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Abstract: Background: The field of smart devices and physical activity is evolving rapidly, with a
wide range of devices measuring a wide range of parameters. Scientific articles look at very different
populations in terms of the impact of smart devices but do not take into account which characteristics
of the devices are important for the group and which may influence the effectiveness of the device.
In our study, we aimed to analyse articles about the impact of smart devices on physical activity
and identify the characteristics of different target groups. Methods: Queries were run on two major
databases (PubMed and Web of Science) between 2017 and 2024. Duplicates were filtered out, and
according to a few main criteria, inappropriate studies were excluded so that 37 relevant articles
were included in a more detailed analysis. Results: Four main target groups were identified: healthy
individuals, people with chronic diseases, elderly people, and competitive athletes. We identified
the essential attributes of smart devices by target groups. For the elderly, an easy-to-use application
is needed. In the case of women, children, and elderly people, gamification can be used well, but
for athletes, specific measurement tools and accuracy may have paramount importance. For most
groups, regular text messages or notifications are important. Conclusions: The use of smart devices
can have a positive impact on physical activity, but the context and target group must be taken into
account to achieve effectiveness.

Keywords: physical activity; exercise; wearables; activity trackers; smart device

1. Introduction
1.1. Background

Stimulating physical activity is a very important part of improving health. When plan-
ning investments in programmes to promote physical activity, it is important to consider
the factors that influence participation in sports. For example, gender may play a role in
sporting habits [1]. However, when examining the development of sporting habits, it is
important to highlight the role of adolescent influences such as parental attitudes, fitness,
academic achievement, gender, and financial background [2,3]. In addition, the impor-
tance of housing conditions should be emphasised and has been highlighted in several
studies [4,5].

Community support, facilitation of access, and participation in sports clubs can play a
major role in improving sporting habits [6]. However, the SARS-CoV-2 outbreak in 2019 had
a major impact on community activities and could have had a significant impact on sporting
habits, especially if they were community- or team-based [7]. One study has shown that
coaching can have a positive impact on individuals’ attitudes towards sports during this
period [8]. However, it should also be noted that the use of this method by individuals
would require significant human resource capacity. To overcome this, Internet of Things
(IoT) devices could be used to provide remote supervision in sports coaching [9,10].
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The need to measure physical activity has existed for decades, but prior to the advent
of wearable measurement devices, this was done using self-report questionnaires, which
were not accurate [11–14]. The first wearable devices used to measure physical activity
were mainly based on acceleration, measuring speed, duration, number of steps, and
stride length, while more advanced devices categorised movements into categories such
as sitting, standing, and walking [15–17]. These devices were usually attached to the
limbs or waist and performed no function other than measuring physical activity [17]. The
objective metrics they provide reduce the subjectivity inherent in survey methods and can
be used in large groups [18,19]. Accelerometers can also be used in younger as well as
older populations [20–24]. Furthermore, they can be used regardless of gender, even to
detect sex differences [25,26]. Heart rate monitoring is valid enough to be used to create
broad physical activity categories (e.g., very active, somewhat active, sedentary) but lacks
the specificity needed to estimate physical activity in individuals [27].

As devices have evolved, physical activity meters have become more compact and
convenient. The most commonly used devices are smartwatches, smart bracelets, and
smartphones. Newer devices are capable of simultaneously measuring parameters such as
exercise, activity intensity, respiratory rate, cardiac output (ECG), and body surface tem-
perature [28]. Physical activity energy expenditure (PAEE) and different intensity profiles
measured with such devices can be linked, providing a framework for the personalisation
of wearable devices [29]. However, there is currently a need to improve the accuracy of
measurements [30–32].

The use of wearable devices to monitor physical activity is predicted to grow more than
five-fold in half a decade [29]. With the advances in wearable technology and the increasing
demand for real-time analytical monitoring, devices will undergo significant development
in the future through materials science, integrated circuit construction, manufacturing
innovation, integrated circuit fabrication, and structural design [33]. By monitoring new
parameters, measurements for physiological and health purposes will be possible, allowing
professionals to make diagnoses and treatment decisions, thereby improving healthcare
and supporting research [34]. The effectiveness of wearable smart devices can be improved
not only by the development of new measurable parameters and accuracy but also by the
inclusion of new technologies such as virtual reality or artificial intelligence analysis in the
future [35,36].

