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Abstract: The purpose of this study was to assess the validity and reliability of an inertial
measurement unit (IMU) system against an optical motion capture system in detecting
motion in the dynamically complex and constraint-governed task of the basketball layup
shot. Ten basketball players performed 10 trials with and 10 without a defender. Key
kinematic variables (jump height, take-off angle, joint angles, and centre of mass (COM)
displacement) were derived, and agreement (intraclass correlation coefficient (ICC) and
Bland–Altman plots) and disagreement (root mean square difference (RMSD) and statistical
parametric mapping (SPM)) calculations were carried out for each trial. The IMU system
provided agreeable results for jump height and take-off angle, while joint angles and COM
displacement agreement were plane-specific. A between-condition analysis demonstrated
the IMU system reliably detected joint angle differences between defended and undefended
conditions comparable to the optical system for nine out of twelve joint angles, with
shoulder flexion-extension and external-internal and elbow external-internal joint angles
showing inconclusive results. Ultimately, the IMU system was generally able to detect
similar magnitudes of difference between conditions to those detected by the optical motion-
based system. Therefore, conclusions can be drawn for between-condition comparisons if
data are derived from either system.

Keywords: wearable technology; ecological based research; accessible technology;
sport performance

1. Introduction
Experimental biomechanics studies commonly utilise optical motion capture technolo-

gies in controlled laboratory settings. However, a significant limitation of such studies is
their confinement to small capture volumes [1] and the elimination of sport-specific envi-
ronmental contexts [2]. These constraints hinder the ecological validity of biomechanical
research, making it challenging to generalise findings to real-world scenarios.

Inertial measurement units (IMUs) offer a promising solution to some of the main
drawbacks associated with optical motion capture systems. Unlike optical systems, IMUs
are portable, lightweight, and capable of capturing motion data in varied and less restric-
tive environments [3]. Their flexibility in terms of capture location and volume makes
them particularly appealing for biomechanical studies conducted in real world environ-
ments. The portability of IMU-based systems, such as Xsens, has driven increasing interest
in their use for analysing complex and dynamic movements [4]. However, despite the
advantages of IMUs, optical motion capture systems (e.g., Vicon) remain the gold stan-
dard in biomechanics research, offering superior data quality and established validity
and reliability [5].
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Recent systematic reviews have highlighted inherent limitations of current IMUs,
such as calibration error, magnetic field disturbance, and sensor bias [6]; however, their
accuracy has been shown to be comparable to optical motion capture systems under certain
conditions [7]. Studies on Xsens performance during walking and running demonstrated
generally acceptable root mean square differences (RMSD) in joint angles: 3.2◦ ± 1.5 for
knee flexion-extension and 4.5◦ ± 1.8 for ankle dorsi-plantarflexion joint angles. However,
larger differences were noted for the hip flexion-extension joint angles (10.1◦ ± 5.6), with
abduction-adduction and external-internal joint angles performing better for the hip but
worse for the knee and ankle joints. These differences likely arise from differences in
participant calibration and marker placement procedures [8–10]. The validity of IMUs
for upper limb kinematics was investigated in comparison to optical motion capture,
predominantly in controlled, low-range motion tasks [11]. In a simulated surgical training
task, where movement complexity and joint ranges of motion were considerably lower
than those observed in dynamic sports performance, IMUs demonstrated accuracy within
2.9 ± 0.9◦ for neck flexion/extension and 1.6 ± 1.1◦ for trunk flexion/extension. However,
larger discrepancies were observed in shoulder elevation (6.8 ± 2.7◦) and elbow flexion
(8.2 ± 2.8◦), highlighting potential limitations when applied to higher-velocity, multi-planar
movements typical of sport-specific tasks. While IMUs are increasingly used in sports
biomechanics, their application in dynamic, sport-specific contexts requiring multi-planar
lower and upper body tracking, like basketball, require further assessment. One key area of
importance is the movement of the arms above shoulder level during a layup shot, which
involves complex, high-velocity, and multi-planar motion requiring large joint ranges of
motion and rotational velocities. This movement exceeds the typical range assessed in prior
studies, making it essential to address the utility of IMUs for evaluating dynamic, overhead
movements in basketball and other sports.

