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Abstract: The growing interest in low-impact mobility technologies has elevated the significance of
fuel cell electric vehicles (FCEVs) in the automotive sector. Given the complexity of the resulting
powertrain, the need for an effective energy management strategy (EMS) becomes essential to
optimize efficiency and energy consumption in vehicles with diverse energy sources. Model-based
control is the main approach to address the EMS in electrified vehicles. In particular, fuel cell power
is commonly represented through a 1D look-up table using the current demand as input to simplify
the implementation in a vehicle control unit. Uncertainties that may be implemented in maps
due to simplifying hypotheses, dynamics, ageing, etc., can be propagated to powertrain control,
motivating the adoption of adaptive look-up tables for FC modelling. In this study, an extended
Kalman filter (EKF) is proposed to adapt the look-up table to actual FC behaviour by measuring
its power and gradually correcting calibration errors, drift, and ageing. Subsequently, a standard
equivalent consumption minimization strategy (ECMS) is employed to control the FCEV. The fuel
cell model is calibrated with experimental data from an FCEV. The results demonstrate that the
adaptive strategy outperforms the base calibration. Following an extensive simulation campaign,
an improvement of 1.1% in fuel consumption was observed. Remarkably, after just one hour of
operation, there was a notable 85% reduction in fuel cell power estimation error, even when the EMS
was initially fed a biased look-up table.

Keywords: fuel cell vehicles; fuel cell control; energy management strategy; adaptive strategy

1. Introduction

The transport sector represents almost a quarter of Europe’s greenhouse gas emissions
and is the main cause of air pollution in cities. Facing this problem, the European Com-
mission (EU) established a series of legislative proposals to decrease the total emissions
of the transport fleet, with the final purpose of achieving climate neutrality in the EU by
2050. To carry out this transition, the EU defined an intermediate target of an at least 55%
net reduction in greenhouse gas emissions by 2030 [1]. Considering that petroleum-based
fuels used in internal combustion engines (ICEs), which are extensively used in vehicle
propulsion, are a key actor in the problem of greenhouse gases and air pollution [2], several
technologies to progressively replace them are currently on the market. One possibility is
the use of hydrogen-based and carbon-neutral fuels [3] to retain the technological knowl-
edge and productive infrastructure of almost a century of ICE development. Another
option is the use of battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs).

Different types of HEV architectures are designed to accommodate diverse driving
needs, efficiency requirements, and technological advancements, and this subject has been
widely discussed in the literature [4,5]. A fuel cell electric vehicle (FCEV) is essentially
an electric vehicle that combines batteries with a fuel cell to power its onboard electric
motor [6]. The fuel cell converts chemical into electrical energy without going through
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other energy forms such as thermal and mechanical. Therefore, the efficiency of the fuel
cell is not limited by Carnot’s cycle, and an FCEV can reach triple the fuel efficiency of a
regular gasoline-powered car in some operating conditions [7]. However, fuel cells (FCs)
have some drawbacks, such as limited range due to difficulties with hydrogen storage
onboard, lack of a hydrogen recharging infrastructure, and safety challenges [8]. So these
limitations and system complexity add cost to the production and use of this technology.
On the other hand, the source of hydrogen production is an important factor that needs
to be considered when defining hydrogen as clean energy. In this sense, when hydrogen
is produced by electrolysis using photovoltaic, wind power, or hydraulic power as the
source of energy, it is known as green hydrogen [9]. Nevertheless, 95% of the total current
worldwide hydrogen production comes from fossil sources and just 4% from electricity [10].

Given the complexity of FCEV powertrains, specifically due to the multiple energy
storage systems, the energy management strategy (EMS) is essential for their efficiency and
energy consumption [11]. For each situation, the EMS decides the percentage of the vehicle
power demand that must be supplied by each of the energy sources [12]. Also, to make this
propulsion system competitive and economically viable compared to traditional ICEs, there
are still many challenges, such as high maintenance costs and short lifecycle [13]. These
challenges are related to the interaction between several ageing mechanisms that react
differently with various operating conditions that cause a drop in system performance.
The ageing process in fuel cell components also affects the operation of the EMS; however,
this aspect is barely considered in the FCEV EMS [14].

Due to the simplicity required for real-time applications, models used for powertrain
control are susceptible to uncertainties due to several factors, such as modelling simplifica-
tions, limitations in the range of situations considered during calibration, dynamic changes,
measurement errors, unit-to-unit variability, or ageing. These errors are propagated to the
powertrain control, ultimately impacting the overall performance of the vehicle. In vehicle
control applications, electronic control units (ECUs), crucial components in commercial
vehicle applications, manage various functions such as engine management, transmission
control, and braking systems. ECUs continuously monitor parameters based on sensor
inputs to optimize performance, contributing to the overall functioning of the vehicle
powertrain [15]. The predominant approach implemented in EMSs and commercial ECUs
to model nonlinear and operating-point-dependent behaviours is the use of look-up tables
because, even though they require substantial calibration efforts, this is a well-established
process in the automotive industry that produces robust performance [16].