1.2. Objectives

The use of smart devices can therefore be a good way to increase physical activity.
However, as many factors influence sporting habits and thus the measures to promote
sports, we need to carry out thorough research to prepare real interventions. A considerable
amount of literature on the subject has become available, particularly in recent years. To
establish the basis for further research, studies on smart devices and physical activity
between 2017 and 2024 were collected by searching two major literature databases (PubMed,
National Library of Medicine, National Center for Biotechnology Information, Bethesda,
Maryland, USA and Web of Science, Clarivate, Philadelphia, Pennsylvania, USA, London,
United Kingdom) and then organising the results through a suitable filtering process. This
study can help in designing practical research and learning about previous research. This
article aims to present the latest research on the use of smart devices during physical
activity and identify the target groups, the impact of the usage of devices with different
options, and the expectations of the populations studied. This can contribute to a better
design of research on physical activity and smart devices.

2. Materials and Methods
2.1. Searching Strategy, Inclusion and Exclusion Criteria

We searched in PubMed and Web of Science databases. In both databases, we ran
the search on 25 March 2024 using the following search terms and relationships: (physical
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activity) AND (smart device) AND ((income) OR (sex) OR (age) OR (education)). We
surveyed articles published from 1 January 2017 to 25 March 2024.

We used the two databases mentioned above because they are considered as scientific
databases in the field of health and social sciences, and we can be sure that the publications
published there have been properly peer-reviewed. We have also considered using open
databases such as Google Scholar, but these yield tens of thousands of results for the queries
we have used. Furthermore, such databases usually do not have the option to export the
results to Excel or other files, so manually recording a large number of hits would be
time-consuming. Other databases could of course be included in similar searches.

The keywords in the query were selected based on several scientific articles. We aimed
to examine factors that influence both physical activity [37–39] and smart device usage [40]
patterns. Taking into account several articles, the four factors included in our research
(income, gender, age, and education) were found to be appropriate when examined from
both perspectives.

The results of both database queries were input into automatically generated Excel
spreadsheets, and the duplicates were removed. We included articles and reviews and
excluded article commentaries and proceeding papers. We also did not include studies that
we could not access through our institution. The filtering and selection process and the
number of articles per step are shown in Figure 1. Papers were filtered by title and abstract,
and the inclusion and exclusion criteria are shown in Table 1.
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Table 1. Criteria for inclusion of relevant literature (own ed.).

Articles to be Included Ineligible Articles

Measures the physical activity of a healthy
sample using a smart device.

Reason 1: It is about the effects of an IT tool or
technology, not a wearable device (e.g., smart
home), and/or not specifically about
encouraging physical activity.

Measures the physical activity of a group of
patients using a smart device.

Reason 2: It is about a system to measure
physical activity, but there are no concrete
results yet (e.g., science-promoting articles,
theories, study protocols, device designs, etc.).

The smart device helps to make school-based
movement (e.g., PE lessons) more effective.

Reason 3: The research focuses on the accuracy
of the technology, not on motivation and
activity.

The smart device helps
professional/competitive athletes to train
more efficiently.

Reason 4: It examines the impact of using a
smart device from a non-physical activity
perspective (e.g., impact on sleep, cognitive
function, aging, identification of a disease).

An attitude survey on the use of smart devices
during physical activity is presented.

Reason 5: It is not a smart device, it is looking
at the impact of social media, television, etc.,
on movement.

Reason 6: Does not include any testing using
an IT tool (e.g., prevention of harmful effects of
IT, non-IT PA programmes).

The main criterion was to examine the impact of smart devices on physical activity.
This was mainly examined in terms of sociodemographic indicators and motivation. It
was important that physical activity was mainly considered as a health determinant in the
studies processed. On this basis, we excluded papers from the analysis that examined the
topic from a technological point of view, e.g., architecture or accuracy of the equipment.
In addition, exclusion criteria were also applied if the study did not examine the use of
smart devices from a physical activity perspective or did not present smart devices (e.g., it
examined the impact of social media). Those articles that did not contain concrete results
or were non-professional, rather science-promoting, were not further analysed. We also
excluded studies that did not include any IT tools at all. Based on the criteria, the articles
that could be included and the articles that were filtered out were marked, and we did
not work with the excluded articles. After this, the results were then analysed from a
content perspective.

2.2. The Selection Process

The search returned 177 results for PubMed and 289 for Web of Science. In the
selection process, 51 duplicates were deleted, and 104 articles were not available through
our institution or were of the wrong type of scientific paper. After the exclusion criteria
were applied, only 37 articles were further processed.