Most reliability studies on IMUs have focused on simple planar movements of ba-
sic locomotor tasks [3]. In basketball, IMU applications have primarily been limited to
activity classification for athlete performance monitoring rather than detailed kinematic
analysis [12]. Studies on jump shots [13] have examined relatively constrained upper body
movements where the shoulder and elbow remain within moderate ranges of motion
compared to the more dynamic layup shot. In contrast, complex motor tasks such as
the basketball layup pose unique challenges due to their context-driven nature, where
movement execution is heavily influenced by external factors such as defensive pressure
and spatial constraints [14]. Context-driven performance in basketball is defined by interac-
tions with the surrounding environment, including opponents, teammates, and situational
demands [15]. Defensive conditions are particularly important, as they directly affect the
demands and movement variability of the layup [16]. For example, when a defender is
present, athletes often modify their approach, jump height, and release angle to optimise
success while avoiding a block, introducing variability that may not be observed in unde-
fended trials [17]. Thus, analysis of the layup requires an ecologically valid environment,
which IMUs are good for, but they may be less effective at accurately tracking multiplanar
motion of the upper and lower body.

To have confidence in using IMUs for the analysis of a layup, the ability for IMUs to
accurately and consistently measure more complex whole-body tasks needs to be estab-
lished. Although accuracy of measurement is typically key for biomechanical analyses,
there are also questions that can be answered if the data are precise and have sufficient
resolution to detect changes between conditions, a question not typically addressed previ-
ously by studies assessing IMUs’ accuracy. Studying changes in technique with changing
environmental constraints is one such area where sufficient resolution and precision can be
useful even if absolute accuracy is poor.
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The purpose of this study was to examine the agreement between an Xsens system
and a Vicon system for analysing the basketball layup shot and to determine whether
the Xsens system had the ability to detect similar magnitudes of changes in technique
under different constraints to Vicon. The present study incorporated both defended and
undefended trials to evaluate the performance of IMUs across a spectrum of contextual
variability representative of game scenarios. By examining the systems under varying
external constraints, the study sought to determine the reliability of IMUs in capturing
biomechanical adaptations associated with environmental and task-specific demands. This
approach enhances the ecological validity of the findings and contributes to the growing
body of research emphasizing the importance of representative task design in sports
science [18]. It was hypothesised that the IMU system would demonstrate high accuracy in
measuring flexion-extension joint angles during basketball layup shots. Additionally, it was
hypothesised that the IMU system would reliably detect technique changes under varying
defensive constraints and exhibit similar sensitivity to Vicon in identifying condition-based
kinematic adjustments.

2. Materials and Methods
2.1. Participant and Equipment

Ten basketball players of recreational to university-level skill, six males and four
females (age = 23.8 ± 3.19 years, height = 1.72 ± 0.10 m, body mass = 70.43 ± 9.29 kg), took
part after providing informed consent in line with the university ethical approval granted
for the study. Seventeen Xsens (Xsens Technologies B.V., Enschede, The Netherlands)
sensors (weight: 16 g, dimensions: 47 × 30 × 13 mm) sampling at 60 Hz were affixed to
14 body segments. Concurrently, 52 reflective markers (diameter 14 mm) were attached to
the participants according to a custom marker set model. This model incorporated Vicon’s
(Vicon Motion Systems Ltd., Oxford, UK) plug-in gait markers along with additional
markers placed distally on the middle finger, the distal ends of the second and fifth
metacarpal bones, and one marker positioned inferior to the shoulder joint to accurately
capture joint angle positions at 180◦ (Figure 1). The markers were tracked by eighteen
T40/T20 Vicon cameras (Vicon Motion Systems Ltd., Oxford, UK) recording at a frequency
of 240 Hz over a capture volume of approximately 4 × 8 × 3.5 m. A standard regulation
basketball hoop (rim height = 3.05 m, rim diameter = 0.45 m, backboard height = 0.88 m,
backboard width = 1.44 m) was used for the study, along with official internationally
recognised Molten BG4500 basketballs (size 7 for males, size 6 for females), which are used
by the British Basketball League (BBL).