The ageing processes in FCs may lead to important differences between the map
included in the calibration and that representing the actual fuel cell behaviour. These
deviations increase the fuel consumption because the EMS employs a calibration that does
not correspond to the actual system state. As a result, these deviations encourage the
implementation of techniques that are able to adapt the previously calibrated look-up
tables. In this line, ref. [17] proposed a method based on the Lyapunov adaptation law to
estimate the linear and nonlinear parameters such as voltage, power, and internal resistance
of a polymer electrolyte membrane fuel cell (PEMFC). Also, ref. [18] developed an extended
Kalman filter approach for PEMFC to obtain robust real-time-capable state estimations of a
high-order FC model for observer applications mixed with control or fault detection.

The use of Kalman-filter-based approaches for state estimation in automotive control
strategies has been extensively used, as in [19–22]. In addition, the Kalman filter can be used
for model parameter estimation and, specifically, look-up table adaption. In this context,
ref. [16] developed an online adaptive algorithm for NOx map calibration and updating
for ICE control based on a simplification of the Kalman filter that allows consideration of
updates of the table elements around the measured values instead of the complete table.
This proposed solution showed results with similar accuracy to a standard Kalman filter but
required lower computational time and memory. In the same field of ICE control, ref. [23]
developed a method for bias compensation and online adaption of the air mass flow map
of a diesel engine using an extended Kalman filter. As an example of an application in the
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field of electric vehicles, ref. [24] proposed a method wherein a Kalman filter is used to
estimate the ohmic resistance of a lithium-ion battery by updating an entire look-up table
based on local estimation at the current operating conditions; the results of the simulations
show that the method is able to update the look-up table, even in operating conditions that
were barely excited.

In line with the previous discussion, this paper introduces an adaptive approach to
enhance calibration of the fuel cell model utilized within the EMSs of FCEVs. The primary
aim is to enhance the accuracy of the fuel cell model, consequently improving the overall
energy management performance. While existing research utilizes observers to estimate the
internal states of fuel cells for vehicle control applications [25,26] or to approximate look-up
table parameters in conventional ICE vehicles [16,23], this work brings the novelty of
developing an adaptive strategy for online map calibration and updating fuel cell models
implemented in the EMS of an FCEV. In this way, the paper analyses the potential of
updating the FC model by an extended Kalman filter (EKF) used in the EMS, highlighting
the effect of the improved accuracy with respect to fuel consumption. These parameters are
adjusted based on FC power measurements using an EKF approach. The EMS maintains a
simple look-up table but with improved performance by correcting calibration errors, drift,
or ageing.

The article is structured as follows: In Section 2, ’Methodology’, we introduce a case
study, describe the fuel cell model calibration process, provide details about the vehicle
model, and discuss the energy management strategy along with the proposed approach.
Following this, the results are discussed in Section 3, where the baseline calibration is com-
pared with the proposed approach, and the algorithm adaptation speed is also investigated.
The final conclusions of the article are presented in Section 4.

2. Methodology
2.1. Case Study

The paper focuses on online adjustments to the model to relate the fuel cell current and
power in the EMS of an FCEV. This adaptation improves the system control by preventing
errors that may propagate to the powertrain caused by the FC system ageing process
and drift. In this sense, the plant considered is the FCEV for which the architecture is
shown in Figure 1 and for which the main parameters are included in Table 1. To represent
the power-split between the battery and the fuel cell, a control-oriented model (COM) is
built, for which the complete FCEV model built in the v2020 GT-Power software is used
as a vehicle plant. GT-Power is a performance simulation software extensively utilized
by leading vehicle manufacturers for vehicle modelling. This versatile tool enables the
design and analysis of diverse powertrain topologies, encompassing internal combustion
engines, hybrid electric systems, and fuel cell vehicles [27]. With GT-Power, engineers can
assess crucial performance metrics such as power output, fuel efficiency, emissions levels,
and thermal management. Its comprehensive capabilities make it an invaluable resource
for optimizing vehicle design and performance across a wide range of applications in the
automotive industry. The GT-Power FC model was calibrated with experimental data,
and the FC maps employed in the EMS were obtained through steady-state simulation, as
described in Section 2.3.

Table 1. Description of the FCEV’s main features.