3. Results
3.1. Main Findings and Citation

Table 2 shows all the articles we have processed. The table shows each article’s serial
number, reference number, author abbreviation, title, journal, and year of publication. We
have also summarised the main findings of the studies. In the next three columns, we
display the citation count of the article, the average of the journal’s impact factor, and the
citation count of the article normalised by the journal’s impact factor. In the last column,
we display the period for which the average impact factor was calculated.
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Table 2. Summary table of the articles included in the study, their main findings, and their average citations (own ed.).

No. Article Findings Total Number
of Citation IF

Normalised
Citations * Notes

Cited/IF

1.

[42] Moore et al.
The value of wearable devices is determined by the balance between motivation, device features, ease of use, purpose, and user experience,
and therefore a supportive framework needs to be built to encourage and align user preferences. 31 5. 5.44 5 yearsOlder adults’ experiences with using wearable devices:

Qualitative systematic review and meta-synthesis
JMIR mHealth and uHealth, 2021

2.

[43] Yen, H. Y.
Individuals who wore and frequently checked their watches were more prone to altering their exercise habits. Such behaviours can be
positively impacted by the design of a device that is convenient and comfortable for the user. 13 4.4 2.95 5 years

Smart wearable devices as a psychological intervention for
healthy lifestyle and quality of life: a randomized
controlled trial
Quality of Life Research; 2021

3.

[44] Chong et al.
The three-subject study found that the combination of a smartwatch and a smart scale increased maximum heart rate (BPM), improving
adaptation to exercise. In addition, this combination reduced body weight, thus improving the subjects’ body mass index (BMI). 2 1.9 1.05 5 years

Analysis of Health Management Using Physiological Data
Based on Continuous Exercise
International Journal of Precision Engineering and
Manufacturing; 2021

4.

[45] Beltrame et al.
Research shows wearable devices effectively measure blood oxygen levels, providing insights into individual adherence to healthy lifestyles
and assessing changes in aerobic system dynamics, including cardiorespiratory fitness and overall health index. 30 3.6 8.33 5 years

Extracting aerobic system dynamics during unsupervised
activities of daily living using wearable sensor machine
learning models
Journal of Applied Physiology; 2018

5.

[46] Golbus et al.

Researchers found variations in blood pressure and heart rate linked to sex, age, race, and ethnicity using smartwatch data; men had higher
blood pressure, while those 65 and older had lower heart rates, and women and older individuals took fewer steps and walked less. 28 31 0.91 5 years

Wearable device signals and home blood pressure data
across age, sex, race, ethnicity, and clinical phenotypes in
the Michigan Predictive Activity & Clinical Trajectories in
Health (MIPACT) study: a prospective, community-based
observational study
The Lancet Digital Health; 2021

6.

[47] Ye & Ma
A nationally representative survey in the USA explored sociodemographic factors affecting the impact of smart devices on physical activity,
with approximately half of respondents not using them, but notably, many users were younger; for wearables, women, higher-educated and
higher-income individuals, and those in relationships showed more usage inclination.

29 - - no IF data
The effects and patterns among mobile health, social
determinants, and physical activity: a nationally
representative cross-sectional study
AMIA Annual Symposium Proceedings; 2021

7.

[48] Ruiz-Cárdenas et al.
This study was based on data collected from 48 individuals using an iPhone app. Here, activity scores from the app were moderately or very
strongly associated with age and grip strength, but not with walking speed. 33 2.4 13.75 only 2022

Validity and reliability of an iPhone App to assess time,
velocity and leg power during a sit-to-stand functional
performance test
Gait & Posture; 2018

8.

[49] Hartwig et al. Based on systematic literature reviews, the study revealed that activity levels in physical education classes fall short of WHO
recommendations, suggesting that providing feedback to teachers and students could boost activity, though it found accelerometers
inaccurate and recommends pedometers instead.

25 4.1 6.10 only 2022A monitoring system to provide feedback on student
physical activity during physical education lessons
Scandinavian journal of medicine & science in sports; 2019

9.

[50] Dong et al. The research showed that despite limited instruction, skipping rope can be a fun exercise for students, especially with gamification,
highlighting the importance of social support and the need for parental guidance; however, many parents express concerns about smart
devices, which could affect children’s development.

38 3 12.67 5 yearsDesign and Development of an Intelligent Skipping Rope
and Service System for Pupils.
Healthcare; 2021

10.

[51] Lee et al.
The study found a positive association between the use of social networking sites, instant messaging apps, multimedia, and overall
smartphone usage with increases in step count and moderate-intensity physical activity. Importantly, the study utilised objective measures,
rather than relying on self-report questionnaires, to gather data.