2.2. Testing Protocol

Following a dynamic self-selected warm-up and familiarization with the lab setup,
participants performed a total of 20 layup shots (Figure 2A). Each shot was taken from the
right at a 45◦ angle after running approximately 5 to 6 m towards the hoop (Figure 2B).
Of these trials, 10 were defended, and 10 were undefended. Calibration procedures and
relevant anthropometric measurements were undertaken for each system following the
manufacturer’s guidelines prior to testing. The calibration process included both static
(N-pose) and dynamic (walking) for Xsens and static (N-pose) and dynamic (walking) for
Vicon. The Xsens biomechanical model was scaled using the anthropometric data (height,
arm span, elbow span, shoulder and hip width and height, and knee and ankle height)
collected from each participant before testing.
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Figure 1. Marker and sensor (green circles) placement on the participant. Markers were placed on 
the following body landmarks: C7, T10, the sternum, clavicle, anterior/posterior shoulder, elbow 
lateral/medial epicondyles, distal ulna/radius, 1st and 5th metacarpal heads, distal middle finger, 

Figure 1. Marker and sensor (green circles) placement on the participant. Markers were placed on
the following body landmarks: C7, T10, the sternum, clavicle, anterior/posterior shoulder, elbow
lateral/medial epicondyles, distal ulna/radius, 1st and 5th metacarpal heads, distal middle finger,
posterior heel, 1st and 5th metatarsal heads, 1st toe, lateral and medial malleoli, lateral and medial femoral
epicondyles, anterior and posterior superior iliac spines, greater trochanters, and the head (19 mm in
diameter). Sensors are circled in green (right and left figures) and were placed on the back of the head,
sternum, shoulders (middle of the scapula spine), upper arms (lateral side above elbow), forearms (lateral
side above wrist), hands (posterior side), pelvis (middle of both the posterior superior iliac spines), thighs
(lateral side above the knees), shanks (upper surface of the tibias), and forefeet (dorsal side).
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hoop and defender, and the participant’s starting position and path of travel toward the basket. The 
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Figure 2. (A) Protocol workflow for data collection, illustrating the sequential steps of the testing
procedure, circles are indicative of sensor application. (B) A top-down view of the testing lab set-up,
including the camera arrangement around the capture volume, the position of the basketball hoop and
defender, and the participant’s starting position and path of travel toward the basket. The cameras
depicted as icons with a white interior indicate the presence of two cameras at the same position,
arranged on two different levels: high-mounted cameras positioned overhead and middle-mounted
cameras placed horizontally parallel to the capture volume. This configuration ensured comprehensive
coverage, providing both top-down and horizontal perspectives for motion capture and analysis.



Appl. Sci. 2025, 15, 3847 5 of 19

Defence was administered by a second experimenter using a padded wooden stick.
The stick was introduced at chest height, approximately 50 cm in front of the participant’s
leading shoulder, ensuring it required an in-air adjustment without obstructing natural
movement. The timing and intensity of the defence were consistent across all trials, with
the stick introduced at a predetermined point in the participant’s movement to maintain
standardization. The hoop was positioned 2.9 m above of the defender, preserving a consis-
tent spatial relationship between the defensive action and the layup attempt (Figure 2A).
To ensure randomization, the order of whether the defence was introduced or not was
randomly assigned across trials. The defence was not physically forceful but aimed to sim-
ulate typical game constraints without interfering with the participant’s ability to complete
the layup.

2.3. Data Processing and Analysis

Raw marker trajectories from the Vicon system were labelled, gap-filled, and low-pass
filtered at 10 Hz using a fourth-order zero-lag Butterworth filter in Nexus 2.15 (Vicon Motion
Systems Ltd., Oxford, UK) as per established protocols [19]. Joint angles were constructed
using Bodybuilder code, with joint angles adjusted as needed to match the Xsens’ joint
angle convention. Flexion-extension, abduction-adduction, and external-internal shoulder
and hip joint angles; flexion-extension and external-internal elbow and ankle; flexion-
extension and ulnar-radial deviation wrist; and flexion-extension knee joint angles were
then exported to MATLAB R2022b (MathWorks Inc., Nantucket, MA, USA), where further
analysis was conducted. To ensure comparability, the Vicon data were down-sampled from
240 Hz to 60 Hz by retaining every fourth frame, matching the Xsens sampling rate. Xsens
data underwent proprietary fusion of accelerometer, gyroscope, and magnetometer signals
via the Xsens Kalman Filter [8], while the LXsolver algorithm—automatically executed by
the system—applied biomechanical constraints during reconstruction to reduce soft tissue
artifact and improve joint estimation. The calculated Euler angles in degrees followed the
YXZ (+/−) cardan sequence, which corresponded to the medio-lateral, antero-posterior,
and axial rotations, respectively.