Parameter Value

Weight 1814 kg
Frontal area 2.73 m2

Motor power 120 kW
Battery capacity 1.5 kWh
Battery voltage 230 V
FC rated power 95 kW

Hyundai Nexo specifications.
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Figure 1. Powertrain architecture of the FCEV.

In order to evaluate the impact of the 1D table accuracy employed in the EMS, three
different scenarios are assessed. The first case considers perfect knowledge of the FC state.
In this scenario, the GT model is used extensively to create a 1D look-up table relating
the FC current with its power, corresponding to the map calibrated by testing the FC in
steady-state conditions, represented in Figure 2 as Actual map (AM). In a second scenario,
the Biased map (BM) of the FC is considered as the reference. This case aims to estimate
the impact of errors in the FC map used for control purposes in the ECMS: a situation that
becomes more important as the FC ages and presents a significant performance drop due to
the degradation process. This represents the condition where the brand-new FC calibration
remains constant for the entire FCEV’s useful lifespan.

Figure 2. Maps implemented on the EMS to estimate the fuel cell output power according to the
current density input to the vehicle model.

To rectify errors that may propagate to the powertrain control due to biased maps,
the third case proposes a strategy that involves progressive updating of the BM and even-
tually improving the results obtained with the FC map obtained by the AM, since the
adaption is able to capture, to some extent, the FC dynamics that were not considered in the
original scenario. Figure 3 illustrates the driving cycles recorded by a passenger car during
its daily journeys, encompassing a wide range of driving conditions, including highway
travel and urban routes with varying traffic densities and traffic signals, encompassing a
range of driving conditions commonly encountered by vehicles in real-world driving sce-
narios. These driving cycles are employed in the simulation to evaluate EMS performance
considering the three different maps. However, it is important to note that while these
daily trajectories represent a specific route, the driving profiles are subject to variations
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influenced by driver decisions and the actual traffic conditions, resulting in fluctuations in
total travel time.

Figure 3. Recorded vehicle speed traces over time utilized to simulate the vehicle covering different
driving conditions in the simulation campaign.

2.2. Experimental Setup

In order to build a high-fidelity vehicle model in GT-Power, an experimental study
was conducted by employing a fuel cell light duty vehicle, the main characteristics of which
are listed in Table 1, mounted on a chassis dynamometer test. The testing campaign was
done using a dynamic vehicle test bench boasting a continuous power output of 120 kW
and a continuous torque of 1100 Nm. To capture critical data, an on-board diagnostics
(OBD) interface was employed to measure electrical current and voltage within the FC and
to monitor the battery voltage, while the battery current was measured using a current
clamp. This experimental setup facilitated the acquisition of the polarization curve for
the FC. During the tests, the ambient air was not controlled due to test bench limitations,
which naturally fluctuated between 24 and 29 °C. The experimental conditions involved
maintaining the vehicle at constant speeds of 60, 80, and 100 km/h. The accelerator signal
was systematically adjusted in steps, ranging from maximum to minimum, and each setting
was maintained for a duration of 20 s. The polarization curve and the fuel cell output power
measured in these conditions are shown as the green curve of Figure 4. The maximum fuel
cell output power measured at the test conditions was 81.4 kW.

Figure 4. Fuel cell output power map and polarization curve based on experimental data and
models—measured under steady-state conditions.
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2.3. Model Description

This study is conducted by modelling an FCEV on GT-Power; a detailed vehicle model
is built as a vehicle plant. In the COM, the fuel cell power is modelled as a 1D look-up
table using as input the FC current density Iu. Figure 5 shows how the COM is organized.
The v2021b MATLAB/Simulink interface is where the EMS is implemented. This interface
addresses the proposed method of this study and also the standard ECMS applied to
control the FCEV. The EMS receives the outputs of different parameters from the vehicle
plant from the previous time step, where SOC, Iu, PFC, and TFC represents the battery state
of charge, current density, fuel cell power, and fuel cell temperature, respectively. Moreover,
the disturbances related to the driving demands at the current time step are taken into
consideration, such as Pdem, which represents the power demanded by the electric motor to
drive the vehicle. Then, the ECMS employs the powertrain model to compute the power-
split between the battery and the fuel cell to fulfil the power demand based on the ECMS
strategy, providing as input only the current density for the vehicle plant according to the
output power estimated by the 1D table.

Figure 5. Representation of the control-oriented model: above, the vehicle model implemented in
GT-Power, and below, the EMS implemented in MATLAB.

The GT-Power PEMFC template is used to model the FC according to experimental
results. The new FC model shown in Figure 4 is calibrated using the experimental polariza-
tion curve as input for the model; this curve represents the output power of a brand-new
FC model in steady-state conditions. However, hydrogen consumption is not measured by
the vehicle test bench, so hardware design specifications are adjusted to match FC efficiency
values found on experimental works developed using the same vehicle [28]. Similarly,
the maximum and minimum reported efficiencies regarding hydrogen consumption and FC
output power are 65% and 45% at minimum and maximum current densities, respectively.

