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Abstract: This article delves into the problem of fuzzy adaptive event-triggered (ET)
formation control for nonholonomic mobile robots (NMRs) subject to full-state constraints.
Fuzzy logic systems (FLSs) are employed to identify the unknown nonlinear functions
within the system. To guarantee that all system states remain within their constraint
boundaries, barrier Lyapunov functions (BLFs) are meticulously constructed. Subsequently,
within the framework of the backstepping control design algorithm, we propose a novel
fuzzy adaptive ET formation controller. Our ET mechanism can achieve an overall resource-
saving rate of 88.17% for the four robots. Rigorous theoretical analysis demonstrates that
the designed strategy not only ensures the stability of the controlled NMRs but also enables
the formation tracking errors to converge to a small neighborhood around zero. Notably,
the BLFs-based control approach presented herein endows the system with the capacity to
avoid collisions to a certain degree, enhancing the overall safety and reliability of the robot
formation. Finally, a simulation example is provided. The results vividly illustrate the
effectiveness and practicality of the proposed theory, validating its potential for real-world
applications in the field of nonholonomic mobile robot formation control.

Keywords: barrier Lyapunov function; backstepping control design; formation control;
full-state constraints; nonholonomic mobile robot systems

1. Introduction
In recent years, the advantages of multi-agent systems (MASs) over individual

agents [1] have become increasingly prominent. MASs are characterized by significantly
higher working efficiency and enhanced compatibility, which have attracted extensive
attention from researchers in various fields. In the realm of practical engineering, with the
exponential growth of network information and the increasing complexity of missions, the
coordination control of multiple mobile robots [2] multiple unmanned aerial vehicles [3]
and multiple marine surface vehicles [4] has emerged as a crucial research area. These
multi-agent systems play a vital role in modern engineering applications, such as industrial
automation, intelligent transportation, and marine exploration. For multi-agent formation
tracking control, the core goal is to enable multiple agents to collaboratively track a target
while moving in a coordinated manner to maintain a predefined formation geometry. This
not only requires precise motion control of each agent but also effective communication and
cooperation among them. In this process, maintaining connectivity and avoiding collisions
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are not only challenging aspects but also fundamental requirements for the stable operation
of the multi-agent system. Ensuring seamless communication between robots to maintain
connectivity is essential for coordinated movement, while collision-avoidance mechanisms
are crucial to prevent potential accidents and ensure the safety and efficiency of the entire
system. In the field of multi-agent formation control, a diverse array of strategies has been
developed, each with its own unique characteristics and applications. Prominent among
these are the leader–follower strategy [5], behavior-based strategy [6], and virtual structure
strategy [7]. The leader–follower strategy stands out as one of the most widely adopted and
fundamental approaches. Its popularity can be attributed to its simplicity and efficiency.
In a leader–follower system, each follower robot only needs to focus on perceiving the
information transmitted by its adjacent leader. This significantly reduces the computational
burden on individual robots, as they are not required to process a vast amount of data
related to the entire external environment.

NMRs’ formation control has become a hot research topic due to its important applica-
tions in all aspects, such as target searching, environmental monitoring, resource exploring,
and area data acquiring. Therefore, a large number of consensus control issues have been
reported [8–16]. In [9], the trajectory tracking problem in the formation control of robots
was studied. The authors in [10] proposed the angle-constrained-based adaptive formation
shape and maneuvering control for NMRs, respectively. The result in [11] suggested a solu-
tion for the formation problem using full consensus in torque-controlled NMRs, accounting
for the absence of velocity measurements and time-varying communication delays. In
earlier studies, most scholars did not consider the internal dynamics of robots. To solve this
problem, the use of fuzzy logic systems (FLSs) is a very effective method [17–20]. Hence,
for unicycle-type mobile robots, a leader–follower (L-F) formation control protocol was
proposed in [16]. In [17], the formation control problem of NMRs with unknown dead
zones was studied. The results in [18] show the feasibility of the finite-time neural network
adaptive control scheme based on dynamic surface technique. For high-order nonlinear
systems, [19] proposed a robust fuzzy adaptive finite-time control scheme.

In practice, the limitations of the speed and position of the NMRs are often overlooked.
The running speed and distance between NMRs should be kept within a certain range. The
constraints of the robot velocity variables are just as important as the constraints of the
output variables, and it makes sense to consider the full-state constraints when designing
the controller. In order to ensure all state variables are within constraints, studying the
full-state constraint problem in NMR control is important. For example, the Ln-type barrier
function is used to constrain the boundaries of the specified performance function in [20].
In [21], the authors used a tan-type barrier function to realize the collision avoidance
and connectivity maintenance of the robot. In [22], the formation and collision avoidance
problem of NMRs based on the artificial potential field method is proposed. To suppress the
violation of tracking error constraints, a barrier Lyapunov function-based control method
was proposed to realize the tracking control of incomplete mobile robots under specified
performance conditions in [21].