The start of the movement was defined at the heel strike of the step preceding the layup
jump (0% of the task) and the end at the instant of ground contact on landing following ball
release (100% of the task) (Figure 2B). Event detection was performed manually through
identifying the local minima and maxima around key foot contacts within the linear
acceleration profiles of the foot and toe segments [20]. Whole-body COM location of the
VICON data was computed using De Leva’s [21] anthropometric conventions to obtain 3D
coordinates of the COM pathway. COM velocity, which was used to calculate resultant
jump take-off angle, was obtained from the numerical differentiation of the COM position
data. Jump height was calculated as the difference between COM position in the vertical
direction (z) at the maximum height achieved during the jump and the COM vertical
position during standing. Joint angle data and COM path data were interpolated and
time-normalised to 101 points to represent 0–100% of the movement. To eliminate the
inherent system offset between the joint angle COM trajectory data captured by the Vicon
and Xsens systems, an adjustment process was implemented based on the method of [22].
The difference between the two traces was calculated, and the average difference was
determined across all time points. The Vicon data were then adjusted by subtracting the
average difference. Finally, RMSD was computed between the original Xsens data and the
adjusted Vicon data to evaluate alignment accuracy.
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2.4. Statistical Analysis

The normality of the data was assessed using the Anderson–Darling test (p < 0.05),
confirming a normal distribution and justifying the use of parametric statistical tests.
Of the 200 collected trials, 188 valid trials (94%) were retained for comparison, with
12 excluded due to errors in either system. Averages and standard deviations were com-
puted at the participant level and combined for group-level interpretation. Root mean
squared difference (RMSD), a measure of the systematic error between predicted and
observed values [23], was used to compare joint angle and centre of mass (COM) displace-
ment data between the Vicon and Xsens systems. RMSD was calculated at the trial level
for each joint (shoulder, hip, elbow, wrist, knee, and ankle) across relevant movement
planes as well as for COMx and COMy displacement during the run-up before the shot.
RMSD values were averaged across trials for each participant and used for group-level
statistical interpretation, with values ≤ 5◦ indicating excellent agreement and values above
this threshold considered poor [24,25]. Agreement between systems was further evaluated
using intraclass correlation coefficients (ICC) and Bland–Altman plots, which measure
reliability and assess consistency and limits of agreement [26,27]. These measures were
analysed using a paired-sample t-test (SPSS Inc., Chicago, IL, USA), which was applied
to both take-off angle and jump height for between-system and between-condition com-
parisons. Statistical parametric mapping (SPM) was conducted using MATLAB’s spm1d
package [28] to assess differences in continuous biomechanical data for both system-based
(Vicon vs. Xsens) and condition-based (defended vs. undefended trials within each system)
comparisons. Individual trial time traces were entered into an SPM paired-sample t-test to
identify significant differences across the entire movement cycle. The statistical significance
of all tests was set at α = 0.05.