16 4.4 3.64 only 2022
Temporal association between objectively measured
smartphone usage, sleep quality and physical activity
among Chinese adolescents and young adults
Journal of Sleep Research; 2021
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Table 2. Cont.

No. Article Findings Total Number
of Citation IF

Normalised
Citations * Notes

Cited/IF

11.

[52] Ráthonyi et al. Among over 500 university students surveyed, approximately 26% reported using a wearable device; users showed a significant increase in
exercise days compared to non-users, with 70.6% of smartwatch wearers reporting a positive impact on activity, while 42.1% of wristband
users reported increased activity.

8 1.6 5.09 4 yearsWearable Activity Trackers Usage among
University Students
European Journal of Contemporary Education; 2019

12.

[53] Yen et al.
Research conducted on smartwatches revealed that individuals who wore and frequently checked their watches were more inclined to
modify their exercise routines. 29 2.7 10.74 5 yearsSmart Wearable Device Users’ Behavior Is Essential for

Physical Activity Improvement
International Journal of Behavioral Medicine; 2021

13.

[54] Gonze et al.
A Brazilian study aimed to modify the habits of physically inactive adults by establishing a daily step goal. After 24 weeks, individuals who
initially did not respond to the intervention demonstrated a positive increase in step count after transitioning to a new group utilising an app
equipped with gamification features.

41 1.8 22.21 4 years
Use of a smartphone app to increase physical activity levels
in insufficiently active adults: Feasibility Sequential
Multiple Assignment Randomized Trial (SMART)
JMIR research protocols; 2020

14.

[55] Polo-Peña et al.
The effectiveness of utilising gamification to promote regular exercise is greater among women compared to men, and also more pronounced
among older users than younger ones. 30 3.5 8.49 4 yearsInfluence of gamification on perceived self-efficacy: gender

and age moderator effect
International Journal of Sports Marketing and Sponsorship; 2020

15.

[56] Zarnowski et al. The study investigated mHealth technology adoption among Polish adults, highlighting the usage of mobile apps and wearables for tracking
diet, weight, and physical activity; findings indicated 23.2% used wearables for activity monitoring, 14.4% owned smart scales, and 16.3%
used mobile apps for activity tracking, with factors such as younger age and healthy lifestyle habits associated with adoption, indicating
potential for promoting health and reducing disparities.

40 2.6 15.35 5 years
Use of Mobile Apps and Wearables to Monitor Diet, Weight,
and Physical Activity: A Cross-Sectional Survey of Adults
in Poland
Medical Science Monitor; 2022

16.

[57] Kim et al. The study examined individuals with metabolic syndrome risk factors, identifying two distinct physical activity patterns (early bird and
night owl) for weekdays and weekends, categorising participants into stable and shifting groups based on activity patterns, revealing
age-related differences and emphasising the potential of TADPole clustering and age in understanding physical activity behaviours.

40 5.7 7.02 5 yearsPhysical Activity Pattern of Adults With Metabolic
Syndrome Risk Factors: Time-Series Cluster Analysis
JMIR mHealth and uHealth; 2023

17.

[58] Paré et al. A Canadian survey collected data on various demographics and health-related parameters, with 66.20% of respondents regularly monitoring
health metrics; digital self-monitors tend to be young or adult, healthy, employed, university graduates, and high-income earners, but a
significant portion of individuals with chronic conditions avoid using such devices.

43 7.6 5.66 5 yearsDiffusion of the digital health self-tracking movement in
Canada: results of a national survey
Journal of medical Internet research; 2018

18.

[59] Zhai et al.
Monitoring assists clinicians in tracking disease progression or rehabilitation across various clinical conditions and empowers patients to
self-monitor their condition. When paired with motivational and educational tools, it can enhance physical activity levels regardless of the
underlying diseases.

45 3.4 13.24 only 2023
Smartphone accelerometry: A smart and reliable
measurement of real-life physical activity in multiple
sclerosis and healthy individuals
Frontiers in neurology; 2020

19.
[60] Aminorroaya et al. The study explored smart device usage for health goal tracking among US individuals with cardiovascular disease (CVD) or risk factors,

finding that 46% of adults and 42% with CVD or risk factors used such devices, with usage linked to younger age, gender, race, higher
education, and higher income, yet disparities among older and low-income groups underscore the necessity for digital health interventions
to mitigate cardiovascular risk management disparities.

31 - - no IF dataUse of Smart Devices to Track Cardiovascular
Health Goals in the United States
JACC: Advances; 2023

20.