Note that the above control schemes do not effectively control NMRs with unknown
dynamics. FLSs are often used to identify unknown functions due to their strong fitting
and approximation ability. In [9], a compensator and data-driven control scheme based on
FLSs are designed to solve the NMRs’ formation control. In [23], the formation control issue
of the networked non-complete mobile robot based on the L-F framework was studied.
In [24], not only the NMR’s adaptive output feedback formation tracking control problem
was solved but the connectivity maintenance and collision avoidance were also realized.
In [25], an integrated L-F consensus formation framework using an optimized NN-based
distributed model predictive control strategy was presented. Note that the formation
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control methods in [9,16–25] cannot possibly guarantee full-state constraints and save
communication resources at the same time. To the best of our knowledge, there are no
results on fuzzy adaptive event-triggered formation controllers for NMRs with full-state
constraints. Therefore, designing an adaptive event-triggered formation controller for
NMRs under full-state constraints is a challenging and important topic.

Inspired by the above analysis, this paper investigates the fuzzy adaptive forma-
tion control of NMRs with nonlinear uncertainty and full-state constraints. Our main
contributions are summarized below:

(1) By utilizing FLSs to estimate the unknown nonlinear functions, and constructing the
barrier Lyapunov functions, this paper develops a fuzzy adaptive formation control
approach within the adaptive backstepping control design framework. Although
the work in [9,21,22] investigated the fuzzy adaptive formation control problems of
NMRSs, their methods do not consider full-state constraints. Such formation control
methods do not constrain the state of the robot within a reasonable range.

(2) In [24–26], authors investigated the fuzzy adaptive formation control problems of
NMRs. These methods cannot decrease the unnecessary waste of resources resulting
from the update of the controller signal when considering complete state constraints.
Therefore, this paper designs an event-triggering mechanism to avoid unnecessary waste
of resources. In Table 1, a comparison of different control algorithms is presented.

Table 1. The comparison results of control algorithm.

Controlled Nonlinear NMRs
Event-Triggered

Mechanism State Constraints First-Order Filter
Unknown
Nonlinear
Function

The proposed control method
√ √ √ √

The control method in [17]
√

×
√ √

The control method in [21] × × ×
√

The control method in [22] × × ×
√

where
√

indicates that the situation presented was considered in the corresponding article in Table 1.

The rest of this paper is structured as follows. The problem description for this work
is the main content in Section 2. Section 3 describes the process of design controller and
stability analysis. The proposed event-triggering protocol with numerical examples and
summarizes the conclusions is verified in Section 4.

Notations: |•| indicates the absolute value. ∥•∥ denotes the Euclidean norm for vectors
or induced 2-norm for matrices.

2. Problem Formulation
2.1. System Descriptions

Consider a group of NMRs with one passive wheel and two actuated wheels in
Figure 1, the mathematical model of the ith (i = 1, . . . , n) robot is given by [21]{ .

ηi = Ji(ηi)ωi

Mi
.

ωi = −Ci(
.
ηi)ωi − Diωi + τi

where ηi = [xi, yi, ψi]
T is the ith robot’s posture consisting of the position (xi, yi) and

heading angle (orientation) (ψi) of the robot coordinated. ωi = [ω1i, ω2i]
T are the angular

velocities of the two wheels, τi = [τi,1, τi,2]
T is the control input. Mi, Ci(

.
ηi), and Di are the
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inertia matrix, the centripetal and Coriolis matrix, and the damping matrix, respectively.
The matrices Ji(ηi), Mi, Ci(

.
ηi), and Di in system (1) are given by

Ji(ηi) =
ri
2

cos ψi cos ψi

sin ψi sin ψi

bi
−1 −bi

−1

 Mi =

[
m11i m12i

m12i m11i

]

Ci(
.
ηi) =

[
0 ci

.
ψi

−ci
.
ψi 0

]
Di =

[
d11i 0

0 d22i

]

where ri and bi shown in Figure 1 are the wheel radius and half-width of the ith mobile
robot, respectively. We consider that the NMR model (1), the robot parameters m11i, m12i,
bi, and ri, the centripetal and Coriolis coefficient ci, and the damping coefficients d11i and
d22i are uncertain constants.
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To facilitate control development, we can convert the wheel angular velocities
(ω1i, ω2i) to the robot’s linear velocity vi and angular velocity ωi by the following equation:

vi = B−1
i ωi

with vi = [vi, ωi]
T and Bi = 1

ri

[
1 bi

1 −bi

]
, where the matrix Bi is invertible, since the

determination of matrix Bi is det(Bi) = −2bi/ri. After the above description, we can obtain
the following dynamic equations:

.
xi = vi cos(ψi)
.
yi = vi sin(ψi).
ψi = ωi

Mi
.