3. Results
3.1. Discrete Measures

A paired-sample t-test found no significance difference in jump height and take-off
angle between the two systems ((jump height (Vicon: 0.34 m (0.039), Xsens: 0.34 m (0.042),
t(18) = −0.09, p ≥ 0.925, 95%CI [−0.10, 0.09]), take-off angle (Vicon: 43.47◦ (5.01), Xsens:
43.05◦ (5.17)), t(18) = 0.53, p ≥ 0.727, 95%CI [−4.52, 6.35]). Effect size analysis further
confirmed the strong agreement between systems, with Cohen’s d indicating no effect
for jump height (d = 0) and a negligible effect for take-off angle (d = 0.08). This was
confirmed by the strong agreement in the Bland–Altman test plots (Figure 3), indicat-
ing most data points fell within the region of acceptable difference (highest agreement:
100%, lowest agreement: 90%), with the majority of participants displaying no data points
falling outside the limits of acceptable disagreement range. A mean offset of 0.025 m and
1.5◦ was found between the two systems for jump height and take-off angle. Addition-
ally, a paired sample t-test found no significant differences between the Vicon and Xsens
systems in detecting changes between conditions (jump height: Vicon difference: 0.028 m
(0.23), Xsens difference: 0.022 m (0.016), t = 1.26, p ≥ 0.238; take-off angle: Vicon difference:
2.03◦ (3.18), Xsens difference: 2.91◦ (4.48), t = −1.303, p ≥ 0.225). This result further supports
the reliability of both systems in detecting these changes across conditions. Excellent relia-
bility was found for jump height (ICC = 0.97 (95%CI: 0.89–0.99), p < 0.001) and take-off angle
(ICC = 0.96 (95%CI: 0.86–0.99) p < 0.001).
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Figure 3. Single participant example of the Bland–Altman plots of the jump height (meters) and
take-off angle (◦) data. For all participants, no more than two data points fell outside the acceptable
difference range, with most participants displaying no data points falling outside the limits of
agreement range, indicating high agreeability between the outputs from both systems.

3.2. Continuous Measures

Between-system offset (RMSD) were calculated for joint angles (Table 1). Flexion-
extension shoulder joint angles exhibited consistently high RMSD levels (right: 9.3◦, left:
9.3◦) despite trajectories showing overall consistency. Shoulder abduction-adduction and
external-internal joint angles demonstrated RMSD values of 11.2◦ (1.22) and 12.8◦ (0.70) for
the right shoulder abduction-adduction and external-internal joint angles and 6.9◦ (1.13)
and 10.2◦ (2.81) for the left shoulder abduction-adduction and external-internal joint angles,
respectively. Smaller joints, such as the wrist and ankle, exhibited lower RMSD values for
flexion-extension angles (right wrist: 4.9◦, left wrist: 5.1◦; right ankle: 5.6◦, left ankle: 6.4◦)
and for ulnar-radial deviation at the wrist and external-internal rotation at the ankle (right
wrist: 5.4◦, left wrist: 4.3◦; right ankle: 4.9◦, left ankle: 6.7◦). Although flexion-extension
angles of the knee and elbow showed relatively higher errors (Table 1), the overall trajectory
patterns for these joints were consistent across systems (Figure 4).

Table 1. Offset between joint angles of both systems in degrees (◦) presented as group mean (standard
deviation) and the between-condition changes detected by each system and the offset between the
systems; results of the jumping leg (right side).

Between-System RMSD (◦) Between-Condition RMSD (◦)

Joint Angle Right Limb Left Limb XSENS VICON Offset *

Shoulder

Flexion-extension 9.3 (0.79) 9.3 (3.88) 21.4 23.5 2.1

Abduction-adduction 11.2 (1.22) 6.9 (1.13) 11.2 10.9 0.3

External-internal 12.8 (0.70) 10.2 (2.81) 17.8 22.7 4.9

Elbow
Flexion-extension 7.1 (0.74) 5.5 (4.71) 17.6 17.3 0.3

Supination-pronation 9.9 (0.95) 6.9 (1.60) 17.2 20.7 3.5

Wrist
Flexion-extension 4.9 (0.98) 5.1 (3.56) 17.5 17.2 0.3

Ulnar-Radial Deviation 5.4 (0.56) 4.3 (1.23) 8.3 7.6 0.7

Hip

Flexion-extension 9.2 (0.81) 9.4 (0.60) 12.9 12.1 0.8

Abduction-adduction 7.6 (1.46) 7.26 (0.54) 6.8 5.9 0.8

External-internal 7.7 (0.70) 7.6 (0.77) 9.2 7.5 1.6

Knee Flexion-extension 6.7 (0.74) 7.3 (2.95) 12.9 12.9 0.0

Ankle
Flexion-extension 5.6 (0.52) 6.4 (1.37) 9.4 8.9 0.5

External-internal 4.9 (0.48) 6.7 (0.59) 4.9 4.1 0.8

* Difference between the change detected by Xsens and change detected by Vicon when comparing defended to
undefended conditions.
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Figure 4. (Top half) a single participant example of the mean trajectories and standard deviations for
the right knee joint angle of the Xsens (blue line and shaded area) and Vicon (red line and shaded
area) systems during the layup shot. (Bottom half) The paired-samples t-test statistic SPM {t}. The
critical threshold of 3.321 (red dashed line) was exceeded at time 0–10%, with a supra-threshold
cluster probability of p = 0.001 indicating a significantly more extended angle detection from the
Vicon system.

