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Abstract: Recently, artificial intelligence (AI) has been applied in various industries. One such
application is indoor user positioning using Big Data. The traditional method for positioning is
the global positioning system (GPS). However, the performance of GPS is limited indoors due to
propagation loss. Hence, radio frequency (RF)-based communication methods such as WiFi and
Bluetooth have been proposed as indoor positioning solutions. However, positioning performance
inaccuracies arise due to signal interference caused by RF band saturation. Therefore, this study
proposes indoor user positioning based on visible light communication (VLC). The proposed method
involves the sequential application of fingerprinting and double deep Q-Network. Fingerprinting is
utilized to define the action and state of the double deep Q-Network agent. The agent is designed
to learn and locate the reference point (RP) closest to the user’s position in a shorter search time.
The core idea of the proposed system is to converge a Cell-ID scheme and fingerprinting. Through
this, the initial state of the double deep Q-Network agent can be limited. A limited initial state
can increase the positioning speed. Simulation results show that the proposed scheme attains a
positioning resolution of less than 13 cm and achieves a processing time of less than 0.03 s to obtain
the final position in VLC-based office environments.

Keywords: indoor positioning; artificial intelligence (AI); visible light communication (VLC); received
signal strength (RSS); deep reinforcement learning (DRL)

1. Introduction

With the rapid development of artificial intelligence (AI), it can be applied in various
industrial fields [1,2]. Recently, research on location-based services (LBSs) has been con-
ducted in various industries to meet individual and public needs [3]. LBSs include a range
of applications, including navigation, logistics, emergency services, and security. While
outdoor positioning has achieved relatively accurate results through advancements in the
global positioning system (GPS) [4], the positioning performance of GPS is significantly
diminished indoors due to propagation loss caused by obstacles and walls. As a result,
efforts are being made to address this issue and improve the accuracy of indoor user
positioning [5].

The aforementioned studies primarily focus on wireless communication technolo-
gies and positioning algorithms applicable in indoor environments. Prominent wireless
communication technologies include radio frequency (RF)-based Bluetooth, WiFi, and ultra-
wideband (UWB) [6–8]. However, these technologies may experience degraded positioning
performance due to RF band saturation. To solve this problem, visible light communication
(VLC)-based positioning is raised in this paper. VLC utilizes light-emitting diodes (LEDs)
to provide both lighting and communication capabilities simultaneously [9,10]. LEDs are
increasingly replacing indoor lighting fixtures due to their long lifespan and high energy
efficiency. Using these characteristics, VLC is considered one of the next-generation mobile
communication technologies [11].
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Existing indoor positioning algorithms include time of arrival (TOA), angle of arrival
(AOA), time difference of arrival (TDOA), and received signal strength (RSS) [12]. Among
these, the RSS-based positioning algorithm is widely adopted due to its simplicity of
implementation and lack of additional hardware requirements. Although RSS-based
positioning has relatively low accuracy, which is attributed to the issue of signal variability,
the accuracy can be improved when combined with the fingerprinting technique [13].

Recently, there has been active research on applying AI technology to positioning
methods based on RSS data [14]. AI technology enables real-time positioning due to its fast
processing speed and can achieve a high-precision positioning performance when provided
with sufficient training data [15].

In this study, we propose a technique for user positioning in an indoor VLC environ-
ment using a double deep Q-Network. Our focus is on achieving a precise positioning
performance while minimizing processing time. To achieve this, we construct a finger-
printing database and train a double deep Q-Network model. Traditional fingerprinting
database-based matching techniques suffer from increased processing time as the finger-
print database grows larger. However, our proposed double deep Q-Network model
significantly reduces processing time while improving positioning accuracy. Furthermore,
in this study, we take into account the impact of multipath reflections on the positioning
performance. The main contributions of this paper are described as follows:

(1) The core technology of this study is the application of the double deep Q-Network to
significantly improve the processing speed of the fingerprinting technique.

(2) The Cell-ID technique can be used to speed up convergence by selecting the initial
location of the reinforcement learning agent.

(3) Through simulation results, it can be seen that a fast processing time is achieved when
the initial location of the agent is selected.