ωi = −Ci(
.
ηi)ωi − Diωi + τi

(1)

The inertia matrix parameters are given by m11i = 0.25bi
−2ri

2(mibi
2 + Ii) + Iωi,

m12i = 0.25bi
−2ri

2(mibi
2 − Ii), mi = mci + 2mωi, Ii = mciai

2 + 2mωibi
2 + Ici + 2Imi and

ci = 0.5bi
−1ri

2mciai, where mci and mωi are the body and wheel (with motor) masses; ai is
the distance between the wheel axis center and robot mass center; and Ici, Iωi, and Imi are
the moment of inertia about the vertical axis, the wheel about the wheel axis, and the wheel
about the wheel diameter, respectively.
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From system (1), the dynamic equations can be defined by{ .
vi = fvi(vi) + m1iτvi
.

ωi = fωi(ωi) + m2iτωi
(2)

where fvi and fωi are unknown nonlinear functions associated with vi and ωi,
m1i = ri

2(m11i+m12i)
, and m2i =

ri
2bi(m11i−m12i)

. m1i and m2i are positive parameters.
The dynamic of the leader NMR is given by [27]

.
x0 = v0 cos(ψ0)
.
y0 = v0 sin(ψ0).
ψ0 = ω0

where (x0, y0) denotes the position of leader NMR, and ψ0 is the heading angle. v0 and ω0

represent linear velocity and angular velocity, respectively.

Assumption 1 ([21]). The acceleration
.
v0 is bounded such that

∣∣ .
v0
∣∣ ≤ v∗0 , with v∗0 being constant.

From (1), we have
.
xi sin ψi −

.
yi cos ψi = 0

which means the angle between the driving wheel’s axis and the robot’s speed direction is 90 degrees.
In other words, the robot’s axle-direction speed is always zero, thus it is also called nonholonomic
constraint. The nonholonomic constraint ensures the robot’s wheels roll without slipping.

2.2. Graph Theory

This subsection will introduce the definitions about the communication network topology.
The expression Ĝ ≜ (Ŝ, K̂) represents the transmission relationship between robot

information, in which Ŝ ≜ {1, . . . , N}. K̂ ⊆ Ŝ × Ŝ indicates the edge set, and (i, j) ∈ K̂
indicates that the ith robot obtains information from the jth robot in one direction. dij is
the distance between ith and jth robot, and dMi is ith robot’s maximum information
transmission range. If dij < dMi, an L-F model can be formed. Li(t) =

{
j
∣∣dij < dMi

}
means

the ith robot’s leader set. In the L-F structure, the relationship between them can form a
tree, thus forming the required L-F structure.

2.3. FLSs

The FLSs used to approximate uncertain model dynamics fvi are fωi in (1), and the
properties of FLSs can be seen in Lemma 1.

Lemma 1 ([26]). Let f (x) be a continuous function on a compact set Λ. For any constant ε, there
always exists a FLS f̂ (x

∣∣∣Θ̂) = Θ̂Tς(x) satisfying

sup
x∈Λ

∣∣∣∣∣ f (x)− ΘTϖ(x)

∣∣∣∣∣≤ ε (3)

where ϖ(x) = [ϖ1(x), ϖ2(x), . . . , ϖN(x)]T/
N
∑

i=1
ϖi(x) is the fuzzy basic function vector and

satisfies ϖT(·)ϖ(·) ≤ 1. Θ = [Θ1, Θ2, . . . , ΘN ]
T is the ideal weight vector and N is the fuzzy

rule number.

Remark 1. In this paper, we use a FLS to approximate the unknown continuous functions in (2).
Note that neural networks and type-2 FLSs have also the approximation property of Lemma 1.
Therefore, the FLSs used in this paper can be replaced by other approximators.
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Control objective: For NMRs (1) with full-state constraints, this paper develops a
fuzzy adaptive ET formation control method such that the following hold:

(1) All the closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB).
(2) All robots will follow the leader by keeping a desired formation pattern, i.e., the angle

and relative distance errors converge asymptotically to zero without violating the
angle and relative distance constraints.

3. Fuzzy Adaptive Formation Control Design
In this section, a fuzzy adaptive ET formation controller is constructed under the

backstepping control design. With the help of log-type barrier Lyapunov functions, it is
proven that the system (1) is stable under full-state constraints and does not collide.