Since the new FC model is calibrated to represent a brand-new FC, this polarization
curve was scaled to represent an aged FC close to the end of its lifetime, as shown in the
figure. Usually, the failure threshold of a PEMFC is defined as a 10% drop in the voltage
performance [29]. So the polarization curve of the new FC model was progressively scaled,
reducing the voltage curve by 5% at low- to 10% at high-current densities to represent the
aged FC model while maintaining the hardware design and other parameter calibration of
the new fuel cell model. Finally, this aged FC model calibration was employed in the FCEV
model to evaluate the impact of using a map of a new FC to control an aged one and to
develop the proposed adaptive strategy.

This paper assumes that the FCEV employs a battery pack and a fuel cell. Figure 1
shows how the powertrain is built and the electrical connections between its components.
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The powertrain integrates these components through a DC bus. A DC/DC converter links
the fuel cell and battery, while a DC/AC converter connects to the 120 kW electric motor.
Considering 95% efficiency for power losses, the study excludes grid charging. The FCEV is
modelled with a Li-ion Battery—62 serial cells and 2 in parallel, totalling 1.5 kWh capacity
and 230 V voltage. Its equivalent circuit (RC) considers state-of-charge-dependent open-
circuit voltage and resistance. The body specifications are those of the Hyundai Nexo [28]
for longitudinal vehicle dynamics and power demand computation.

Due to the powertrain architecture considered in the FCEV model, the power demand
required by the electric motor to drive the vehicle over the considered driving cycle Pdem
must be supplied by the net electrical power of the battery Pbatt, output power of the fuel
cell PFC, or a combination of both, as given by:

Pdem = Pbatt + PFC (1)

So Pdem depends on the progress and conditions imposed by the driving cycle. Taking Iu as
the control variable, PFC is directly estimated based on the FC map. Finally, Pbatt can be
obtained by:

Pbatt = Pdem − PFC(Iu) (2)

The fuel consumption is chosen as the cost to be minimized, although, similarly, the fuel cost,
the total energy consumed, or the cost production could be used. Therefore, the problem of
the EMS can be defined as finding the powertrain control law u(t) over a driving condition
with a duration of t f − t0 that minimizes the cost:

J =
∫ t f

t0

Pf (u(t), t)dt (3)

where Pf is the power of the fuel consumed, and it directly depends on the control variable
u, i.e., Iu, and it is the single input of the EMS for the FCEV model. As Pf is proportional to
hydrogen consumption, minimizing the cost function (Equation (3)) relies on reasonable
estimation of the output power that the fuel cell can provide in all driving conditions that
the vehicle is exposed to from t f − t0. Taking into account the explicit relation between
Pbatt and PFC, Equation (4) represents the dynamic behaviour of the energy stored in the
battery, and Pb is the variation in the battery’s state of energy (considered positive when
the battery is being discharged and negative when the battery is being charged):

Ėb = −Pb (4)

Note that due to the electrical link, Pb can be computed from Equation (1), and it is
dependent on Pdem and PFC. Then, the battery can be discharged by supplying Pdem and
charged by regenerative braking or electrical power given by the fuel cell.

2.4. Energy Management Strategy

As this vehicle is not a plug-in HEV, the energy that will maintain the vehicle in
the charge sustaining mode comes exclusively from the hydrogen consumed by the FC.
Moreover, for a fair comparison in terms of general performance and fuel consumption
between the different cases in this study, the battery state of charge (SOC) at the end of the
driving cycle should be zero to guarantee charge-sustaining operation and to allow fair
comparison between the scenarios. Finally, considering these constraints, the problem is
defined as: ∫ t f

t0

Pb(u(t), Eb(t), t)dt = 0 (5)

So to address the constraint of the charge sustaining mode in the FCEV and the
condition for which the driving cycle is not known in advance, the ECMS initially proposed
by [30] is implemented in the EMS. The idea underlying the ECMS is to solve the global
optimization problem (Equation (5)) by replacing it with a local one, then to reduce the
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problem to the minimization of the equivalent fuel consumption at each time step. Thus,
it is possible to define an instantaneous cost that takes into account both hydrogen and
electric energy consumption, such as:

C = Pf − λPb (6)

Note that the λ parameter weights (Equation (6)) the power usage to move the vehicle
at a given time step. If λ tends to 0, the EMS only takes into account the fuel power, tending
to deplete the battery. On the other hand, if λ tends to ∞, the variation to the SOC is
minimized, and high power is provided by the fuel cell. Pf and Pb have the same units,
and, consequently, the co-state λ is dimensionless. Due to the limitations of obtaining a
λ that fulfils the constraint of Equation (5) in cases for which the cycle is not known in
advance, a controller is implemented in the EMS to manage this task. This controller is
based on what [31] proposed in his work. Basically, the controller attribute a correction
factor according to the error between the actual SOC and the target SOC. A non-linear
penalty function is defined heuristically in order to maintain the SOC around the target
value (50%), delimited from 40% to 60%.