The paper is structured as follows. Section 2 analyzes related work for performing
indoor positioning. In Section 3, the system model used in this study is described. Section 4
presents the proposed indoor positioning method. In Section 5, the simulation parameters
and results are presented. In Section 6, the conclusion is summarized, and future work
directions are explained in view of improving indoor positioning.

2. Related Work

In this section, we analyze related work that performed positioning based on AI
in an indoor VLC environment. AI can be broadly divided into supervised learning,
unsupervised learning, and reinforcement learning. Therefore, in this section, we analyze
the positioning using each learning method.

First, we analyze the related literature that performed supervised learning for po-
sitioning. In [16], the authors introduced a method for multiple fingerprint positioning
based on artificial neural networks (ANNs). They achieved a positioning performance of
2.68 m while simultaneously positioning 15 targets, demonstrating high accuracy even
in environments with radio interference. However, they encountered an issue when a
significant error of 2.29 m occurred even with a single target. In [17], the authors propose
a method to estimate the location of a moving user in an indoor VLC environment. The
authors applied the time division multiple access (TDMA) to eliminate inter-signal interfer-
ence. The proposed positioning method uses the received power from three transmitters
as the input for the ANN and the distance between the transmitter and receiver as the
output. Simulation results showed that the neural network estimation approach provides
more accurate positioning than the trilateration estimation with 94% accuracy when the
receiver’s normal has a tilt angle with the transmitter’s normal.

Second, we analyze the related literature that performed unsupervised-learning-based
positioning. In [18], the authors proposed a method that utilizes the weighted k-nearest
neighbor (kNN), an unsupervised learning method within the field of AI technologies.
Their approach achieved a more precise positioning performance compared to conventional
triangulation methods. In [19], the authors combined the unsupervised algorithm kNN
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and traditional machine learning random forest. In the results, a precise positioning perfor-
mance of 0.069 m at the center, 0.157 m at the edge, and 0.166 m at the corner was found
using their proposed method. In [20], the authors propose the adaptive residual weighted
k-nearest neighbor (ARWKNN) technique to solve the k-value optimization problem to
obtain the minimum positioning error in WKNN. The proposed method adaptively selects
the k-value by matching the residual between the measured and calculated RSSI values.
In other words, the k-value corresponding to the smallest residual sum of squares of the
RSSI is obtained. Through simulation, the proposed ARWKNN significantly reduced the
average position error while maintaining a similar level of complexity compared to the
existing WKNN and KNN.

Third, we analyze the related literature that performed reinforcement-learning-based
positioning. In [21], the authors demonstrated a three-dimensional indoor VLC positioning
system using multiple photodiodes and reinforcement learning to enhance positioning
accuracy. To achieve this goal, the authors created a VLC positioning system using multiple
photodiodes and enhanced performance through the application of a reinforcement learning
algorithm. The experimental results demonstrate that VLC using multiple photodiodes can
effectively determine location in a three-dimensional space. The results also show improved
accuracy and performance through reinforcement learning. In [22], the primary objective of
the research is to achieve precise positioning using visible light. To accomplish this, point-
wise reinforcement learning is used iteratively. This involves maximizing performance
through iterative improvement in the process of learning and applying strategies to enhance
positioning accuracy. Simulation results confirm that the proposed IPWRL achieves a lower
position error compared to the existing RSS algorithm and PWRL.

Therefore, in this work, we try to use a fingerprinting scheme [23], Cell-ID scheme [24],
and reinforcement learning [20,21] to improve the positioning accuracy. The authors
of [23] proposed a localization technique using fingerprinting and KNN. A database of
RPs is constructed using fingerprinting, and nearest neighbor RPs are obtained through an
iterative search process. Afterward, the position of the UE is determined using a weighted
average. In [23], the location of the UE could be determined by sequentially applying simple
techniques. As the number of reference points increases, the time for repeated searches
also increases significantly. The authors of [24] performed transmitter identification and
UE position determination using RGB LEDs. The transmitter transmits an LED ID using
frequency division multiplexing (FDM), and the UE receives it to identify the location of the
transmitter. Afterward, the location of the UE is determined using a triangulation technique.
In [24], the authors achieved high positioning accuracy using RGB LEDs. However, there is
a limitation that it can only be applied to indoor environments using the CIE 1931 standard.

