Comparative Analysis of Body Composition Results Obtained by Air Displacement Plethysmography (ADP) and Bioelectrical Impedance Analysis (BIA) in Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Bioelectrical Impedance Analysis (BIA)
2.4. Air Displacement Plethysmography (ADP)
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Assessment of Accuracy and Agreement for %BF, WC, and WHR
3.3. Assessment of Obesity Based on Anthropometric Measurements and Body Composition Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Goran, M.I.; McCrory, M.A. Body-Composition Assessment via Air-Displacement Plethysmography in Adults and Children: A Review. Am. J. Clin. Nutr. 2002, 75, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Bruyère, O.; Geerinck, A.; Hajaoui, M.; Scafoglieri, A.; Perkisas, S.; Bautmans, I.; Gielen, E.; Reginster, J.Y.; Buckinx, F. Equation Models Developed with Bioelectric Impedance Analysis Tools to Assess Muscle Mass: A Systematic Review. Clin. Nutr. ESPEN 2020, 35, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Yalin, S.F.; Gulcicek, S.; Avci, S.; Erkalma Senates, B.; Altiparmak, M.R.; Trabulus, S.; Alagoz, S.; Yavuzer, H.; Doventas, A.; Seyahi, N. Single-Frequency and Multi-Frequency Bioimpedance Analysis: What Is the Difference? Nephrology 2018, 23, 438–445. [Google Scholar] [CrossRef]
- Merrigan, J.; Stute, N.; Eckerle, J.; Mackowski, N.; Walters, J.; O’Connor, M.; Barrett, K.; Robert, R.; Strang, A.; Hagen, J. Reliability and Validity of Contemporary Bioelectrical Impedance Analysis Devices for Body Composition Assessment. J. Exerc. Nutr. 2022, 5, 103133. [Google Scholar] [CrossRef]
- Campa, F.; Coratella, G.; Cerullo, G.; Noriega, Z.; Francisco, R.; Charrier, D.; Irurtia, A.; Lukaski, H.; Silva, A.M.; Paoli, A. High-Standard Predictive Equations for Estimating Body Composition Using Bioelectrical Impedance Analysis: A Systematic Review. J. Transl. Med. 2024, 22, 515. [Google Scholar] [CrossRef]
- Dietzmann, M.; Radke, D.; Markus, M.R.P.; Wiese, M.; Völzke, H.; Felix, S.B.; Dörr, M.; Bahls, M.; Ittermann, T. Associations between 47 Anthropometric Markers Derived from a Body Scanner and Relative Fat-Free Mass in a Population-Based Study. BMC Public Health 2024, 24, 1079. [Google Scholar] [CrossRef]
- Moon, J.R.; Tobkin, S.E.; Costa, P.B.; Smalls, M.; Mieding, W.K.; O’Kroy, J.A.; Zoeller, R.F.; Stout, J.R. Validity of the BOD POD for Assessing Body Composition in Athletic High School Boys. J. Strength Cond. Res. 2008, 22, 263–268. [Google Scholar] [CrossRef]
- Bentzur, K.M.; Kravitz, L.; Lockner, D.W. Evaluation of the BOD POD for Estimating Percent Body Fat in Collegiate Track and Field Female Athletes: A Comparison of Four Methods. J. Strength Cond. Res. 2008, 22, 1985–1991. [Google Scholar] [CrossRef]
- Tseh, W.; Caputo, J.L.; Keefer, D.J. Validity and Reliability of the BOD POD® S/T Tracking System. Int. J. Sports Med. 2010, 31, 704–708. [Google Scholar] [CrossRef]