2.5. Proposed Method

Recalibrating maps has shown to be useful for control applications to avoid the
propagation of errors to the powertrain control caused by bias. So this work proposes an
approach that consists of modelling the FC power output power as a 1D look-up table
using the FC demanded current as input and for which the parameters are adapted based
on FC power measurements using an EKF. The map adaptations take place while the FCEV
covers a route, the fuel cell operates, and the learning block presented in Figure 5 evaluates
the fuel cell output power measurement and compares it with the mapped output power
implemented in the EMS.

The proposed strategy addresses an online adaptation of a 1D look-up table M cal-
ibrated with experimental data under steady-state conditions. This table provides the
estimated output power of the fuel cell PFC based on the input current density Iu. The look-
up table is composed of an input axis IM and an interpolated axis PM, both with n elements.
The look-up table is defined as follows:

PFC = M(Iu) = q(IM, Iu) · PM (7)

where q is a vector of the same size (10 elements), computed by:

q = 1 −
|Iu,k − IM|

n

∑
i=1

|Iu,k − IM(i)|
(8)

where Iu,k is the current density applied, and IM is the vector of n input values of the table
and ranges from 0 to 1.75 A/cm2.

Moreover, the output of the table (PFC) is filtered to reject disturbances on the system
and sensor noise as following:

PFC f ,k = aPFC f ,k−1 + (1 − a)PFC,k (9)

where a is the filtering parameter fitted to the simulations and is equal to 0.2. To adapt
the look-up table, a Kalman filter is developed to update the table data elements PM. So
the main equations of the Kalman filter are recalled to present the mathematical terminology.
The following equations will explain the flowchart presented in Figure 6, which depicts the
proposed strategy. It is based on a discrete-time system:

xk = Fxk−1 + Buk + wk (10a)
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yk = Hxk + vk (10b)

where the sub-index k is the time step, xk represents the state vector, uk is the input vector,
and yk is the output vector. The variables wk and vk are the white Gaussian noise terms
that induce the variations. F represents the transition matrix, B is the control-input matrix,
and H is the observation matrix.

In the case at hand, the output of the system yk attends to the power measured at the
fuel cell PFC f , the input uk corresponds to the intensity at each time step Iu, while the state
vector xk comprises all the elements of the table data Pi

M and the estimated power of the
fuel cell PFC f :

xk =


P1

M,k
P2

M,k
...

Pn
M,k

PFC f ,k

 (11)

The noises wk and vk are assumed to be independent and to both have Gaussean
distributions with zero means and covariance matrices Qk and Rk.

Note that Q is the identity square matrix of the n length of the 1D look-up table, and τx
can be selected individually for each table data element containing its individual variances.
It is helpful to consider the order of magnitude of the data, i.e., absolute error for high
powers may be higher than for low loads. Then, Q is represented by

Q =

 idenn+1

τx (12)

and the linearised process matrix is defined by

Fk =

 idenn 0

(1 − a)qk a

 (13)

In this case, H is constant because q and a are included in the process matrix
(Equation (13)). Then, in the prediction step, x̂k is the observation of the state vector xk

x̂k|k−1 = Fk x̂k−1 + Buk (14a)

This assumes no variations to the table elements and estimates the fuel cell power
at the current time step. Then, entering the update step, the error between the power
estimation and the fuel cell power measurement can be evaluated:

ek = yk − Hx̂k|k−1 = PFCm,k − PFC f ,k (14b)

Finally, with the error ek and the Kalman gain Kk, it is possible to update the new table
data elements of M and obtain the final estimation of power:

x̂k = x̂k|k−1 + Kkek = PM (14c)

where Kk is the Kalman gain and is solved by the following iterative equation:

Pk|k−1 = (FkPk−1FT
k + Q) (15a)

Kk =
Pk|k−1HT

HkPk|k−1HT + R
(15b)
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Pk = (I − Kk Hk)Pk|k−1 (15c)

where the matrix Pk is the covariance matrix of the state estimate error that will be used in
the next time step to estimate the observation of the state vector (Equation (14a)) and the
Kalman gain (Equation (15b)).