Xsens’ COM tracking (displacement in meters) during the layup shot was closest to
Vicon in the vertical direction (z), with a 0.029 m (0.002) offset. The resultant horizontal
displacement of the COMx and COMy had a mean 8% difference between the systems over
roughly 2 m of total travel.

3.3. Statistical Parametric Mapping (SPM) Analysis

SPM analysis was conducted to identify differences between joint angle outputs from
the Vicon and Xsens systems during the layup shot. The results revealed three distinct
patterns across joint angles: (1) no significant differences across participants (e.g., wrist
flexion-extension motion), (2) varied responses across participants (e.g., external-internal
shoulder, hip, ankle, and elbow angles), and (3) consistent differences across participants
(e.g., shoulder and hip abduction-adduction angles).

Knee flexion-extension joint angles exhibited high waveform agreement between the
two systems across participants. However, significant differences were detected during the
initial phase of the movement. The SPM critical threshold (t = 3.321) was exceeded between
0% and 10% of the task (Figure 4), with a supra-threshold cluster probability of p = 0.001,
indicating a significantly more extended angle detected from the Vicon system.

Ankle flexion-extension joint angle also witnessed the presence of supra-threshold
clusters at some instances despite the systems’ general waveform agreement (Figure 5).
Significant differences were detected between 5% and 14% of the task (t = 3.391, p < 0.001),
where the Xsens system reported a more dorsiflexed angle compared to the Vicon sys-
tem (Figure 5a). In the external-internal joint angles, significant differences emerged at
0% to 8% and 15% to 20% of the task (p = 0.011, p = 0.013), with Xsens initially reporting a
more everted angle followed by a reversal, where the Vicon system showed more eversion
(Figure 5b). The remaining waveform sections displayed no significant differences.

The wrist flexion-extension and ulnar-radial deviation joint angles demonstrated no
significant differences between the systems. SPM critical thresholds for flexion/extension
(t = 2.924) and radial/ulnar deviation (t = 3.073) were not exceeded, indicating homo-
geneous waveforms (Figure 6). However, differences were observed in ulnar-radial de-
viation joint angles for some participants during specific phases, such as take-off or the
preparatory step.
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Figure 5. (Top half) a single participant example of the mean trajectories and standard deviations for
the flexion-extension and external-internal ankle joint angles of the Xsens (blue line and shaded area)
and Vicon (red line and shaded area) systems during the layup shot. (Bottom half) (a) The paired-
samples t-test statistic SPM {t} shows the critical threshold of 3.391 (red dashed line) being exceeded
at time ~5–14%, with a supra-threshold cluster probability of p < 0.001 indicating a significantly
more dorsiflexed angle detected by the Xsens than the Vicon system. (b) Supra-threshold clusters at
time 0–8 and 15–20% of the ankle external-internal joint angle (p = 0.011, p = 0.013) indicated a more
everted ankle joint from the Xsens system, but then, a more everted ankle joint from the Vicon system
before the two waveforms displayed no significant difference across the remaining part of the task.

The shoulder flexion-extension joint angles showed minimal differences between the
systems, with occasional discrepancies centred around the peak of the jump or maximum
shoulder flexion. In contrast, the abduction-adduction and external-internal joint angles
exhibited significant differences across participants, with no consistent pattern in timing or
duration of supra-threshold clusters (Figure 7a,b). For instance, the abduction-adduction
joint angles surpassed the critical threshold twice during 0% to 3% and 70% to 76% of the
task (t = 3.047, p = 0.025, p = 0.044). Similarly, the external-internal joint angles displayed
significant clusters occurring at varying times before and after take-off (t = 3.186, p < 0.001)
despite general waveform agreement.