- Biaggi, R.R.; Vollman, M.W.; Nies, M.A.; Brener, C.E.; Flakoll, P.J.; Levenhagen, D.K.; Sun, M.; Karabulut, Z.; Chen, K.Y. Comparison of Air-Displacement Plethysmography with Hydrostatic Weighing and Bioelectrical Impedance Analysis for the Assessment of Body Composition in Healthy Adults. Am. J. Clin. Nutr. 1999, 69, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Levenhagen, D.K.; Borel, M.J.; Welch, D.C.; Piasecki, J.H.; Piasecki, D.P.; Chen, K.Y.; Flakoll, P.J. A Comparison of Air Displacement Plethysmography with Three Other Techniques to Determine Body Fat in Healthy Adults. JPEN J. Parenter. Enteral Nutr. 1999, 23, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Hillier, S.E.; Beck, L.; Petropoulou, A.; Clegg, M.E. A Comparison of Body Composition Measurement Techniques. J. Hum. Nutr. Diet. 2014, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Ando, K.; Kobayashi, K.; Seki, T.; Ishizuka, S.; Machino, M.; Morozumi, M.; Kanbara, S.; Ito, S.; Inoue, T.; et al. Waist Circumference Measured by Bioelectrical Impedance Analysis Is Interchangeable with Manual Measurement: Increased Waist Circumference Is Associated with Locomotive Syndrome Risk. Biomed Res. Int. 2019, 2019, 5971030. [Google Scholar] [CrossRef]
- Jayedi, A.; Soltani, S.; Zargar, M.S.; Khan, T.A.; Shab-Bidar, S. Central Fatness and Risk of All Cause Mortality: Systematic Review and Dose-Response Meta-Analysis of 72 Prospective Cohort Studies. BMJ 2020, 370, m3324. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and Diagnostic Criteria of Clinical Obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
- Liu, P.; Ma, F.; Lou, H.; Liu, Y. The Utility of Fat Mass Index vs. Body Mass Index and Percentage of Body Fat in the Screening of Metabolic Syndrome. BMC Public Health 2013, 13, 629. [Google Scholar] [CrossRef]
- Anthropometry Procedures Manual. National Health and Nutrition Examination Survey (NHANES). Available online: https://wwwn.cdc.gov/nchs/data/nhanes/public/2021/manuals/2021-Anthropometry-Procedures-Manual-508.pdf (accessed on 12 December 2024).
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2008.
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic Syndrome—A New World-Wide Definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Lam, B.C.C.; Koh, G.C.H.; Chen, C.; Wong, M.T.K.; Fallows, S.J. Comparison of Body Mass Index (BMI), Body Adiposity Index (BAI), Waist Circumference (WC), Waist-To-Hip Ratio (WHR) and Waist-To-Height Ratio (WHtR) as Predictors of Cardiovascular Disease Risk Factors in an Adult Population in Singapore. PLoS ONE 2015, 10, e0122985. [Google Scholar] [CrossRef]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A Systematic Review of Waist-to-Height Ratio as a Screening Tool for the Prediction of Cardiovascular Disease and Diabetes: 0·5 Could Be a Suitable Global Boundary Value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Wilson, G.D.; Gladden, L.B.; Hunter, G.R.; Pascoe, D.D.; Goran, M.I. Comparison of the BOD POD with the Four-Compartment Model in Adult Females. Med. Sci. Sport. Exerc. 2001, 33, 1605–1610. [Google Scholar] [CrossRef]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Lawrence, I.; Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- González-Arellanes, R.; Urquidez-Romero, R.; Rodríguez-Tadeo, A.; Esparza-Romero, J.; Méndez-Estrada, R.O.; Ramírez-López, E.; Robles-Sardin, A.E.; Pacheco-Moreno, B.I.; Alemán-Mateo, H. Predictive Equations for Fat Mass in Older Hispanic Adults with Excess Adiposity Using the 4-compartment Model as a Reference Method. Eur. J. Clin. Nutr. 2022, 77, 515–524. [Google Scholar] [CrossRef]