The noise covariance matrix R is constant and is an essential parameter of the proposed
method that governs the algorithm. The learning rate affects how fast the algorithm can
adapt the map. Observe that increasing the Kalman gain value assigns greater weight
to the error computed by the difference between the measured and the estimated power
by the map (Equation (14b)). Then, the new table data elements are updated quickly
(Equation (14c)). On the contrary, when applying low learning rates, the new table data
elements rely more on the previously implemented data elements. In the results section,
we discuss how increasing or decreasing the parameter affects the map adaptations.

Note that although at each time step just a single value is estimated (PFC f ,k) and
compared with the measured FC output power (PFCm,k), the elements around the value are
also adjusted by multiplying Kk and ek due to the filter implemented in F (Equation (13)).

Figure 6. Flowchart of the proposed EKF adaptative algorithm particularized for the 1D look-up
table of the case study.

3. Results and Discussion

The evolution of the map adaptations by the proposed method when the FCEV is
covering 15 cycles is shown in Figure 7. This figure shows how the learning map (LM)
evolves as the vehicle covers the different driving conditions of the cycles. To expose the
method to the worst scenario, at the start of the test, the map of the BM was conditioned
as the initial map. In this case there is no information about the ageing level of the FC
or operating time that the FCEV has already covered. Due to the warming and low-
temperature conditions of the fuel cell, the adaptations are only activated at temperatures
above 340 K to avoid corrections during these short periods. Once the fuel cell starts to run
and the correction is activated, the adaptation on the maps evolves, and when the FCEV
switches off, the map is stored and then used for the next trip and so on. When the FCEV
runs again, the map keeps evolving to correct these deviations.

According to Figure 7, as the time duration of each cycle is around one hour, higher cor-
rection rates are observed during the first driving cycle. So in this case, about 1 h is needed
for the algorithm to adapt the map and stabilize it until reaching a condition with lower
amplitudes in the map adaptation. Furthermore, one can expect that even if the algorithm
strongly adjusts the map in the first hour, the map should maintain a relatively stable map
profile during subsequent hours, particularly at high current densities. The ongoing varia-
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tions observed from medium to high current densities are closely linked to the dynamic
responses of the fuel cell. This phenomenon is primarily attributed to rapid changes in the
fuel cell operating conditions, often resulting in fuel cell stack temperature fluctuations.

Figure 7. Evolution of the map adaptations by the adaptive method provided during 15 cycles of operation.

For comparison purposes, Figure 8 illustrates the three maps together. In the cases of
the AM and BM, these maps remained constant throughout all simulations. In contrast,
for the LM case, this map represents the final adaptation achieved after the end of the
simulations. Regarding the operating points distributed on the plot, these points represent
the output power of the fuel cell as a function of the control input Iu provided by the EMS
to the fuel cell over the 15 cycles of the LM case.

Figure 8. Operating point distribution of the Learning map during the operation of the 15 cycles and
the Evaluated maps. Estimations provided by the Actual map, Biased map, and Learning map are
shown in black, gray, and blue, respectively.

According to Figure 8, two problems can be underlined when working with COM.
First, the differences between the full cell power estimated by the COM (1D look-up table)
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and the one provided by the plant (GT model) depend on the calibration. However, despite
the high calibration effort for mapping the fuel cell used in the AM, this map still shows
that it is impossible to cover the region perfectly with the highest operating frequency (red),
showing that it is possible to correct and improve the accuracy of the FC models. Second,
independent of the model calibration, there will always be deviation in the estimation
due to simplification of the system to a 1D look-up table. For this reason, providing a
more accurate estimation of the output FC power by the EMS can ensure that the FC
will operate closer to optimal conditions and then improve fuel consumption. Moreover,
as observed in the map adaptations of Figure 7, it is expected that if the adaptative method
can provide quick corrections to the map, the difference between the actual output power
the FC provides and the one estimated by the map can be minimized. To some extent,
the system dynamic can be considered by the EMS to compute the proper power split,
which will be further discussed in this section.

Figure 9 presents the reduction in the mean absolute error (MAE) for fuel cell power
estimation in the AM and LM compared to the BM under identical driving conditions.
This approach allows a statistical comparison of how the three maps correlate with the
actual fuel cell output power. The MAE is calculated by determining the absolute difference
between the predicted FC power estimated by the maps and the measured FC output power
for all the data in one cycle. Remarkably, within just 1 h of operation, the LM achieves
substantially lower estimation errors, obtaining an error reduction of 85% compared with
the BM. In contrast, the AM reduces the error by around 81%. These results highlight
that the BM does not provide an acceptably accurate estimation of fuel cell power and
propagates errors that can affect powertrain control and overall vehicle performance.
However, even though the AM achieves a similar error reduction to the LM, it relies on a
complex calibration process that maps the aged FC model under steady-state conditions.
This calibration process involves substantial effort to determine the actual level of ageing
in the fuel cell, making it impractical for real-time control applications, suggesting the need
for adaptation algorithms to improve calibration accuracy.