A between-condition analysis was performed to assess the consistency of Xsens and
Vicon in detecting changes between defended and undefended conditions (Table 1). Joint
angles were classified into three categories based on the results of the between-condition
analysis: (1) Both systems detected similar defence-induced changes within the same
time windows across the time series (Figure 8a). This pattern was also evident in the
shoulder flexion-extension, abduction-adduction and internal-external rotation angles
(Figure 9), where ensemble plots showed strong alignment in trajectory trends between
systems, and SPM analysis confirmed that significant condition-based differences occurred
at comparable time points, with a high degree of overlap in significant clusters (p < 0.001).
(2) Both systems detected comparable condition-based changes, although these occurred
in different time windows (Figure 8b). The knee flexion-extension and shoulder internal-
external rotation angles displayed this characteristic, as ensemble means revealed similar
overall trends, but the timing of condition-specific variations differed. SPM analysis
detected statistically significant differences between conditions in both systems; however,
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cluster sizes and locations were misaligned, suggesting a timing offset in how each system
captured condition-based changes. (3) High offsets were observed between systems, notably
in the external-internal shoulder rotation, where the largest offset of 4.9◦ was recorded
(Table 1). Despite this, SPM analysis demonstrated that both systems consistently identified
condition-specific differences (p < 0.001), though alignment of significant clusters was
limited, indicating potential challenges in time synchronization.
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(t* = 3.132, p = 0.022, p < 0.001; t* = 3.186, p < 0.001). Time window of clusters occurring roughly before 
and after take-off. 
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SPM analysis confirmed that significant condition-based differences occurred at compa-
rable time points, with a high degree of overlap in significant clusters (p < 0.001). (2) Both 
systems detected comparable condition-based changes, although these occurred in differ-
ent time windows (Figure 8b). The knee flexion-extension and shoulder internal-external 
rotation angles displayed this characteristic, as ensemble means revealed similar overall 
trends, but the timing of condition-specific variations differed. SPM analysis detected sta-
tistically significant differences between conditions in both systems; however, cluster sizes 
and locations were misaligned, suggesting a timing offset in how each system captured 
condition-based changes. (3) High offsets were observed between systems, notably in the 
external-internal shoulder rotation, where the largest offset of 4.9° was recorded (Table 1). 
Despite this, SPM analysis demonstrated that both systems consistently identified condi-
tion-specific differences (p < 0.001), though alignment of significant clusters was limited, 
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Figure 7. (a) An example of the difference between the shoulder joint angle output of the Vicon and
Xsens, where the shoulder flexion-extension and external-internal joint angle trajectories did not
exceed the dotted lines, which indicate the critical threshold for significance (t* = 3.007, t* = 3.027),
while the shoulder’s abduction-adduction joint angle had supra-threshold clusters that crossed the
significance threshold twice (t* = 3.047, p = 0.025, p = 0.044), but this occurred during consecutive
time points not exceeding 6% of the task (0–3%, 70–76%). (b) Despite general waveforms agreement,
significant differences were detected at separate instances for shoulder abduction-adduction and
external-internal joint angles, evident by sizable supra-threshold clusters crossing the critical-t line
(t* = 3.132, p = 0.022, p < 0.001; t* = 3.186, p < 0.001). Time window of clusters occurring roughly
before and after take-off.
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Figure 8. SPM plots of the between-condition differences as detected by the Xsens and Vicon systems
for the elbow external-internal angle (a) and knee flexion-extension angle (b) during the layup task
under two conditions: defended and undefended. Significant but consistent differences were detected
between the conditions from the two systems, as revealed by the supra-threshold clusters exceeding
critical-t value for the elbow external-internal angle in Xsens (t* = 3.615, p < 0.001, p = 0.041) and
Vicon (t* = 3.617, p < 0.001, p = 0.019) appearing roughly within the same time windows (Xsens:
40–60%, 65–70% and 97–100%, Vicon: 37–57%, 65–70% and 96–100%). Consistency in the detection
of change was also observed for the knee flexion-extension angle for Xsens (t* = 3.575, p = 0.003,
p = 0.010) and Vicon (t* = 3.603, p = 0.036), spanning approximately 8–15% and 30–38% and 12–14%
of the task, respectively.
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Figure 9. SPM plots of the between-condition differences detected by the Xsens (left) and Vicon
(right) systems for the shoulder joint angles during the layup task under defended and unde-
fended conditions. Significant condition-based differences, indicated by supra-threshold clusters
exceeding the critical t-value, were consistently detected by both systems, occurring within similar
time windows.

