] kHz. The measurements enable the determination of the relationship
between the gain and the phase shift introduced by the applied measuring amplifier as a
function of pulsation.

As none of the typical filter models were applicable in the described situation, on the
basis of the obtained values, approximations of the tested characteristics were carried out
using polynomials, using the least squares method, whereby:

K̃y(ω) ≈ 3.29, (55)

φ̃y(ω) ≈ −6.26·10−13ω2 − 5.73·10−7ω, (56)

where K̃y(ω) is the gain, while φ̃y(ω) is the phase shift in the selected harmonic of the
processed signal. The relationships presented will enable the description of the waveform
of the output signal of the measuring amplifier and, as a result, the determination of the
waveform of the error signal introduced by this element.

Another dynamic error source is the S/H circuit at the input of the ADC. According
to the manufacturer’s data, the S/H circuit can be described as a two-stage low-pass
passive RC filter [25,26]. The first filter stage is formed by the internal impedance of the
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input voltage source and circuit capacitance. As the output impedance of the amplifier is
relatively low, the influence of the first filter stage can be omitted [13,24,25]. The second
filter is formed by the ON resistance of the internal S/H switch and a capacitance of typical
values 5 kΩ and 6 pF, respectively [25,26]. The resulting cutoff frequency of this filter is
relatively high in comparison to the bandwidth of the amplifier so influence of the second
filter can be neglected as well.

4.2. Random Errors Sources

In the case of random error signals, there are many more sources related to them
and they occur in the whole measurement chain. It must be noticed that all phenomena
for which a deterministic description is not possible must be considered as random error
sources. These phenomena are, e.g., noise present in the input signal, the reference voltage
and supply voltage, quantization errors, internal structure heterogeneity, integral errors and
differential errors. As the analysis of all these phenomena separately is not possible without
detailed knowledge of the parameters and the internal structure of the components used,
we propose estimating the parameters of the resulting random error signal by performing
the experiment described next.

In the experiment, a nominally constant voltage s(t) was applied to the input of the
measurement chain from a voltage source. Then, for the selected input voltage value,
many implementation values of the quantity c(i) were taken. Based on the average ob-
tained values of the realization of the quantity c(i), it is possible to determine the static
characteristics of the part of the measurement circuit which includes the amplifier and the
measuring transducer, as well as to determine the inverse function for it, which will enable
the reconstruction of the quantity s(t) in the form of the quantity x(i). To allow this, it is
necessary to repeat the experiment for subsequent input voltage values.

The described experiment was carried out in each k-th measurement series of 30,000 val-
ues for the realization of the quantity c(i) of the input voltage values in the range ŝ(k) ∈
[25; 975] mV, where this value changed by ∆ŝ(k) = 25 mV for each measurement series.
Based on values obtained for the realization of the quantity c(i), the average value of these
realizations c(k) was determined for the k-th measurement series. Then, on the basis of
the obtained results, a linear approximation of the characteristics of the processing of the
quantity s(t) to the quantity c(i) was performed:

c(k) = fc
(

fy(ŝ(k))
)
≈ 4093.1 · ŝ(k) + 0.4519, (57)

where ŝ(k) is the set voltage value for the analyzed series of measurements. Assuming that
the sensitivity of quantity x(i) with respect to quantity s(t) is 1 V/V, the estimated average
value of x(k) as a function of the value of ŝ(k) can be described as:

x(k) = fx(c(k)) = fx
(

fc
(

fy(ŝ(k))
))

=
c(k)− 0.4519

4093.1
≈ ŝ(k). (58)

The voltage source for the s(t) signal used in the experiment was the RIGOL DG1011
arbitrary waveform generator [30]. It was assumed that the errors introduced by the
generator are negligible in relation to the errors arising in the analyzed section of the
measurement chain.

It can be noticed that the static characteristic described by Equation (58) is a processing
function for the part of the measurement chain that converts the quantity s(t) into the
quantity x(i). By determining the standard deviation of the differences between the mea-
sured realization values c(k) and the values determined in accordance with Equation (58),
the standard uncertainty value related to the nonlinearity of the discussed characteristic
is obtained. Additionally, on the basis of all the realization values of the quantity c(i), it
is possible to determine a histogram of the realization of the random error signal of this
quantity, obtained under the experimental conditions.
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Assuming that there were no non-random sources of error during the experiment (con-
stant ambient conditions, constant input voltage for the analyzed series of measurements),
the random error signal ex,r(i) related to quantity x(i) can be described as:

ex,r(i) = x̃(i)− ṡ
(
iTp
)
, (59)

while the random error signal ec,r(i) of quantity c(i) can be described in the form:

ec,r(i) = c̃(i)− fc
(

fy
(
ṡ
(
iTp
)))