[61] Bentley et al.
The study evaluated an mHealth app aimed at assisting COPD patients. It emphasised the necessity of providing training for utilising the
technology, considering the circumstances, motivations, and abilities of the participants, and highlighting the significance of effective
communication with healthcare professionals.

88 5.7 15.44 5 years
The use of a smartphone app and an activity tracker to
promote physical activity in the management of chronic
obstructive pulmonary disease: randomized controlled
feasibility study
JMIR mHealth and uHealth; 2020

21.

[62] Sokolovska et al.
The study examined the effects of interval walking training with smart device support on type 2 diabetes patients, showing significant
reductions in albuminuria and leptin/adiponectin ratios over four months, with slight improvements in HbA1c levels, yet adherence to the
exercise plan remained low, possibly due to lack of reminder features in the app.

5 2.5 2.00 only 2022
Impact of interval walking training managed through smart
mobile devices on albuminuria and leptin/adiponectin
ratio in patients with type 2 diabetes
Physiological Reports; 2020
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Table 2. Cont.

No. Article Findings Total Number
of Citation IF

Normalised
Citations * Notes

Cited/IF

22.

[63] Patel et al.
In a diabetic patient population, gamification was explored as a motivational tool, resulting in a notable increase in physical activity over a
one-year period. This effect was observed when gamification was implemented to amplify support or competition, yet not cooperation. 49 14 3.55 only 2023

Effect of behaviourally designed gamification with social
incentives on lifestyle modification among adults with
uncontrolled diabetes: a randomized clinical trial
JAMA network open; 2021

23.

[64] Hauguel-Moreau et al.
Among heart surgery patients, 61% found smart bracelets significantly beneficial for their recovery, with 41% reporting lifestyle changes and
77% continuing use post-rehabilitation, highlighting the importance of standardised design and functionality for such devices. 23 - - no IF dataSmart bracelet to assess physical activity after cardiac

surgery: A prospective study
PloS one; 2020

24.

[65] Frith et al.
The study found that remotely monitored cardiac rehabilitation led to increased PAM scores in high-risk patients, with no change in medium
and low-risk groups, along with decreases in resting systolic blood pressure and waist circumference; participation in standard rehabilitation
with Active+me improved patient skills, knowledge, and confidence in managing their condition.

32 3.5 9.14 5 years
Changes in patient activation following cardiac
rehabilitation using the Active+ me digital healthcare
platform during the COVID-19 pandemic: a cohort
evaluation
BMC health services research; 2021

25.

[66] Ormel et al.
A study examining the effect of a smartphone app on cancer patients’ physical activity levels over 12 weeks found significant improvement
by week 6 compared to baseline, yet no significant difference was observed between week 6 and week 12 measurements. 45 3.5 12.86 5 years

Self-monitoring physical activity with a smartphone
application in cancer patients: a randomized feasibility
study (SMART-trial)
Supportive care in cancer; 2018

26.

[67] Van Blarigan et al.

Patients undergoing chemotherapy received smartwatch and SMS interventions, with 63% expressing satisfaction, 68% reporting motivation
to exercise, 74% finding the frequency (1–3 days) ideal, and 79% preferring morning and evening SMS delivery. 29 28 1.04 only 2023

Feasibility and Acceptability of a Physical Activity Tracker
and Text Messages to Promote Physical Activity During
Chemo-therapy for Colorectal Cancer: Pilot Randomized
Controlled Trial (Smart Pace II)
JMIR cancer; 2022

27.

[68] Van Blarigan et al.
In an experimental study, 21 individuals receiving smartwatch notifications and text messages showed increased daily physical activity by
an average of 13 min compared to a control group, despite a declining response rate to the messages over time. 28 4.3 6.51 5 years

Self-monitoring and reminder text messages to increase
physical activity in colorectal cancer survivors (Smart Pace):
a pilot randomized controlled trial
BMC cancer; 2019

28.

[69] Hardcastle et al. The study evaluated the impact of combining wearable technology with health coaching on physical activity levels among breast and
colorectal cancer survivors in regional and remote areas of Australia, showing a significant increase in moderate-to-vigorous physical
activity favouring the intervention group, indicating the effectiveness of this approach in enhancing activity levels for non-metropolitan
cancer survivors.

57 12 4.67 only 2023
A randomized controlled trial of Promoting Physical
Activity in Regional and Remote Cancer Survivors
(PPARCS)
Journal of Sport and Health Science; 2024

29.

[70] Passos et al. The study found that wearable technologies are used to monitor athletes’ internal and external workload, employing physiological condition
monitoring, activity recognition, and tracking techniques, with their primary advantage being objectivity through quantifying the impact on
athletes.