3.1. ET Formation Controller Design

The backstepping control design is a recursive method. For NMRs (1), it contains a
two-step design procedure. In Step 1, we first select a Lyapunov function for each subsys-
tem, and based on the Lyapunov function, we design the virtual controllers to stabilize each
subsystem, respectively, and design the weight updating laws. In the same way, in Step 2,
we select a Lyapunov function for the subsystem, and based on the Lyapunov function,
we design the formation controller to stabilize the whole system and design the weight
updating law.

To achieve the formation control design, we define the angle and relative distance
between ith and jth robot as

dij(t) =
√
(xi − xj)

2 + (yi − yj)
2 (4)

φij(t) = atan2(ỹi, x̃i) (5)[
x̃i

ỹi

]
=

[
cos ψi sin ψi

− sin ψi cos ψi

][
xj − xi

yj − yi

]
(6)

where atan2(ỹi, x̃i) ∈ (−π, π] is the arctangent function of the two arguments (x, y) and
returns the appropriate quadrant of the angle of point (x, y).

In actual formation control, collision avoidance and field of view limitations among
robots are crucial issues to consider. Therefore, to fulfill above range constraints, the
constraints of distance and angle are described as

0 < dmi < dij(t) < dMi, ∀t ≥ 0 (7)

−π

2
< −φMi < φij(t) < φMi <

π

2
, ∀t ≥ 0 (8)

where dMi and dmi represent the maximum distance at which connectivity is maintained
and the minimum distance at which a collision can be avoided, respectively. φMi indicates
the maximum angle that ensures continuous information transmission.

Define the coordinate transformation as

zid = dij − dij,d

ziψ = ψij − ψij,d

ziv = vi − ℏi,1

ziω = ωi − ℏi,2

χi,1 = ℏi,1 − αi,1

χi,2 = ℏi,2 − αi,2

(9)
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where dij,d is the desired distance, which is a constant. ψij,d is the desired angle. αi,s, χi,s

and ℏi,s, respectively, are virtual design control functions, first-order filter output errors,
and variables (s = 1, 2). ℏi,s are obtained through a first-order filter on intermediate virtual
controls αi,1 and αi,2. We introduce the following first-order filter:

δi,1
.
ℏi,1 + ℏi,1 = αi,1, ℏi,1(0) = αi,1 (10)

δi,2
.
ℏi,2 + ℏi,2 = αi,2, ℏi,2(0) = αi,2 (11)

where δi,1 > 0 and δi,2 > 0 are design parameters.
Step 1: From (9), we have the following equations:

.
zid = −vi cos φi + vi−1 cos γi (12)

.
ziψ = −ωi +

vi
di

sin φi −
vi−1

di
sin γi (13)

where vi−1 and ψi−1 are the linear velocity and orientation of robot Ri−1, respectively.
γi = φi + ψi − ψi−1.

We select log-type barrier Lyapunov functions:

V11i =
1
2

log
kd1

2

kd1
2 − zi,d

2
(14)

V12i =
1
2

log
kφ1

2

kφ1
2 − ziψ

2
(15)

where kd1 and kφ1 are design parameters.
We construct the virtual control signals αvi and αωi as

αvi =
1

cos φi
(vi−1 cos γi + kd1zid) (16)

αωi =
vi
di

sin φi −
vi−1

di
sin γi + kφ1ziψ (17)

with kd1 > 0 and kφ1 > 0 being design constants. (Equation (16) defines the virtual control
signals designed to stabilize the formation tracking errors. kd1 and kφ1 are positive control
gains, while the logarithmic barrier function ensures the relative azimuth remains within
the predefined constraints, thereby avoiding singularity issues.)

Remark 2. If φi =
π
2 , then there will be singularity problem. We predefine constraints on the

relative azimuth. The formation tracking controller is designed by using the barrier Lyapunov
synthesis method, ensuring that the relative azimuth remains within a predetermined range.

Step 2: From (9), we have

.
ziv = fvi(vi) + m1iτvi −

.
ℏi,1 (18)

.
ziω = fωi(ωi) + m2iτωi −

.
ℏi,2 (19)

From (9), one has
.
χi,s =

.
ℏi,s −

.
αi,s = Ni,s(·)−

χi,s

δi,s
(20)

where Ni,s(·) is a continuous function.
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Since fωi(ωi) and fvi(vi) are uncertain, the FLSs are utilized for approximating them.
Assume that

fvi(vi) = G∗T
i,1 ϕi,1(vi) + εi,1 (21)

fωi(ωi) = G∗T
i,2 ϕi,2(ωi) + εi,2 (22)

where Gi,1 ∈ Rn and Gi,2 ∈ Rn are the ideal weights, ϕi,1 ∈ Rn and ϕi,2 ∈ Rn are the fuzzy

basic functions. εi,1 and εi,2 are the approximated errors, and they satisfy
∣∣∣εi,1