- Myles, P.S.; Cui, J. Using the Bland–Altman Method to Measure Agreement with Repeated Measures. Br. J. Anaesth. 2007, 99, 309–311. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman Analysis. Biochem. Medica 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Akoglu, H. User’s Guide to Correlation Coefficients. Turkish J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Gallo, S.; Fields, J.B.; Jones, M.T. Foot-to-Foot Bioelectrical Impedance, Air Displacement Plethysmography, and Dual Energy X-Ray Absorptiometry in Resistance-Trained Men and Women. Int. J. Exerc. Sci. 2018, 11, 1145–1155. [Google Scholar] [CrossRef]
- Horhat, R.; Miclos-Balic, M.; Muntean, P.; Popa, S.; Sima, I.; Glisici, B.; Cîrja, O.; Neagu, A.; Neagu, M. The Impact of Subject Positioning on Body Composition Assessments by Air Displacement Plethysmography Evaluated in a Heterogeneous Sample. PLoS ONE 2022, 17, e0267089. [Google Scholar] [CrossRef]
- Sullivan, P.A.; Still, C.D.; Jamieson, S.T.; Dixon, C.B.; Irving, B.A.; Andreacci, J.L. Evaluation of Multi-Frequency Bioelectrical Impedance Analysis for the Assessment of Body Composition in Individuals with Obesity. Obes. Sci. Pract. 2018, 5, 141–147. [Google Scholar] [CrossRef]
- Petřeková, K.; Borzenko, N.; Kovalová, M.; Gottfriedová, N. Assessment of Body Mass Index, Body Composition, Physical Activity, and Dietary Preferences in University Students: A Pilot Study. Obesities 2024, 4, 35–44. [Google Scholar] [CrossRef]
- Oliveira, B.R.D.; Magalhães, E.I.D.S.; Bragança, M.L.B.M.; Coelho, C.C.N.D.S.; Lima, N.P.; Bettiol, H.; Barbieri, M.A.; Cardoso, V.C.; Santos, A.M.D.; Horta, B.L.; et al. Performance of Body Fat Percentage, Fat Mass Index and Body Mass Index for Detecting Cardiometabolic Outcomes in Brazilian Adults. Nutrients 2023, 15, 2974. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hwang, J.A.; Shin, J.; Cho, E.; Ahn, S.Y.; Ko, G.J.; Kwon, Y.J.; Kim, J.E. Waist–Hip Ratio Measured by Bioelectrical Impedance Analysis as a Valuable Predictor of Chronic Kidney Disease Development. BMC Nephrol. 2022, 23, 349. [Google Scholar] [CrossRef]
- Ryo, M.; Maeda, K.; Onda, T.; Katashima, M.; Okumiya, A.; Nishida, M.; Yamaguchi, T.; Funahashi, T.; Matsuzawa, Y.; Nakamura, T.; et al. A New Simple Method for the Measurement of Visceral Fat Accumulation by Bioelectrical Impedance. Diabetes Care 2005, 28, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Abedi Yekta, A.H.; Khosravi, S.; Hassabi, M.; Poorsaid Esfahani, M.; Hassanmirzaei, B.; Asgari, A. Comparing the Accuracy of Waist-Hip Ratio Calculation by the BIA Device versus the Manual Method. Ann. Appl. Sport Sci. 2016, 4, 9–15. [Google Scholar] [CrossRef]