66 4.1 16.30 5 yearsWearables and Internet of Things (IoT) Technologies for
Fitness Assessment: A Systematic Review
Sensors; 2021

30.

[71] Wiesner et al.
Among the group surveyed, 73.0% reported using technology to monitor activity during events or exercise, with male distance runners and
younger runners (aged 16–29 years) showing greater inclination toward using tracking devices; additionally, 42.0% of those using wearable
technology expressed no concern about the device manufacturer sharing their data without consent.

42 5.7 7.37 5 years
Technology adoption, motivational aspects, and privacy
concerns of wearables in the German running community:
field study
JMIR mHealth and uHealth; 2018
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Table 2. Cont.

No. Article Findings Total Number
of Citation IF

Normalised
Citations * Notes

Cited/IF

31.

[72] Pobiruchin et al.
The results of a German survey in 2016 showed that most participants (75%) of a sport competition used smart devices to exercise, with a
lower proportion of women and older athletes using smart devices to exercise. 33 5.7 5.79 5 yearsAccuracy and Adoption of Wearable Technology Used by

Active Citizens: A Marathon Event Field Study
JMIR mHealth and uHealth; 2017

32.

[73] Giménez-Egido et al.
The study of junior tennis players using sensor-equipped rackets revealed a reliance on fundamental stroke techniques and preferred sides
during matches, highlighting a reluctance to explore beyond their comfort zone and emphasising the need for enhanced practice of these
specific strokes within the studied population.

60 3.8 15.84 5 years
Using smart sensors to monitor physical activity and
technical–tactical actions in junior tennis players
International Journal of Environmental Research and Public
Health; 2020

33.
[74] Barricelli et al. SmartFit generates accurate predictions regarding athletes’ conditions and offers valuable recommendations for coaches to implement

optimisation of athletes’ behaviour. 159 - - no IF dataHuman Digital Twin for Fitness Management
BioMed Research International; 2020

34.

[75] McCaskey et al.
The research was targeted at IT tools for senior people and their motor and cognitive rehabilitation, also mentioning the positive effects of
gamification. It is highlighted that by using such programmes and games, older people can interact socially with other people, which also
affects physical activity.

166 - - no IF data
Making more of IT: enabling intensive motor cognitive
rehabilitation exercises in geriatrics using information
technology solutions
BioMed Research International; 2018

35.

[76] Jang et al.
In a study of elderly individuals in rural areas, coaching combined with smart device usage for 6 months, followed by 6 months of
self-management, led to increased activity levels, highlighting the importance of coaching compared to studies solely relying on smart
devices.

33 5.7 5.79 5 years
Impact of a wearable device-based walking programs in
rural older adults on physical activity and health outcomes:
cohort study
JMIR mHealth and uHealth; 2018

36.

[77] Fioranzato et al.
Involving patients with type 2 diabetes and their healthcare providers, the study found that 75% of patients expressed satisfaction levels
above 80% with the device’s features, with weak correlations observed between health professionals’ perceptions and patient parameters,
particularly in collaboration dimensions and web interface ease of use, along with average step count and sleep duration.

25 - - no IF data
Improving Healthy Aging by Monitoring Patients’ Lifestyle
through a Wearable Device: Results of a Feasibility Study
International Journal of Environmental Research and Public
Health; 2021

37.

[78] Hvalič-Touzery et al.
The study in Slovenia investigated integrating wearable activity monitors and telecare for older adults, finding that activity trackers
effectively encouraged physical activity, while safety features were deemed crucial for all participants, regardless of health or activity level. 95 1.7 55.88 5 yearsBenefits of a Wearable Activity Tracker with Safety Features

for Older Adults: An Intervention Study
Public Health; 2022

*—The number of citations was normalised to the average impact factor of the journal for the period in the Notes column.
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3.2. Citation of the Articles

Articles with a normalised citation above 15 were considered strong. The most cited
article is reference No. 37 with a value of 55.88, which is very high. This is followed by
article No. 29, which has a much lower normalised citation count of 16.3. Article No. 32 is
also considered outstanding with 15.84, as are article No. 20 with 15.44 and article No. 15
with 15.35.

In the normalised Impact Factor table (Table 2), the first six highlighted articles can
be classified into two large groups. On the one hand, the articles deal with applications
used by athletes (articles No. 29 and 32). Another group deals with mobile measuring
devices used in everyday life, precisely with cases in which the measurement is evaluated
by specialists (articles No. 37, 13, 15, 20). In both cases, there is no individual monitoring of
the processes, but specialists are involved through communication.