Figure 9. Reduction in the absolute error for the estimation of fuel cell power employing the Actual
map and the Learning map compared to the Biased map.

As expected, by increasing the fuel cell power estimation accuracy, the EMS can also
generate better control actions for the fuel cell, thus ensuring fuel savings. Moreover,
Figure 10 shows the relative H2 consumption compared with that of the BM for each cycle
and for the cumulative results of the 15 cycles. Due to the higher estimated error the BM
provides, its poor estimation also affects the H2 consumption. When examining the LM,
a reduction of 1.6% was observed in cycle 11 compared to the BM reference case, with a
cumulative decrease of 1.2% across all cycles. Similarly, the AM exhibited a reduction
of close to 1.7% in cycle 3 and a reduction of 1.3% for the cumulative consumption. It is
important to note that the initial fuel consumption difference in the first cycle is influenced
by variations in the battery state of charge that each of the three cycles reaches at the end of
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the cycle. In this context, AM significantly reduced hydrogen consumption due to higher
battery energy depletion. However, considering long-term vehicle operation, it is possible
to observe that after 45 h of vehicle use, the battery state of charge variation tends to be
minimized, and the LM can overcome the cumulated H2 consumption and start to save
fuel compared to the AM.

Figure 10. Relative and cumulative H2 consumption comparing the Actual map to the Learning map.

Figure 11 illustrates the impact of the three different maps on EMS control actions for
the fuel cell. The left chart shows the evolution of fuel cell output power during the last
cycle. In contrast, the right chart depicts the histogram of operation conditions at various
fuel cell output power levels. When using the BM, the EMS predominantly controls the fuel
cell to operate at medium to low power levels. In contrast, both the AM and the LM guide
the EMS to distribute fuel cell operation at mid-range power levels. The high frequency of
fuel cell operation at low power with the BM can be attributed to the map’s lower accuracy,
as seen in Figure 8. Consequently, the EMS assesses that the BM can provide more power at
low and medium current densities for the same current density and hydrogen consumption
compared to the other two maps. The importance of fuel model accuracy is highlighted
when comparing the histograms of the control action decisions provided by the EMS for
each calibration. As the FC model accuracy increases, the EMS can improve the control
actions, leading to an expected reduction in fuel consumption.

Figure 11. Left plot: Evolution of the FC power signal for the 3 maps in the last cycle. Right plot:
Histogram of the operating conditions of the fuel cell power in the driving cycle.

An important parameter implemented in the algorithm is R (Equation (15b)). This
parameter can regulate the Kalman gain of the adapter algorithm. In this case, the higher
this value, the lower the gain. Employing a higher R, it is expected that the algorithm slowly
adapts the map, thus attributing higher reliability to the map previously implemented in
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the EMS. On the contrary, for a lower R, the higher the Kalman gain, so the EMS relies
more on measuring the fuel cell output power. For this reason, it provides fast adaptation
of the map.

Figure 12 presents a parametric study of the proposed method using three different
learning rates (1 × 105, 7.75 × 104 , and 2.25 × 104), ranging from slow to fast learning rates,
respectively. It is noticed that the proposed method can reduce the error in estimating the
fuel cell power, presenting reductions close to 86% in some cycles. For all the learning rates,
the proposed method generates strong adaptations to the map in the first 4 h of operation.
Then, after this period, the medium and fast learning rates present better accuracy in the
map adaptations. In addition, results with faster learning rates prove to be limited, as the
algorithm is no longer able to reduce the error, but rather, it generates higher errors due
to the dynamic operating conditions of the fuel cell, especially at higher loads. These
limitations can be assigned to conditions wherein a sequence of measurements quickly
adapt the map, but regardless, the algorithm is not capable of perfectly tracking all the
deviations of the model due to the nonlinearity and complexity of the fuel cell system.

Figure 12. Reduction in the absolute error in the estimation of fuel cell power comparing three
learning rates to the Biased map.

The learning rate also impacted hydrogen consumption, Figure 13 shows the hydrogen
consumption for each cycle and also the cumulative hydrogen consumption of all 15 cycles
for the slow to fast learning rates. A similar pattern to the reduction in the estimation
error in Figure 12 is observed. Furthermore, analysing the consumption cycle to cycle, it
is observed that in some cycles, the fast learning rate can overcome the fuel consumption
reduction of the medium and slow learning rates, e.g., cycle 3. However, it can also
increase hydrogen consumption in some conditions, as observed in cycle 14. However,
when comparing the cumulative consumption, the medium learning rate shows slight
improvements compared to the other two.