- Qin, Q.; Yang, Y.; Chen, J.; Jiang, Y.; Li, A.; Huang, M.; Dong, Y.; Wang, S.; Ding, S. Bioelectrical Impedance Analysis versus Quantitative Computer Tomography and Anthropometry for the Assessment of Body Composition Parameters in China. Sci. Rep. 2021, 11, 11076. [Google Scholar] [CrossRef]
- Kim, H.-J.; Gallagher, D.; Song, M.-Y. Comparison of Body Composition Methods During Weight Loss in Obese Women Using Herbal Formula. Am. J. Chin. Med. 2005, 33, 851–858. [Google Scholar] [CrossRef]
- Shoji, K.; Maeda, K.; Nakamura, T.; Funahashi, T.; Matsuzawa, Y.; Shimomura, I. Measurement of Visceral Fat by Abdominal Bioelectrical Impedance Analysis Is Beneficial in Medical Checkup. Obes. Res. Clin. Pract. 2008, 2, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Schorr, M.; Dichtel, L.E.; Gerweck, A.V.; Valera, R.D.; Torriani, M.; Miller, K.K.; Bredella, M.A. Sex Differences in Body Composition and Association with Cardiometabolic Risk. Biol. Sex Differ. 2018, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Lumish, H.S.; O’Reilly, M.; Reilly, M.P. Sex Differences in Genomic Drivers of Adipose Distribution and Related Cardiometabolic Disorders: Opportunities for Precision Medicine. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Sulis, S.; Falbová, D.; Beňuš, R.; Švábová, P.; Hozáková, A.; Vorobeľová, L. Sex and Obesity-Specific Associations of Ultrasound-Assessed Radial Velocity of Sound with Body Composition. Appl. Sci. 2024, 14, 7319. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Lindsey, S.H. Metabolic Benefits Afforded by Estradiol and Testosterone in Both Sexes: Clinical Considerations. J. Clin. Investig. 2024, 134, 1–10. [Google Scholar] [CrossRef]
FMI Class [kg/m2] | Severe | Moderate | Mild | Normal | Excess Fat | Obese | ||
---|---|---|---|---|---|---|---|---|
Fat Deficit | Class I | Class II | Class III | |||||
Males | <2 | 2 to <2.3 | 2.3 to <3 | 3–6 | >6 to 9 | >9 to 12 | >12 to 15 | >15 |
Females | <3.5 | 3.5 to <4 | 4 to <5 | 5–9 | >9 to 13 | >13 to 17 | >17 to 21 | >21 |
Total n = 203 | Males n = 76 | Females n = 127 | p-Value | |
---|---|---|---|---|
Age (years) | 25.01 ± 4.57 | 26.21 ± 4.72 | 24.30 ± 4.34 | <0.001 |
Anthropometrics | ||||
Height (m) | 1.73 ± 0.09 | 1.81 ± 0.06 | 1.67 ± 0.06 | <0.001 |
Weight (kg) | 68.94 ± 12.56 | 80.44 ± 10.18 | 62.06 ± 7.98 | <0.001 |
WCmanual (cm) | 79.40 ± 9.13 | 86.13 ± 7.35 | 75.38 ± 7.61 | <0.001 |
WCBIA (cm) | 81.29 ± 8.07 | 85.25 ± 8.35 | 78.91 ± 6.91 | <0.001 |
p-Value | <0.001 | ns | <0.001 | |
HCmanual (cm) | 97.87 ± 6.07 | 99.32 ± 5.97 | 97.01 ± 5.98 | 0.008 |
Indices | ||||
BMI (kg/m2) | 22.96 ± 2.56 | 24.37 ± 2.39 | 22.11 ± 2.28 | <0.001 |
BMI normal weight (%) | 168 (83) | 50 (66) | 118 (93) | <0.001 |
BMI overweight (%) | 35 (17) | 26 (34) | 9 (7) | |
WHRmanual | 0.81 ± 0.07 | 0.87 ± 0.06 | 0.78 ± 0.05 | <0.001 |
WHRBIA | 0.84 ± 0.05 | 0.85 ± 0.06 | 0.84 ± 0.04 | ns |
p-Value | <0.001 | 0.028 | <0.001 | |
WHtRmanual | 0.46 ± 0.04 | 0.45 ± 0.04 | 0.47 ± 0.04 | <0.001 |
WHtRWC-BIA | 0.47 ± 0.04 | 0.47 ± 0.05 | 0.47 ± 0.04 | ns |
p-Value | <0.001 | ns | <0.001 | |
Body composition | ||||
%BFBIA (%) | 21.68 ± 7.61 | 15.42 ± 5.80 | 25.43 ± 5.92 | <0.001 |