This study improved the performance of the double deep Q-Network model by apply-
ing fingerprinting and Cell-ID techniques based on an analysis of the existing literature. In
the case of reinforcement learning, there is an issue with the initial state being set randomly,
which leads to prolonged optimization processes. Therefore, the time for optimization
can be reduced by limiting the initial state of the agent using the Cell-ID method. In
addition, quick optimization was performed using the learned agent without searching all
reference points in the fingerprint database. Detailed information regarding this is covered
in Section 4.

3. System Model

In this section, the system model used to evaluate positioning performance will be
described in detail. First, the indoor environment considered in this study is shown in
Figure 1. The size of the indoor environment is 5 m × 5 m × 3 m, and it is assumed to be
an empty space.

In this environment, it is assumed that a total of four LED access points (APs) are
placed at a height of 3 m, and the receiver moves parallel to the ground at a height of 0.7 m.
The transceiver characteristics are summarized in Table 1.
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Figure 1. Indoor VLC system model.

Table 1. Transceiver characteristics.

Parameter Value

Transmitters
Transmit power 10 W

Half power semi-angle 60◦

Elevation −90◦

Receiver

Field of view (FOV) 60◦

Active area 1 cm2

Gain of optical filter 1
Gain of optical concentrator 1.5

Next, we analyze the channel characteristics of the line of sight (LOS) and non-line
of sight (NLOS) paths in an indoor environment. The path of visible light in the indoor
VLC environment is illustrated in Figure 2. The path of visible light can be divided into
two components. The green line represents the LOS path while the red and yellow lines
represent the NLOS path. The NLOS path can be further subdivided into an incident wave
from the LED AP to the wall (red line) and a reflected wave from the wall to the receiver
(yellow line). The channel characteristics associated with each path are as follows:

hi
u, dir. = Pt

A(m + 1)
2πd2 cosm(θ)Ts(ψ)C(ψ)cos(ψ) (1)

hi
u, non−dir. = Pt

A(m + 1)
2πd2

1d2
2

ρcosm(θ)dAwallcos(α)cos(β)Ts(ψr)C(ψr)cos(ψr) (2)

where (1) and (2) are the RSS according to the LOS and NLOS paths, respectively. First,
hi

u, dir. and hi
u, non−dir. denote the RSS of each path and Pt denotes the LED AP transmit

power. A is the active area of the receiver and m is the Lambertian order. d is the distance
from the LED AP to the receiver. d1 is the distance from the LED AP to the reflective surface,
and d2 is the distance from the reflective surface to the receiver. ρ is the reflection coefficient
of the wall and dAwall is the surface element of the wall. Also, Ts(ψ) and C(ψ) denote the
optical filter gain and optical concentration gain, respectively, and ψc means the FOV of
the receiver.
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Based on the above Equations (1) and (2), the overall RSS distribution of the indoor
environment applied in this paper is shown in Figure 3.
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4. Proposed Indoor Positioning Method

In this section, we describe the proposed positioning method that combines the
fingerprinting technique with the double deep Q-Network. The key components of the
proposed method are the construction of an RSS database using fingerprinting and the
training of the DDQN model. Additionally, a block diagram of the proposed method is
presented at the end of this section.

Initially, the fingerprinting technique is employed to construct an RSS database specific
to the indoor environment. Subsequently, the double deep Q-Network model is trained. To
facilitate this, the elements of reinforcement learning—the agent, state, action, and reward—
are defined. Once the model training is complete, the performance of the positioning is
evaluated using the trained model.
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4.1. Fingerprinting

The fingerprinting technique is a positioning method that can achieve a precise posi-
tioning performance when combined with the RSS. It involves designating specific locations,
called reference points (RPs), within the indoor environment. By increasing the number of
RPs and making them denser, more accurate positioning can be achieved. However, as the
number of RPs increases, the processing time also increases. Hence, it is crucial to determine
the optimal number of RPs, taking into account the size of the indoor environment.

The fingerprinting technique consists of two steps: offline and online. The first step is
the offline phase, where the RSS database is constructed for each reference point without a
specific positioning target. Typically, RP arrangement and RSS correction are performed in
this step. The RSS database for the r-th reference point is stored as shown in (3):

RSSDB =



h1
1 · · · hi

1 · · · hI
1

...
...