. (60)

Hence, based on the subsequent values of the error signal ec,r(i) and Equations (57) and (58),
the parameters of the error signal ex,r(i) can be estimated. Figure 4a shows a graph of
the characteristics given by Equation (57) obtained for the measurements, while Figure 4b
shows a histogram of the error signal realization values ex,r(i) calculated in accordance with
Equation (59). Based on the indicated histogram, it is possible to estimate the variance in
this signal equal to σ2

x,r = 0.13 µV and the associated standard uncertainty σx,r = 0.36 mV.
Based on the shape of the histogram, it can be concluded that the distribution of the error
signal in question is a normal distribution with an expected value of zero.
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Figure 4. (a) Approximation of mean c(k) of the ADC output quantity c(i) values obtained for k-th
measures series (calculated according to Equation (57)); (b) a histogram of the DWT input quantities
random error ex,r(i) values obtained during the experiment (calculated according to Equation (59)).

4.3. Model Application for a Monoharmonic Input Signal

Analyzing Equations (34) and (35) in the case of the non-ideal dynamic properties of
the measurement chain, it can be noticed that the parameters of the described signals will
depend on the spectrum of the signal s(t) processed by the measurement chain. The first
example of the application of the proposed model concerns a case in which this circuit
processes a sinusoidal input signal with a given frequency fs,o =

ωs,o
2π , amplitude Es,o and

direct-current (DC) component Ds,o. This signal can be described by the equation:

ṡ(t) = Es,o sin(ωs,ot + φs,o), (61)

whereas in the experiment it is assumed that φs,o = 0 rad. According to the assumptions
that the environmental conditions do not change during subsequent measurement series
and that the errors introduced by the arbitrary waveform generator used are negligibly
small in relation to those introduced by the measurement chain, it can be assumed that the
s(t) signal is not disturbed by any error signals, therefore s̃(t) ∼= ṡ(t).

Based on Equation (55), it can be noted that, in the frequency range f̂ ∈ [0; 1
2 fs],

the value of the amplification introduced by the measuring amplifier is constant and is
compensated by the static playback algorithm, in accordance with Equation (58). It can
therefore be concluded that the only important parameter from the point of view of the
error model will be the value of the phase shift introduced by the measuring amplifier,
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which is the cause of the dynamic self-error signal, depending on the pulsation of the input
signal. The signal in question can be defined based on Equation (34):

ex,d(i) = Es,o(ωs,o) sin
(
ωs,oiTs + φs,o + φ̃y(ωs,o)

)
−

Es,o(ωs,o) sin
(
ωs,oiTs + φs,o + φ̇y(ωs,o)

) , (62)

where φs,o = 0 rad, φ̇y(ω) = 0 rad and the value of φ̃y(ω) is estimated according to
polynomial (56). The form of the error signal described in Equation (62) consists of two
factors with the same frequency, the resultant parameters of which can be be estimated in
accordance with the content of equations from (12) to (18). By transforming the indicated
equations and taking into account the components of Equation (62), the variance in the
dynamic error signal ex,d(i) can be determined in accordance with the relationship:

σ2
x,d =

(
Es,o cos

(
φ̃y(ωs,o)

)
− Es,o

)2
+
(
Es,o sin

(
φ̃y(ωs,o)

))2

2
. (63)

It can, therefore, be seen that the variance in the described signal depends on the signal
frequency s(t) and its amplitude.

To summarize the considerations, the resultant error signal ex,Σ(i) of the input quantity
of the DWT algorithm in the discussed case will consist of the random error signal ex,r(i),
the parameters of which were estimated previously, and the dynamic error signal ex,d(i),
whose parameters are estimated according to Equation (63) for the given signal parameters
s(t). As the analyzed error signals are not correlated with each other, the variance of the
resulting error signal ex,Σ(i) can be estimated according to equation [13]:

σ2
x,Σ = σ2

x,r + σ2
x,d. (64)