3.3. Definition of Target Groups and Their Geographical Location

The studies have been processed from a content point of view. During the content
processing of the articles, four main groupings were implemented according to the group
targeted by the study of the impact of smart devices:

• Physical activity stimulation in a group of healthy people;
• Smart devices and physical activity of patients;
• Examining the impact of smart devices on the performance of competitive athletes;
• Smart devices for health protection among the elderly.

Figure 2 shows how many articles mentioned a target group. An article could have
addressed more than one of the target groups we have identified, so adding up the number
of articles gives a higher number than the number of articles included in the study. Most
of the studies were carried out on healthy people (23 studies). After that, the most com-
mon target group was elderly people (16 papers), followed by patients (13 articles) and
competitive athletes (5 studies).
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Looking at the studies, we found a very heterogeneous picture in terms of geographical
location (Figure 3). In terms of country distribution, the country with the largest number
of studies was the United States of America (six studies). Germany had three studies.
Two studies per country were conducted in Australia, Spain, the Republic of Korea, Italy,
Canada, the United Kingdom, and China. France, Taiwan, Hungary, Brazil, Latvia, Poland,
Slovenia, and the Netherlands were mentioned in one article per country. In this case,
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some articles described research carried out in several countries, and some articles, mainly
review articles, did not specify the country. The number of occurrences added together
also does not match the number of articles included in the research. Our findings were
therefore mostly related to the Americas and Europe.
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3.4. Most Frequently Used Devices and Keywords

We also looked further at the type of smart device that each research study focused
on (Table 3). This showed that most studies favoured smartwatches, smart bracelets,
and smartphones. This may be because most people have access to these devices, so the
research did not require additional investment, and users were more comfortable with
their own devices. Smartwatches and smart bracelets are very similar in both appearance
and function; although smart bracelets may have fewer features, they are also cheaper,
so it is understandable that we found similar results in terms of their usage. Five studies
did not specify the type of smart device used; these were generally review-type articles.
Fifteen studies also used other devices such as accelerometers, GPS trackers, and smart
scales. If we aggregate the number of devices, used the result is more than 37, which was
the number of studies examined. This is because there were several cases where more than
one wearable device was used in a study.

Table 3. Distribution of studies by type of smart device studied (own ed.).

Type of Smart Device Used

Smartwatch Smart bracelet Smartphone Any wearable device Other
12 12 12 5 15

While analysing the scientific articles, we also observed the diversity of keywords, so
we aggregated the keywords and their occurrence in the studies. A total of 161 keywords
that occurred 208 times were identified. We then aggregated the keywords that differed
only in conjugation. The most frequent keywords and their occurrence are shown in Table 4.
It can be observed that the most frequent keyword, “Physical activity” (which we also
used when preparing the queries), was used in the articles only 11 times. The second
most common was the related word “Exercise”, followed by “Wearables”, “Wearable
device”, “Smart device”, and “Activity trackers”, which also showed similarities. Finally,
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the terms “Mobile health” and “Digital health” were included in the table with three
occurrences each. Other keywords, many of which are synonyms of these terms (e.g., mobile
health—mHealth), occurred one or two times and are not marked in the table.

Table 4. Most common keywords by number of occurrences (own ed.).

Keyword Occurrence

Physical activity 11
Exercise 9

Wearables 7
Wearable device 6

Smart device 5
Activity trackers 4

Mobile health 3
Digital health 3

From these data, we can conclude that the use of keywords in scientific articles is very
varied, often with only conjugation or phrasing differences, but this is a significant factor
when we are running searches. The citability of an article can be greatly influenced by the
chances of finding it when searching individual databases, so authors may want to assess
the most commonly found keywords that fit the topic when creating an article and use
them in the publication.

3.5. Target Groups’ Expectations, Expected Characteristics

Twenty-one of the scientific articles examined what each of the target groups expected
from the tools or what features were important to them. These are presented in Table 5.

Table 5. Target groups and their expectations of smart devices (own ed.).

Expectations #
Groups &

Healthy People Patients Competitive
Athletes Elderly People Articles &

Accuracy ** * *** [49,59,70,73,74]

Prediction ** [70,74]

Gamification * (1) * (2) * [50,55,75]

Data protection * (3) * [71,78]

Customisability ** [61,67]

(Custom) notifications *** [62,67,68]

Easy to use ** *** ** [47,54,61,76,77]

Number of measurable parameters * [58]

Achievable goals * [54]

Coaching * ** [69,75,76]

Competition * * [47,63]

Rewarding * [47]

Small size * [70]

Energy consumption * [70]

The number of asterisks denote the number of articles in which a particular attribute was considered important
(*—1 article; **—2 articles; ***—3 articles). # The expectations or preferences that have been set for the tools.
& Articles that highlighted the given parameter. (1) One article specifically singled out women and the elderly
from the population for the effectiveness of gamification. (2) One article specifically singled out children from
the population for the effectiveness of gamification. (3) One article specifically highlighted older people playing
competitive sports in terms of data protection.