Figure 13. Relative and cumulative H2 consumption compared with the that of the Biased map for
three learning rates.
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Finally, regarding the map adaptations with the three learning rates, it is demonstrated
that the proposed method can guarantee improvements in map calibration up to a certain
limit, constrained by the dynamic behaviour of the fuel cell. Furthermore, when comparing
the overall performance of different learning rates using the BM as the reference, it becomes
evident that in the case of the medium learning rate, the proposed method achieves slight
improvements in estimation error and fuel savings considering the set of driving cycles
compared to the cases of fast and slow learning rates.

The evolution of map adaptations with three different learning rates is depicted in
Figure 14, spanning from the initial operation to the fourth cycle. For all the LM cases,
the initial calibration employed is the BM, followed by an ongoing map adaptation as
the FCEV operates. All three cases demonstrate the ability to rapidly update the map
to match the current output power provided by the FC in the first minutes of operation.
In the cases of medium and fast learning rates, the algorithm can adapt the maps quickly,
applying stronger corrections to the map for any changes in fuel cell conditions. Conversely,
the algorithm applies smoother corrections when employing the low learning rate. In this
case, the algorithm requires more time during the initial stages of operation to adapt the
map compared to the medium and fast learning rates. Note that in conditions for which the
calibration is not being adjusted, the FC is running under the stack warm-up temperature
threshold, which is considered to be 340 K.

Figure 14. Evolution of the map adaptations by the adaptive method provided during the first four
cycles of operation using the three learning rates.

The proposed method also faces limitations and challenges that warrant attention in
future research. Firstly, the stack temperature emerges as a critical parameter influencing
FC behaviour, particularly in low-temperature conditions, where the adaptive method
ceases operation below the threshold of 340 K. Moreover, higher learning rates exhibit con-
straints in mitigating FC model errors as they introduce bias to the map adaptations, which
limits the capture of FC dynamics in an FC simple map 1D look-up table. Additionally,
the reliability and accuracy of FC power measurements are pivotal to the method’s efficacy.
Therefore, the selection and assessment of sensors employed to measure FC output power
must be thoroughly considered in order to evaluate the feasibility and effectiveness of the
method. Addressing these limitations will be crucial for advancing the applicability and
robustness of the proposed approach in real-world scenarios.
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4. Conclusions

This paper addressed a problem wherein an EMS of an FCEV employs a 1D look-up
table to model a fuel cell and compute the power-split using the widespread ECMS. The goal
was to adapt the calibration of this model using fuel cell measurements by applying a
strategy based on an extended Kalman filter approach. A high-fidelity vehicle plant was
modelled to represent the vehicle, and experimental data were employed to build the FC
model. Two studies were carried out. The first evaluated EMS performance using three
different FC maps. The first map was obtained from a set of steady-state tests on the actual
FC. Second, a biased map reproduced the negative impact of modelling errors in model-
based control approaches such as the ECMS. Last, we tested the map obtained using the
proposed method. The second aspect of the study discussed the learning rate: a parameter
that regulates the gain of the adapter algorithm to make higher or lower adaptations to the
fuel cell measurements. From the results, we can state that:

• Although a dynamic system such as a fuel cell has been simplified to a 1D look-up
table, the proposed method seems to be an option to adapt maps in a model-control-
based approach. The proposed method allows us to adjust the look-up table parameters
for correcting drift and for slowly varying them when using the vehicle in different
driving conditions.

• The primary contribution of this work lies in the adaptive method capability to gradu-
ally adjust the map to compensate for any drift resulting from prolonged use. Further-
more, in the case that the EMS utilizes a biased map, significant improvements are shown
in short periods of operation: approximately 1 h across various operating conditions.

• The learning algorithm was shown to be advantageous since it improved the estima-
tion of the fuel cell power after only one hour of operation. In addition, it reduced the
estimated fuel cell power error by close to 85% compared to the results employing the
biased map, providing fuel savings of up to 1.2%.

• The learning rate analysis showed that by using lower learning rates, the algorithm
gradually adjusted the map, placing greater trust in the previously implemented map
in the EMS. Conversely, when using higher learning rates, the adapter algorithm relied
more on the fuel cell power measurement, enabling faster map adaptation.

Regarding future work, the authors may consider the following possible lines:

• Enhance the vehicle model to consider other relevant parameters in the EMS, such as
fuel cell air and temperature management as well as battery temperature;

• Increase the map dimensions to incorporate this new parameter in the calibration
process, improving the control of the fuel cell system and subsequently improving
fuel consumption.
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