To verify the validity of the indicated relationships, a Monte-Carlo measurement exper-
iment was carried out, in which 30,000 values of the x(i) signal realization were collected
each time. During the experiment, the source of the signal s(t) was the RIGOL DG1011
arbitrary waveform generator [30], and the initial phase of this signal was randomized
from the interval [−π; π], and the generator’s synchronizing output was used to determine
it. The frequency of the signal s(t) was in the range f̂s,o ∈ [1; 21] kHz, while the parameters
of this signal were constant and were Ds,o = 0.5 V, Es,o = 0.475 V. Based on the obtained
values of the realization of the quantity x(i), in accordance with Equation (54), the values of
the error signal ex,Σ(i) were determined and the variances in this signal were calculated on
their basis. The measured variance value σ2

m was compared with the value σ2
c determined

according to Equation (64) and the relative error in estimating this value was calculated.
The results for selected values of signal s(t) pulsation are summarized in Table 1, while
calculated relative error values are also presented in Figure 5.
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Figure 5. Relative error of estimated σ2
c values of the variance of the resultant error signal ex,Σ(i) (in

the case of a monoharmonic input signal).
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Table 1. Experimentally determined σ2
m and estimated σ2

c values of the variance in the resultant error
signal ex,Σ(i), where the symbol δ denotes the relative error of estimating the variance of the analyzed
error signal (in the case of a monoharmonic input signal).

Frequency fs,o, Hz Measured σ2
m, µV Calculated σ2

c , µV Relative Error δ, %

1000 1.90 1.64 −13.93
2000 6.46 6.24 −3.35
3000 13.16 14.08 7.01
4000 21.86 25.26 15.58
5000 39.07 39.93 2.21
6000 54.20 58.21 7.39
7000 68.94 80.22 16.37
8000 107.02 106.12 −0.85
9000 132.80 136.02 2.43

10,000 158.17 170.07 7.52
11,000 212.81 208.40 −2.07
12,000 262.00 251.15 −4.14
13,000 276.89 298.47 7.79
14,000 338.18 350.49 3.64
15,000 394.60 407.37 3.24
16,000 502.38 469.24 −6.60
17,000 509.94 536.26 5.16
18,000 565.03 608.57 7.71
19,000 748.86 686.33 −8.35
20,000 670.62 769.67 14.77
21,000 777.45 858.77 10.46

Mean of absolute relative error values is equal to 7.17%

4.4. Model Application for Poliharmonic Input Signal

In this section we assume that s(t) is a triangle signal. According to the assumptions,
the processed signal s(t) can be described in the form:

ṡ(t) = Ds,o + Es,o
π

8

∞

∑
i=1

(−1)i−1(2i − 1)−2 sin(ωs,ot(2i − 1) + φs,o), (65)

where Ds,o is a DC component of the signal, Es,o is the amplitude of the fundamental
harmonic, φs,o = 0 rad is signal phase, ωs,o is fundamental harmonic pulsation. In the
experiment it was assumed that s̃(t) ∼= ṡ(t).

According to the previous assumptions, the parameters of the random error signal
ex,r(i) remain identical to those of the monoharmonic signal. However, a significant
difference is in the parameters of the dynamic error signal ex,d(i), for which, according
to Equation (34), the subsequent harmonics taken into account in Equation (65) should
be analyzed. Therefore, for each harmonic ex,d,i(i) of the error signal ex,d(i), its variance
should be determined, similarly to the case of the monoharmonic signal. In the discussed
case, for the i-th harmonic it occurs that:

σ2
x,d,i =

(
Es,o,i cos

(
φ̃y(ωs,o,i)

)
− Es,o,i

)2
+
(
Es,o,i sin

(
φ̃y(ωs,o,i)

))2

2
, (66)

wherein the amplitude for the i-th harmonic is determined according to the relationship:

Es,o,i =
π

8
(2i − 1)−2Es,o. (67)

The value of variance for the resultant error signal ex,Σ(i) in the analyzed case can be
determined according to the relationship:

σ2
x,Σ = σ2

x,r +
∞

∑
i=1

σ2
x,d,i; (68)
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however, we propose analyzing only those harmonics for which it occurs that k fs,o ≤ 1
2 fs

for k = (2i − 1) (all harmonic components for which the frequency is less or equal to the
Nyquist frequency).

In order to verify the presented considerations, a measurement experiment using the
Monte-Carlo method was carried out. In this case s(t) was a triangle signal with a given
frequency fs,o in the range f̂s,o ∈ [1; 5] kHz with parameters Ds,o = 0.5 V, Es,o = 0.475 V
and a random initial phase. For the selected signal frequency values, 30,000 samples of x(i)
were taken in order to determine the value of the error signal ex,Σ(i) based on Equation (54).
Based on the obtained measurement results, the actual value of the variance σ2

m in the
analyzed error signal was determined and compared with the value σ2

c estimated on the
basis of Equation (68). The obtained results are summarized in Table 2. The source of the
s(t) signal was an RIGOL DG1011 arbitrary waveform generator [30].