∣∣∣≤ ε∗i,1 and∣∣∣εi,2

∣∣∣≤ ε∗i,2 , with ε∗i,1 and ε∗i,2 being unknown constants.
Thus, (18) and (19) can be rewritten as

.
ziv = G∗T

i,1 ϕi,1(vi) + εi,1 + m1iτvi −
.
ℏi,1 (23)

.
ziω = G∗T

i,2 ϕi,2(ωi) + εi,2 + m2iτωi −
.
ℏi,2 (24)

Consider the log-type barrier Lyapunov function

V2i = V11i + V12i +
1
2

z2
iv +

1
2

z2
iω +

1
2

G̃T
i,1G̃i,1 +

1
2

G̃T
i,2G̃i,2 +

1
2

χ2
i,1 +

1
2

χ2
i,2 (25)

In order to decrease the unnecessary waste of resources resulting from the update of
the controller signal, we design the following event-triggered mechanism:

τvi(t) = ϑvi(tvik), t ∈ [tvik, tvi(k+1)) (26)

τωi(t) = ϑωi(tωik), t ∈ [tωik, tωi(k+1)) (27)

tvi(k+1) = inf{t ∈ R||zvi(t)|≥ λ1v|τvi|+λ2v} (28)

tωi(k+1) = inf{t ∈ R||zωi(t)|≥ λ1ω |τωi|+λ2ω} (29)

with zκi(t) = τκi(t)− ϑκi(tκik) representing the event-triggered error during time interval
[tκik, tκi(k+1)), where κ = v, ω. 0 ≤ λ1κ ≤ 1 and λ2κ > 0 are constants. ϑκi(tκik) are trigger
control signals.

The virtual controllers, trigger controllers, adaptive formation controllers and adaptive
laws are given as

ρvi = m−1
iv (−civziv − ĜT

i,1ϕi,1(vi) +
.
ℏi,1 +

zid cos φi

kd1
2 − zid

2
− 1

2
ziv − (

m1iλivδiv2

1 + λivδiv1
)

2

ziv) (30)

ρωi = m−1
iω (−ciωziω − ĜT

i,2ϕi,2(ωi) +
.
ℏi,2 +

ziψ

kφ1
2 − ziψ

2
− 1

2
ziω − (

miωλiωδiω2

1 + λiωδiω1
)

2

ziω) (31)

ϑvi = −(1 + λiv)(ρvitanh
zivρvi

ε
+ λivtanh

zivλiv
ε

) (32)

ϑωi = −(1 + λiω)(ρωitanh
ziωρωi

ε
+ λiωtanh

ziωλiω
ε

) (33)

τvi =
ϑvi

1 + λivδiv1
− λivδiv2

1 + λivδiv1
(34)

τωi =
ϑωi

1 + λiωδiω1
− λiωδiω2

1 + λiωδiω1
(35)

.
Ĝi,1 = zT

i,vϕi,1(vi) + σi,1Ĝi,1 (36)
.

Ĝi,2 = zT
i,ωϕi,2(ωi) + σi,2Ĝi,2 (37)
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where ci,v > 0, ci,ω > 0, σi,1 > 0, and σi,2 > 0 are design parameters. λiv ≥ λ2v
1−λ1v

and

λiω ≥ λ2ω
1−λ1ω

are design parameters. ε > 0 are design constants.

3.2. Stability Analysis

The properties of the above control scheme are provided in the following theorem.

Theorem 1. For the NMRs (1), under above assumption 1, if the virtual controllers are adopted by
(16) and (17), the trigger controllers are adopted by (32) and (33), the actual controller are adopted
by (34) and (35), and the parameter updating laws are adopted by (36) and (34), and then the whole
fuzzy adaptive ET formation control scheme can ensure the following:

(1) The multiple underactuated NMRs are stable.
(2) Each follower NMR can track the leader NMR.
(3) The Zeno behavior can be excluded.