Device features are also important because users’ needs and the supporting structure
surrounding the device—often overlooked aspects—are crucial to long-term adoption [42].
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The attitude of users influences the outcome of the use of the tools. Subjects who wore
and checked their watches more often were more likely to change their exercise habits. So
overall, it is not the smart device per se but the attitude towards the device and movement
that is significant. These attitudes can be positively influenced by the design of a device
that is convenient and comfortable for the user [43].

We have made additions concerning gamification. One article suggests that this
method is particularly effective for older people and women, while another suggests that it
is effective for children. Some of the studies analysed did not include any indication of the
characteristics that users would prefer in relation to smart devices. This usually requires
qualitative measurement, but most of the studies used quantitative data and did not use
qualitative questionnaires or interviews, so it was not always possible to highlight these
important characteristics in the articles.

4. Discussion
4.1. Stimulating Physical Activity among Healthy Individuals

In the target group of healthy people, the expectations of smart devices were as
follows: Accuracy and ease of use were the most important, both mentioned in two articles.
In addition, the number of measurable parameters, achievable goals, the possibility to
compete with others, and rewards were also important, with one occurrence each. We also
have to mention three subgroups in this respect, children, elderly, and women. In all three
cases, gamification proved to be an even more useful feature. The reason for this, in our
opinion, may be that gamification can provide them with the greatest experience and thus
have a significant motivational effect (Table 5).

4.2. Smart Devices and Physical Activity of Patients

For the target group of patients, ease of use and the delivery of messages and notifica-
tions were the most important factors; the latter should be personalised where possible.
The second most important parameter was therefore personalisation. The reason for this
may be that not all devices are uniformly suited to the patients’ special conditions, as each
patient’s condition is different, even if they have the same disease. However, it should also
be mentioned that too much personalisation may be at the expense of ease of use, which
was also an important factor in this target group. In addition, we can highlight accuracy,
coaching, and competition as other important requirements (Table 5).

4.3. Improving the Performance of Athletes

For athletes, not too many expectations have been set. However, accuracy was
clearly the most important, as it is more important for them to have accurate results
from movement-related measuring tools so that they can draw the right conclusions about
their performance. Data security is also an important factor for them, as this is sensitive
business data for professional athletes. The possibility of forecasting is also an essential
built-in element as it can help athletes to improve their results and plan a suitable training
programme. It is important that the size of the device is small and the power consumption
is low as this is the target group that would use these devices the most, and comfort and
frequency of charging are essential for long-term use (Table 5).

4.4. Stimulating Activity among Elderly People

For senior people, ease of use and coaching were the main expectations for smart
devices. We found two articles on each. These are not surprising findings, as external
support and ease of use of devices can be of high importance for elderly people. Another
important parameter for them is data security, and in addition, gamification emerged as
a factor influencing usage. This may have a positive impact on motivation, as gamified
devices can motivate older people to exercise regularly and use smart devices in this way
(Table 5).
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5. Conclusions

The existing literature predominantly examines the impact of smart devices on physi-
cal activity within the United States and Europe, highlighting substantial citation rates but
also a wide variation in keyword usage. The most frequently used keywords were physi-
cal activity, exercise, wearables, wearable device, smart device, activity trackers, mobile
health, and digital health. To enhance accessibility, we propose refining and standardising
keyword selection.

Our review identifies various factors influencing smart device impact, including
demographics such as age, gender, income, education, and marital status, suggesting tai-
lored interventions based on target populations: healthy individuals, patients, competitive
athletes, and the elderly.

Effective interventions hinge on intrinsic motivation, with healthy people benefiting
from regular notifications or text messages, while the elderly require user-friendly interfaces
and gamification strategies. Patients need notifications and easy-to-use, customisable
devices. Athletes prioritise accurate data collection and predictive capabilities from smart
devices. Additionally, heightened attention to data protection is warranted, given both
user concerns and potential risks associated with data collection.

On the basis of normalised impact factor, the most cited articles focus on athletes
and mobile measuring devices used in everyday life, in cases where the measurement is
evaluated by professionals.
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