Table 2. Experimentally determined σ2
m and estimated σ2

c values of the variance in the resultant error
signal ex,Σ(i), where the symbol δ denotes the relative error of estimating the variance of the analyzed
error signal (in the case of a polyharmonic input signal).

Frequency fs,o, Hz Measured σ2
m, µV Calculated σ2

c , µV Relative Error δ, %

1000 1.20 1.31 9.23
2000 5.31 4.95 −6.75
3000 10.06 11.06 9.93
4000 21.20 19.49 −8.08
5000 34.34 29.58 −13.85

Mean of absolute relative error values is equal to 9.57%

5. Reasons for Discrepancies in Results

Based on the results presented in Tables 1 and 2, as well as on the basis of Figure 5, it
can be noticed that the results obtained from the measurement experiment are not perfectly
consistent with those obtained analytically. The main reason for the discussed discrepancies
is the inaccurate determination of the parameters of the error model of the input quantities
of the WT algorithm.

The measurement experiment carried out, the aim of which was to identify the static
properties of the analyzed section of the measurement chain, assumed that the input values
of the measurement chain were not encumbered with any errors. This simplification is
inappropriate, and its elimination would require an identification of the properties of the
arbitrary waveform generator used, which has not been carried out. Unfortunately, due to
insufficient information being contained in the instrument documentation, the properties
of the generator have to be determined experimentally.

In the case of dynamic properties, a discrepancy between the actual and estimated
value of the phase shift φy introduced by the analyzed measurement amplifier can be
noticed. Figure 6 shows the measured and estimated values of the quantity in question
based on Equation (56). In order to improve the obtained results, a higher order polynomial
or a better model describing the properties of the measurement amplifier should be used.

The last simplification requiring discussion is the omission of the analysis of static
error signals. As the experiment was performed under constant ambient conditions, the
error signals in question did not occur. In reality, however, an appropriate measurement
experiment should be carried out to identify them. For example, in the case of zero drift of
the measurement amplifier and ADC converter, the influence of the ambient temperature on
the introduced drift should be determined. Determining the parameters of the error signal in
question enables its analysis in accordance with the method presented earlier in the work.

As the aim of the work was to indicate how to quantitatively describe the metrological
properties of the measurement chain using the proposed error model, the work did not
focus on a very precise determination of the parameters of the discussed model. In fact,
the designer of the measurement chain should identify all error sources and indicate their
parameters as precisely as possible. As there are works devoted to the analysis of subse-
quent fragments of the measurement path (e.g., in case of ADC works such as [22,24,25]),
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this work focused on an example with a minimum degree of complexity, while presenting
results with an acceptable error.
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Figure 6. Measured and estimated (according to the Equation (56)) values of phase shift φy(ω)

introduced by amplifier.

6. Conclusions

Based on the results listed in Tables 1 and 2 it can be seen that the estimated values of
the variance in the resulting error signal of the input quantities of the DWT algorithm are
close to those obtained by measurement. The proposed error model for the measurement
chain allows to describe both deterministic and random error signals, and the parameters
of these signals can be identified by measurement, as shown in the example presented.
The example of a monoharmonic signal presented in this paper is the most simplified case,
due to the presence of only one component of the dynamic error signal (in the discussed
case, the dynamic error signal contains only one harmonic component). In the case of a
polyharmonic signal, an example is presented in which a triangular signal was processed to
indicate how to analyze many harmonics of the dynamic error signal and, therefore, many
components of the resultant error signal of the output quantities. The presented analysis is
performed identically for signals with any spectrum.

The application of the error model described in the article is simplified and does not
take into account, among other things, error signals occurring in the input value of the
measurement chain. The presented error model allows for a full analysis, while the adopted
simplifications were justified by the need to present an example with a minimum degree
of complexity. For the same reason, the analysis of static error signals was omitted. The
mean of the absolute relative error values of the analyzed error signal was less than 10%,
which means that a standard uncertainty value of relative error should be less than 5%. To
improve accuracy of estimating discussed values a more precise measurement chain model
parameter values must be obtained.

The example provided may constitute a set of guidelines for designers of measurement
chains using WT algorithms on how to describe the metrological properties of the measure-
ment chain so that a further analysis of the impact of these algorithms on the identified
error signals is possible. The last step necessary to determine the uncertainty value of the
output quantity of the measurement path presented in this work is to indicate how the
analyzed WT algorithm affects the error signals identified in this article and present in the
input quantities of this algorithm. The mentioned analysis was not presented in the current
paper and is a separate issue, which will be discussed in subsequent works. Regardless of
the number of error signals analyzed and the number of subsequent processing stages oc-
curring in the measurement chain, the application of the presented error model is identical
and its level of complexity does not change.
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