Proof. Differentiating (14) and (15) yields

.
V11i =

zid
.
zid

kd1
2 − zid

2
=

zid

kd1
2 − zid

2
[−(ziv + αvi) cos φi + vi−1 cos γi] (38)

.
V12i =

ziψ
.
ziψ

kφ1
2 − ziψ

2
=

ziψ

kφ1
2 − ziψ

2
[−(ziω + αωi) +

vi
di

sin φi −
vi−1

di
sin γi] (39)

In the intervals |zi∂| ≤ k∂1, ∂ = d, φ, we have

log
k∂1

2

k∂1
2 − zi∂

2
≤ zi∂

2

k2
∂1 − z2

i∂
(40)

Substituting the virtual control laws (16), (17), and (40) into (38) and (39), we obtain

.
V11i = − zidziv cos φi

k2
d1 − z2

id
−

kd1z2
id

k2
d1 − z2

id
≤ −kd1V11i −

zidziv cos φi

k2
d1 − e2

di
(41)

.
V12i = −

ziψziω

k2
φ1 − z2

iψ
−

kφ1z2
iψ

k2
φ1 − z2

iψ
≤ −kφ1V12i −

ziψziω

k2
φ1 − z2

iψ
(42)

Differentiating (25) yields

.
V2i =

.
V11i +

.
V12i + ziv

.
ziv + ziω

.
ziω − G̃T

i,1

.
Ĝi,1 − G̃T

i,2

.
Ĝi,2 + χi,1

.
χi,1 + χi,2

.
χi,2

=
.

V11i +
.

V12i + ziv(ĜT
i,1ϕi,1(vi) + εi,1 + m1iτvi −

.
ℏi,1)

+ziω(ĜT
i,2ϕi,2(ωi) + εi,2 + m2iτωi −

.
ℏi,2)

+χi,1(Ni,1(·)−
χi,1
δi,1

) + χi,2(Ni,2(·)−
χi,2
δi,2

)

+G̃T
i,1(zivϕi,1(vi)−

.
Ĝi,1) + G̃T

i,2(ziωϕi,2(ωi)−
.

Ĝi,2)

(43)

According to [27], define the set Ωi,s =
{ N

∑
i=1

(z2
iκ + G̃T

i,sG̃i,s + χ2
i,s) ≤ 2ξ

}
,

where κ = v, ω, s = 1, 2, ξ > 0 is a constant and V(0) < ξ. Since Ωi is compact in
Rdim(Ωi), there exists a constant Ni,s with |Ni,s(·)| ≤ Ni,s on Ωi,s. (dim(Ωi) denotes the
dimension of Ωi.)
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Invoke the fact that 0 ≤ |θ| − θtanh(θ/ℓ) ≤ 0.2785ℓ. According to (43), and event-
triggered mechanism (26)–(29), we have

m1izivτvi − m1izivρvi = m1iziv(
ϑvi

1+λivδiv1
− λivδiv2

1+λivδiv1
− ρvi)

≤ m1i(1+λv1)
1+λivδiv1

(|zivρvi| − zivρvitanh( zivρvi
ε ) +

∣∣zivλvi
∣∣

−zivλvitanh( zivλvi
ε ))− m1izivλivδiv2

1+λivδiv1

≤ 0.557ℓm1i(1+λv1)
1+λivδiv1

+ (m1izivλivδiv2
1+λivδiv1

)2 + 1
4

(44)

m1iziωτωi − m1iziωρωi = m1iziω(
ϑωi

1+λiωδiω1
− λiωδiω2

1+λiωδiω1
− ρωi)

≤ m1i(1+λω1)
1+λiωδiω1

(|ziωρωi| − ziωρωitanh( zωiρωi
ε ) +

∣∣ziωλωi
∣∣

−ziωλωitanh( zωiλωi
ε ))− m1iziωλiωδiω2

1+λiωδiω1

≤ 0.557ℓm1i(1+λω1)
1+λiωδiω1

+ m1i(
ziωλiωδiω2
1+λiωδiω1

)2 + 1
4

(45)

According to Young’s inequality a2 + b2 ≤ 2ab, it is available

zivεi,1 + ziωεi,2 + χi,1(Ni,1(·)−
χi,1
δi,1

) + χi,2(Ni,2(·)−
χi,2
δi,2

)

≤ 1
2 z2

iv +
1
2 z2

iω + 1
2 ε2

i,1 +
1
2 ε2

i,2 + ( 1
2 − 1

δi,1
)χ2

i,1 +
1
2 N2

i,1

+( 1
2 − 1

δi,2
)χ2

i,2 +
1
2 N2

i,2

(46)

G̃T
i,sĜi,s ≤

1
2
(
∥∥G∗

i,s
∥∥2 −

∥∥∥G̃i,s

∥∥∥2
) (47)

where p1 and p2 are positive design parameters.
From (30)–(37) and (43)–(47), we have