...
h1

r · · · hi
r · · · hI

r
...

...
...

h1
R · · · hi

R · · · hI
R

 (3)

where hi
r represents the RSS between i-th AP and r-th RP. When the RSS database construc-

tion is completed, the offline step ends. Afterward, the online step is a step in which the
positioning target exists in the environment and the positioning is performed by applying
a matching technique. In this paper, the double deep Q-Network method is proposed as a
positioning method.

4.2. Cell-ID Method

In this subsection, we describe the Cell-ID method and propose its convergence
method with fingerprinting. The conceptual diagram of the positioning system using the
Cell-ID technique is shown in Figure 4.
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As shown in Figure 4, when there are two LED APs and one UE, the UE receives
signals from both APs. In most cases, the signal received by the UE can be classified as
either a strong signal or a weak signal. At this time, Cell-ID-based positioning determines
the position of the UE based on the location of the LED AP that offers a stronger signal.
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Hence, the Cell-ID method is one of the simplest positioning schemes. In the figure, #
represents ID of AP.

However, this method only determines the approximate location of the UE, making
it challenging to achieve high precision. Therefore, it can be considered to apply it in
combination with other positioning methods. In this study, the initial state of the DDQN
agent is determined using the positioning results of the Cell-ID technique. The double deep
Q-Network is explained in detail in the following subsections.

4.3. Double Deep Q-Network

In this subsection, the use of the double deep Q-Network for positioning is explained.
The double deep Q-Network model is developed to improve the issue of overestimation
encountered in conventional DQN models [25]. Briefly, the problem of overestimations is
that the agent always chooses the non-optimal action in any given state only because it has
the maximum Q-value. In basic Q-learning, the optimal policy of the agent is always to
choose the best action in any given state. The assumption behind the idea is that the best
action has the maximum expected/estimated Q-value. However, the agent knows nothing
about the environment in the beginning, so it needs to estimate Q(s,a) at first and update it
at each iteration. Such Q-values have lots of noise, and we are never sure whether the action
with the maximum expected/estimated Q-value is really the best one. Unfortunately, the
best action often has smaller Q-values than the non-optimal ones in most cases. According
to the optimal policy in basic Q-learning, the agent tends to take the non-optimal action
in any given state only because it has the maximum Q-value. Such a problem is called
the overestimation of the action value (Q-value). When such a problem occurs, the noises
from the estimated Q-value will cause large positive biases in the updating procedure. As a
consequence, the learning process will be very complicated and messy. Hence, the authors
proposed a solution to decouple the action selection during evaluation from the action
taken by the agent. Consequently, instead of using the Bellman equation used in the DQN
algorithm, (4) is used:

Q(s, a; θ) = r + γQ(s′, argmax
a′

Q
(
s′, a′; θ

)
; θ′

)
(4)

As can be seen from (4), the main parameter of the neural network determines the
optimal next action among all the available next actions. The target neural network can
then evaluate that action to know the Q-value. This result can solve the problem of
overestimation and provide a better final policy. Based on these advantages, this paper
proposes indoor positioning by implementing the double deep Q-Network instead of
the DQN.

Now, the factors considered in this study for reinforcement learning—the agent, state,
action, and reward—will be explained. The agent predicts the location of the UE based
on the RSS. The state represents the fingerprint data for the predicted point location. At
this time, the initial state is determined based on the UE’s RSS. Action refers to the agent
moving the predicted point location up, down, left, or right. The reward represents the
agent’s reward for its actions. Next, state, action, and reward are explained in detail.

4.3.1. State

In this study, state means the location information of prediction points estimated by
the agent. The location information means the RP number. Therefore, the size of the state
is the same as the total number of RPs. The agent can know the RSS about the estimation
point in the fingerprint database by using the RP number, which represents the current state.
Through this, the reward can be calculated, and the location of the UE can be determined.