%BFADP (%) | 22.28 ± 8.00 | 16.66 ± 7.01 | 25.65 ± 6.54 | <0.001 |
p-Value | 0.015 | 0.002 | ns | |
%FFMBIA (%) | 78.32 ± 7.61 | 84.58 ± 5.80 | 74.57 ± 5.92 | <0.001 |
%FFMADP (%) | 77.72 ± 8.00 | 83.34 ± 7.01 | 74.35 ± 6.54 | <0.001 |
p-Value | 0.015 | 0.002 | ns | |
VFA (cm3) | 62.06 ± 27.40 | 52.30 ± 26.36 | 67.90 ± 26.42 | <0.001 |
Total n = 203 | Males n = 76 | Females n = 127 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | SEE | MAPE | RMSE | R2 | SEE | MAPE | RMSE | R2 | SEE | MAPE | RMSE | |
%BFADP | 0.8 | 2.8 | 15 | 3.5 | 0.8 | 3.2 | 22 | 3.5 | 0.7 | 3.3 | 7.4 | 2.8 |
%BFBIA | ||||||||||||
WCmanual | 0.6 | 5.4 | 6.1 | 6.2 | 0.6 | 5.3 | 5.0 | 5.5 | 0.5 | 5.8 | 6.7 | 6.5 |
WCBIA | ||||||||||||
WHRmanual | 0.1 | 0.1 | 7.8 | 0.1 | 0.1 | 0.1 | 6.7 | 0.1 | 0.1 | 0.1 | 5.2 | 0.1 |
WHRBIA |
MAD | Lower LOA | Upper LOA | Number of Individuals Beyond the LOA | Bland–Altman Index (%) | Intercept | Slope | Distribution of Errors (β Value) | |
---|---|---|---|---|---|---|---|---|
%BF | ||||||||
Total | 0.600 | −6.222 | 7.422 | 190 out of 203 | 6.4 | −0.5367 | 0.0517 | 0.113 |
Males | 1.237 | −5.295 | 7.769 | 71 out of 76 | 6.6 | −1.9646 | 0.1996 | 0.372 |
Females | 0.219 | −6.688 | 7.125 | 120 out of 127 | 5.5 | −2.5376 | 0.1079 | 0.183 |
%BF and BMI < 25 | 0.398 | −6.289 | 7.086 | 157 out of 168 | 6.5 | −1.2419 | 0.0751 | 0.159 |
%BF and BMI ≥ 25 | 1.569 | −5.664 | 8.801 | 35 out of 35 | 0 | 2.1188 | −0.0243 | −0.062 |
WC | ||||||||
Total | −1.886 | −13.400 | 9.627 | 190 out of 203 | 6.4 | −13.0283 | 0.1387 | 0.191 |
Males | 0.874 | −9.911 | 11.660 | 73 out of 76 | 3.9 | 13.3724 | 0.1459 | −0.195 |
Females | −3.537 | −14.260 | 7.190 | 118 out of 127 | 7.1 | −12.2034 | 0.1123 | 0.138 |
WHR | ||||||||
Total | −0.034 | −0.176 | 0.108 | 191 out of 203 | 5.9 | −0.3935 | 0.4346 | 0.291 |
Males | 0.017 | −0.117 | 0.152 | 73 out of 76 | 3.9 | 0.1032 | −0.0997 | −0.071 |
Females | −0.065 | −0.173 | 0.044 | 119 out of 127 | 6.3 | −0.199 | 0.1659 | 0.112 |
Measure | CCC (L-CI, U-CI) | (Est. L-CI, Est. U-CI) | (Slope L-CI, Slope U-CI) |
---|---|---|---|
%BF | |||
Total | 0.89 (0.87, 0.92) | (1.20, 3.91) | (0.80, 0.92) |
Males | 0.85 (0.79, 0.89) | (1.63, 4.90) | (0.64, 0.82) |
Females | 0.84 (0.79, 0.88) | (3.56, 8.09) | (0.68, 0.85) |
WC | |||
Total | 0.75 (0.70, 0.79) | (0.15, 16.4) | (0.78, 0.97) |
Males | 0.75 (0.66, 0.82) | (−4.12, 25.4) | (0.70, 1.04) |
Females | 0.64 (0.56, 0.71) | (2.10, 23.6) | (0.66, 0.93) |
WHR | |||
Total | 0.24 (0.15, 0.33) | (0.58, 0.75) | (0.12, 0.32) |
Males | 0.33 (0.16, 0.49) | (0.33, 0.73) | (0.14, 0.60) |
Females | 0.15 (0.07, 0.22) | (0.52, 0.76) | (0.11, 0.41) |
Total n = 203 | Males n = 76 | Females n = 127 | |
---|---|---|---|
FMIADP | 5.14 ± 2.16 | 4.08 ± 2.00 | 5.78 ± 2.01 |
FMIBIA | 4.99 ± 1.98 | 3.81 ± 1.65 | 5.70 ± 1.83 |
p-Value | ns | ns | ns |
FMI | MAD | Lower LOA | Upper LOA | Number of Individuals Beyond the LOA | Bland–Altman Index (%) | Intercept | Slope | Distribution of Errors (β Value) |
---|---|---|---|---|---|---|---|---|
Total | 0.151 | −1.559 | 1.861 | 190 out of 203 | 6.4 | −0.3179 | 0.0925 | 0.215 |