.
V2 ≤ ( 1

2 + ci,d)z2
id + ( 1

2 − ci,ψ)z2
iψ + (1 − ci,v)z2

iv + (1 − ci,ω)z2
iω

− σi,1
2

∥∥∥G̃i,1

∥∥∥2
− σi,2

2

∥∥∥G̃i,2

∥∥∥2
+ ( 1

2 − 1
δi,1

)χ2
i,1 + ( 1

2 − 1
δi,2

)χ2
i,2

+ 1
2 N2

i,1 +
1
2 N2

i,2 +
1
2 ε2

i,1 +
1
2 ε2

i,2 +
σi,1
2

∥∥∥G∗
i,1

∥∥∥2
+

σi,2
2

∥∥∥G∗
i,2

∥∥∥2

+0.557ℓm1i(1+λv1)
1+λivδiv1

+ 0.557ℓm1i(1+λω1)
1+λiωδiω1

+ 1
2

(48)

Let
Π = 1

2 N2
i,1 +

1
2 N2

i,2 +
1
2 ε2

i,1 +
1
2 ε2

i,2 +
σi,1
2

∥∥∥G∗
i,1

∥∥∥2
+

σi,2
2

∥∥∥G∗
i,2

∥∥∥2

+0.557ℓm1i(1+λv1)
1+λivδiv1

+ 0.557ℓm1i(1+λω1)
1+λiωδiω1

+ 1
2

(49)

Denote V =
N
∑

i=1
Vi,2; according to (48) and (49), it yields that

.
V ≤ −ψV + Π (50)

where ψ = min
{
( 1

2 + ci,d, 1
2 − ci,ψ, 1 − ci,v, 1 − ci,ω, σi,s

2 , 1
2 − 1

δi,s

}
.

Integrating (50) over [0, t], it shows

0 ≤ V(0)e−ψt +
Π
ψ

(51)

From (51), it is shown that all the system’s closed-loop signals are bounded. Then, the

fuzzy adaptive ET formation control errors based on (2V(0)e−ψt + Π/ψ)
1/2

for the union
upper bound are given, and it is concluded that the event-triggered formation control error
converges to the neighborhood of the origin. □
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3.3. The Exclusion of Zeno Phenomenon

In this part, the main content is to explain that there is no Zeno phenomenon in the
fuzzy adaptive ET formation control method.

According to [17], the event-triggered (ET) mechanism (26)–(29) dynamically deter-
mines when control signals are updated based on predefined thresholds. To ensure practi-
cality, we must prove that the time between consecutive triggering events τ = ti(k+1) − tik

is strictly positive and bounded below by a minimum interval τ > 0, thereby excluding
Zeno behavior.

According to the error ziτm(t) = τim(t)− αimτ(tik), one has

d
dt
|ziτm| =

.
ziτmsign(ziτm) <

∣∣ .
τim(t)

∣∣, m = v, ω

All the signals are bounded in the NMRs and the actuators signals τiv and τiω are
differentiable. Then, existing ∂ can ensure

∣∣ .
τim(t)

∣∣ ≤ ∂ is valid, where ∂ is a constant.
By integrating, one has

∫ ti(k+1)

tik

∣∣ .
ziτm

∣∣dt ≤
∫ ti(k+1)

tik

∂dt, m = v, ω

It means that ti(k+1) − tik ≥ (λτ1|τim(t)|+ λτ2)/σ = γ > 0 for ∀t ∈ [tik, ti(k+1)). So
there is no Zeno phenomenon in the fuzzy adaptive ET formation control method.

4. Simulation Studies
This section verifies the feasibility of the proposed fuzzy adaptive ET formation control

method. We choose the robot parameters and give the values in Table 2 from the work
in [28].

Table 2. Robot parameters.

Parameter Value Unit Parameter Value Unit

ai 0.75 m Iib 15.625 kg · m2

ci 0.3 m Iiω 0.005 kg · m2

ri 0.15 m Iim 0.0025 kg · m2

mib 30 kg di11 5 kg · m2/s
mio 1 kg di12 5 kg · m2/s

4.1. Simulation Verification

The leader’s signal is x0 = y0 = sin t. The robots’ initial positions are given
as p0 = [0, 0, 0]T p1 = [0.1, 0, π/9]T p2 = [−0.1, 0, π/9]T p3 = [0.5, 1, π/4]T

p4 = [0.1, 0, π/4]T .
The initial function is as follows:

fvi =
2biciω

2
i −vi(d11i+d22i)−biωi(d11i−d22i)

2(m11i+m12i)

fωi = − 2civiωi+vi(d11i−d22i)+biωi(d11i+d22i)
2ci(m11i−m12i)

To estimate the unknown nonlinear functions fvi and fωi, assume that the universes of
discourse for variables κi are [−4, 4]. Define If–Then fuzzy rules as

Lj: if κi is fκi, then yi is P (κ = v, ω; i = 1, 2, 3, 4; j = 1, 2, 3, 4, 5).
The fuzzy membership functions are given by µ fκ1