In addition, to minimize the agent’s positioning time, the initial state is determined
by the coordinates of the AP that sends the strongest signal to the UE. Through this, the
number of steps that the agent moves the estimation point can be reduced.
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4.3.2. Action

The agent performs an action to determine the location of the UE, which means
movement of the estimation point in this method. In this study, a total of 5 actions were
defined. The 5 actions are as follows:

• Up = PE(t + 1) = nr + RPx;
• Down = PE(t + 1) = nr − RPx;
• Left = PE(t + 1) = nr − 1;
• Right = PE(t + 1) = nr + 1;
• Stop = PE(t + 1) = PE(t).

where PE represents the estimated point location of the agent, nr represents the current
state, and RPx represents the total number of RPs placed on the x-axis.

4.3.3. Reward

Compensation evaluates the action performed by the agent. If the agent moves
the prediction point closer to the UE, the behavior is reinforced with a positive reward.
Conversely, if the agent moves the prediction point further away, the behavior is weakened
with a negative reward. Here, the Euclidean distance between the RSS value of the UE
and the fingerprinting database was used to calculate the compensation. The Euclidean
distance between the previous state and the current state was calculated. The model’s
behavior was reinforced with a positive reward when the Euclidean distance decreased and
a negative reward when the Euclidean distance increased. The reward r can be calculated
as (5):

r =
√(

Xc − Xp)2 −
(
Yc − Yp)2 (5)

where Xc and Xp represent the x-coordinates of the current and previous states, respectively,
and Yc and Yp represent the y-coordinates of the current and previous states, respectively.

4.3.4. Network Architecture

The following subsection describes the architecture of the double deep Q-Network
model. The double deep Q-Network model used in this study is shown in Figure 4.

As shown in Figure 5, the double deep Q-Network network has the same architecture
as the DQN network. As mentioned earlier, by separating action selection and evaluation,
we avoid estimating the value of the current state through direct max Q. This can be
expressed as sending argmax

a′
Q(s′, a′; θ) from the Q-Network to the target network.
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Additionally, the structure of the deep neural network utilizes a total of 3 dense layers
and 1 flattened layer. The agent’s state serves as the input for the first layer, and the action
is derived from the final layer. Two dense layers are employed as hidden layers in the
neural network, with the rectifier linear unit (ReLU) applied as the activation function for
each layer.

4.4. Block Diagram of Proposed Method

This section describes the block diagram of the proposed method in detail. The block
diagram is shown in Figure 6.
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Figure 6. Block diagram of proposed method.

In Figure 6, the proposed method is divided into three steps. The first step is the
fingerprinting. The core technology of the fingerprinting step is to determine the location
of the RP and construct a fingerprinting database. The second step is to determine the
initial state of the agent to reduce the processing time for positioning. For this purpose, the
X and Y coordinates of the AP providing the strongest RSS were determined as the agent’s
initial state. The third step is the double deep Q-Network algorithm, which is the core of
this study. The agent performs the 5 actions defined in the above section and receives a
reward accordingly. Based on the reward provided, it learns the policy to select the optimal
action. The double deep Q-Network model that has been taught outputs the final location
of the UE.

5. Simulation and Results

In this section, we describe the simulation parameters and present the results. The
indoor VLC environment was implemented using MATLAB 2017b, while the double deep
Q-Network model was designed based on Python 3.7 and implemented using the keras-rl2
library. The simulation environment and parameters are summarized in Table 2.
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Table 2. Simulation parameters.

Parameter Value

Indoor Environment
Room size 5 m × 5 m × 3 m
No. APs 4
No. RPs 676

Double DQN

Episode 500
Max step of each episode 100

Replay memory size 81,920
Update of target network 100

Policy Epsilon Greedy

In Table 2, the RPs were positioned at 20 cm intervals within the indoor environment,
with a total of 676 RPs set. For the double deep Q-Network model, a total of 500 episodes
were run, with each episode limited to a maximum of 100 steps. Then, the replay memory
size is set to 81,920. The weights of the target network were updated every 100 episodes in
the Q-Network. The learning policy employed the Epsilon-Greedy policy. This policy is a
strategy for making optimal decisions at each step without considering the future. In other
words, it is an algorithm that assumes that the best choice at each step will lead to the best
overall outcome. Of course, it does not always return the best results because it does not
take future values into consideration.