Males | 0.272 | −1.404 | 1.947 | 69 out of 76 | 9.2 | −0.5302 | 0.2032 | 0.424 |
Females | 0.078 | −1.642 | 1.799 | 120 out of 127 | 5.5 | −0.5063 | 0.1019 | 0.217 |
FMI Class [kg/m2] | Severe | Moderate | Mild Fat | Normal | Excess Fat | Obese | ||
---|---|---|---|---|---|---|---|---|
Fat Deficit | Class I | Class II | Class III | |||||
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |
FMIADP | ||||||||
Total | 16 (8) | 20 (10) | 43 (21) | 102 (50) | 20 (10) | 2 (1) | 0 (0) | 0 (0) |
Males | 7 (9) | 6 (8) | 14 (18) | 34 (45) | 14 (18) | 1 (1) | 0 (0) | 0 (0) |
Females | 9 (7) | 14 (11) | 29 (23) | 68 (54) | 6 (5) | 1 (1) | 0 (0) | 0 (0) |
FMIBIA | ||||||||
Total | 14 (7) | 22 (11) | 37 (18) | 115 (57) | 15 (7) | 0 (0) | 0 (0) | 0 (0) |
Males | 7 (9) | 10 (13) | 10 (13) | 41 (54) | 8 (11) | 0 (0) | 0 (0) | 0 (0) |
Females | 7 (6) | 12 (9) | 27 (21) | 74 (58) | 7 (6) | 0 (0) | 0 (0) | 0 (0) |
p-Values | ||||||||
total | <0.001 | <0.001 | <0.001 | ns | <0.001 | ns | ns | ns |
males | ns | ns | <0.001 | ns | <0.001 | ns | ns | ns |
females | ns | <0.001 | <0.001 | ns | ns | ns | ns | ns |
Central Obesity Risk | Total n = 203 (%) | Males n = 76 (%) | Females n = 127 (%) | p-Value |
---|---|---|---|---|
Abnormal WCmanual— | 46 (23) | 16 (21) | 30 (24) | ns |
Abnormal WCBIA— | 62 (30) | 15 (20) | 47 (37) | 0.010 |
p-Value | <0.001 | <0.001 | <0.001 | - |
Abnormal WHRmanual— | 35 (17) | 23 (30) | 12 (9) | <0.001 |
Abnormal WHRBIA— | 71 (35) | 18 (24) | 53 (42) | 0.009 |
p-Value | <0.001 | <0.001 | <0.001 | - |
Abnormal WHtRmanual— | 41 (20) | 23 (30) | 18 (14) | 0.006 |
Abnormal WHtRBIA— | 43 (21) | 21 (28) | 22 (17) | ns |
p-Value | <0.001 | <0.001 | <0.001 | - |
WC | VFA (BIA) | ||
---|---|---|---|
Total | Males | Females | |
BIA | 0.683 | 0.906 | 0.881 |
Manual | 0.324 | 0.632 | 0.597 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smolik, R.; Gaweł, M.; Kliszczyk, D.; Sasin, N.; Szewczyk, K.; Górnicka, M. Comparative Analysis of Body Composition Results Obtained by Air Displacement Plethysmography (ADP) and Bioelectrical Impedance Analysis (BIA) in Adults. Appl. Sci. 2025, 15, 3480. https://doi.org/10.3390/app15073480
Smolik R, Gaweł M, Kliszczyk D, Sasin N, Szewczyk K, Górnicka M. Comparative Analysis of Body Composition Results Obtained by Air Displacement Plethysmography (ADP) and Bioelectrical Impedance Analysis (BIA) in Adults. Applied Sciences. 2025; 15(7):3480. https://doi.org/10.3390/app15073480
Chicago/Turabian StyleSmolik, Radosław, Martyna Gaweł, Dominika Kliszczyk, Natalia Sasin, Kacper Szewczyk, and Magdalena Górnicka. 2025. "Comparative Analysis of Body Composition Results Obtained by Air Displacement Plethysmography (ADP) and Bioelectrical Impedance Analysis (BIA) in Adults" Applied Sciences 15, no. 7: 3480. https://doi.org/10.3390/app15073480
APA StyleSmolik, R., Gaweł, M., Kliszczyk, D., Sasin, N., Szewczyk, K., & Górnicka, M. (2025). Comparative Analysis of Body Composition Results Obtained by Air Displacement Plethysmography (ADP) and Bioelectrical Impedance Analysis (BIA) in Adults. Applied Sciences, 15(7), 3480. https://doi.org/10.3390/app15073480