= 1/(1 + e[5(3+κ1)/2]),

µ fκ2 = e[−(2+κ2)
2/2], µ fκ3 = e[−(κ3)

2/2], µ fκ4 = e[−(−2+κ4)
2/2], µ fκ5 = 1/(1 + e[−5(−3+κ5)/2]),

κ = v, ω. Consequently, the fuzzy membership functions are presented in Figure 2.
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The FLS f̂vi(vi) = GT
i,1Ψi,1(vi) and f̂ωi(ωi) = GT

i,2Ψi,2(ωi) are employed to estimate fvi(vi)

and fωi(ωi).
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Remark 3. It is also worth pointing out that according to Lemma 1, an FLS can approxi-
mate an unknown nonlinear function when the number of If–Then rules is larger, and for ev-
ery input variable in the FLS, its fuzzy membership functions are chosen as Gaussian types

µ fi(κi) = exp[−(κ−µi)
T(κ−µi)

γ2
i

], i = 1, . . . , n, where the center points µi belong to the universe of

discourse of the variable, and the width γi > 0. Moreover, the defined fuzzy membership functions
should satisfy the following conditions.

(1) Each pair of (µ fk(κi), µ f j(κi)) is required to be overlapped.
(2) The whole sequence of fuzzy membership functions µ f1(κi), . . . , µ fn(κi) is required to cover

the universe of discourse of the variable x (the universe of discourse usually chosen as a
symmetrical interval about zero).

The distance and angle of ensuring connectivity, collision avoidance, and the idealize
are chosen as dcon,i = 5 m, dcol,i = 3 m, φcon,i = 1 rad, ddes,i = 4 m, and φdes,i = 0 rad,
respectively. The parameters of the virtual controllers in expressions (16) and (17), along
with the adaptive laws stated in (49) and (50), are given as kd1 = kφ1 = 9 and σi,1 = σi,2 = 1
for robots 1–4, i = 1, 2, 3, 4. The parameters of trigger controllers (32) and (33) are given as
λiv = 0.01, λiv = 0.05, and ε = 0.9.

The simulation results are exhibited in Figures 3–8. Figure 3 depicts the curves of
NMRs. From Figure 3, it can be seen that Robot 1, Robot 2, Robot 3, and Robot 4 are
stable and able to track Robot 0 to maintain the desired formation pattern. In the whole
formation control process, there will be no collision between the robots, and the formation
can be maintained within the scope of constraints. Figures 4 and 5 show the tracking error
of the four robots in terms of distance and angle, respectively. It can be observed from
Figures 4 and 5 that by adopting the formulated formation control approach, the tracking
error of each NMR converges to a small neighborhood around zero even under full-state
constraints. Figure 6 exhibits the trajectories of controllers. It can be observed from
Figures 4 and 5 that by adopting the formulated formation control approach, the tracking
error of each NMR converges to a small neighborhood around zero even under full-state
constraints. Figures 7 and 8 display the triggering sequences of the four NMRs. Table 3
shows the specific number of triggers and the proportion of resource savings. It can be
seen from them that the ET mechanism proposed in this study is capable of decreasing
the unnecessary waste of resources resulting from the update of the controller signal. The
above shows that the fuzzy formation control scheme presented in this article can achieve
the control objective.
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Table 3. Triggered times.

Triggered Times of τvi
in the Paper

Triggered Times of τωi
in the Paper

Event Triggering
Mechanisms Are
Not Considered

Resource Saving
Ratio

Robot 1 662 1608 20,000 88.65%
Robot 1 1109 1745 20,000 85.75%
Robot 1 1196 1733 20,000 85.36%
Robot 1 212 1196 20,000 92.96%

Total times 3179 6282 80,000 88.17%
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4.2. Discussions

Case 1. The Effect of Design Parameters.

To explain the effect of the design parameters in virtual controllers (16) and (17) and
controllers (34) and (35), we select different design parameters for simulation. For ease
of comparison, define the sum of the absolute values of the formation tracking errors

as zdi =
4
∑

i=1
|zdi|. Then, the responses to the tracking error zdi under different design

parameters are shown in Figure 9.
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From Figure 9, we can see that selecting different parameters will affect the control
performance of the system. Therefore, the formation tracking errors can be reduced by
increasing the main design parameter. However, increasing the design parameters results
in larger control energy. In practice, a tradeoff between improved control performance and
the energy cost of control actions must be carefully considered.

Case 2. The Effect of external interference.

In the simulation, we considered the influence of time-varying external interference on
each robot. Figure 9 shows that the distance formation error of the robot will become larger
under external interference. Similarly, Figures 10 and 11 show that the robot’s formation
errors will also be affected by external interference. The simulation results show that the
time-varying external interference affects the control performance of the system.
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