Table 3 evaluates the learning performance by varying the number of nodes per layer
in the designed reinforcement learning model. In this study, the total number of neural
network layers was set to three, and a rectified linear unit (ReLU) was applied as the
activation function for each layer. Indicators for assessing learning performance include
average test scores and learning time. As shown in Table 3, as the number of nodes per layer
increases, the learning time also increases, and the average test score improves. However,
the learning time is 30 to 60 s longer than other combinations. This will require more
learning time in the future if the total number of episodes increases or the search area
expands. Conversely, when the number of nodes per layer is small, the average test score is
low, but the learning time is the fastest.

Table 3. Performance comparison based on layer combinations.

Parameter Average
Test Score Learning Time

1-Layer 2-Layer 3-Layer

Layer

16 16 16 4.7 258.9 s
32 32 32 8.0 259.8 s
64 64 64 8.78 262.9 s

128 128 128 9.78 317.9 s
128 64 32 7.12 294.3 s
64 32 16 9.0 282.5 s
32 64 32 7.32 288.3 s

Therefore, in this study, the number of nodes per layer was selected as 64-32-16 based
on the results in Table 3. As shown in the table, with 64-32-16 nodes per layer, a relatively
high average test score of 9.0 can be achieved within a learning time of 282.5 s. Figure 7
shows the performance graph of learning through the model.

In Figure 7, it can be observed that the reward value rapidly converges to a value
greater than 0 as the episode progresses in the double deep Q-Network model. This signifies
that the agent is able to locate the adjacent RP to the UE more efficiently as the training
proceeds. To test the positioning performance, double deep Q-Network agent training was
performed for a total of 500 episodes. Utilizing the trained double deep Q-Network agent,
as described earlier, a positioning test was conducted. For this purpose, the trained model
was saved in the h5 format of the Keras library, a Python package. To test the saved model,
the UE was deployed in approximately 1000 new episodes. Afterward, the positioning
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errors and processing times that occurred during 1000 episodes were averaged. As a result,
it was verified that the nearest RP to the UE was identified in approximately 0.03 s. The
positioning error achieved was less than 13 cm, demonstrating good performance.
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In Table 4, the performance of the proposed method is compared with existing methods.
At this time, since the proposed method and KNN depend on the number of reference
points, the same number of reference points was used. A total of 676 reference points were
used, as shown in Table 2. Triangulation was determined using three APs that provide a
strong RSS.

Table 4. Comparison between proposed and conventional scheme.

Performance FP-Based DDQN
(Proposed) KNN Triangulation

Positioning
Error [m] 0.13 0.191 0.3281

Processing
Time [s] 0.03 0.142 1.298

As shown in the table, all three techniques achieve accuracy within 1 m. Among them,
Triangulation has the lowest positioning precision at 0.3281 m, while the proposed method
shows the highest precision at 0.13 m. At this time, it was confirmed that a fast processing
time of 0.03 s was achieved. This shows that the proposed scheme rapidly converges to the
optimal value by limiting the initial state of the agent based on Cell-ID. Hence, based on
these results, the effectiveness of the proposed method was verified.

6. Conclusions

Recently, due to the increasing complexity and size of indoor environments, the
LBS industry has experienced rapid growth. Achieving precise positioning is crucial for
delivering high-quality LBSs. Hence, this paper focuses on applying an AI algorithm
based on a double deep Q-Network model for user positioning in VLC-based indoor
environments. The proposed method combines the existing fingerprinting technique with
the double deep Q-Network model. The main components of this study include analyzing
the channel characteristics of the indoor VLC environment, constructing a fingerprinting
map, and applying the double deep Q-Network model. This paper emphasizes the optimal
matching based on the fast processing time of the double deep Q-Network model. For this
purpose, each element of reinforcement learning is defined and mathematical modeling
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is performed. The double deep Q-Network model is trained through simulations for
approximately 100 episodes. By utilizing the trained positioning model, it is shown that it
achieves a positioning accuracy of 13 cm and just 0.03 s of time duration.

In the future, there are plans to explore additional deep reinforcement learning models,
such as dueling DQN and the deep deterministic policy gradient (DDPG). Although the
processing time in the online step of the fingerprinting was reduced in this study, the
issue of the cost of constructing the database in the offline step still remains. Furthermore,
it is also considered to enhance the learning process by incorporating semi-supervised
reinforcement learning, which utilizes a small amount of data for training.
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