The mean offset across all joint angles was 1.3◦, with the highest offset observed
in the external-internal shoulder angle (4.9◦), while the lowest offset was found in the
flexion-extension knee angle (0.0◦). Notably, the majority of joint angles showed differences
of less than 1.0◦. SPM confirmed the consistency of Xsens in detecting condition-specific
changes, with cluster sizes and locations showing strong similarity between defended and
undefended conditions in both systems (Table 1).
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4. Discussion
This study evaluated the accuracy and reliability of IMUs (Xsens) in capturing basket-

ball layup kinematics. The goal was to assess their suitability for performance analysis in
representative environments, such as the basketball court, compared to an optical motion
capture system (Vicon). The findings demonstrated strong agreement for global metrics
such as jump height and take-off angle but highlighted significant RMSD for joint-specific
measures, particularly in the flexion-extension joint angle of the shoulder. This aligns with
numerous validation studies that indicate task-specific and anatomical plane-dependent
performance of IMUs [11,29]. Furthermore, a between-condition analysis revealed an ability
of Xsens to detect relative changes in joint angle kinematic adjustments when task-relevant
condition constraints were incorporated that was comparable to Vicon. These results
emphasise the potential of IMUs as portable alternatives for field-based biomechanical
assessments while identifying limitations in capturing detailed joint-level kinematics.

The findings of the present study demonstrate a high level of agreement between
the Vicon and Xsens systems for measuring jump height and take-off angle. The paired-
samples t-test showed no significant differences between the systems, highlighting the
comparability of outputs. Specifically, the mean jump height values were identical (jump
height (Table 1), with a minor mean offset of 0.025 m. Similarly, take-off angle (Table 1)
showed minimal divergence with a mean offset of 1.5◦, confirming the systems’ consistency
in measuring key metrics for dynamic movements, such as the basketball layup. These
two metrics, derived from the system-calculated COM location, demonstrate reliable track-
ing of the COM. This aligns with previous studies highlighting that COM displacement
and jump height are less influenced by drift and alignment errors compared to joint-
specific measures [30,31]. The excellent reliability scores for jump height and take-off angle
(ICC = 0.97–0.96) indicate strong consistency, ensuring observed variations reflect perfor-
mance differences rather than measurement error.

4.1. Between-System Analysis

Shoulder flexion-extension joint angles demonstrated consistently high between-
system RMSD levels across participants (Table 1). Although the time-series trajectories
indicated waveform agreement throughout the task, occasional underestimation by Xsens
was observed, particularly around ball release. This finding aligns with previous research,
which suggests that IMUs generally provide acceptable accuracy for upper body kinematics
but may underestimate joint angles, especially as the magnitude of movement increases [11].
These discrepancies at higher joint angles may explain the observed underestimation near
ball release, where the demands on shoulder joint mobility are likely elevated.

A closer examination of the discrepancies highlights several contributing factors. First,
IMU-based systems, by nature, tend to underestimate joint angles at larger ranges of motion
while overestimating at smaller angles [11,32]. Bland–Altman analyses in previous studies
have confirmed this trend, particularly for shoulder elevation, where the largest errors
are typically observed [11]. These previous findings are consistent with the results in the
current study, where the underestimation near ball release coincides with elevated shoulder
flexion demands. Additionally, the soft tissue artifact (STA) inherent to all non-invasive
motion analysis techniques, including optical systems, introduces error into the reference
data, further complicating the comparison between systems [33]. Thus, the observed RMSD
values may partly reflect STA effects, which reduce the precision of both measurement
systems in capturing true joint motion.

Furthermore, the complexity of shoulder kinematics, characterised by multi-planar
motion and interdependence between segmental axes, adds another layer of challenge for
IMUs. Notably, while studies have investigated specific upper-limb criteria, such as the
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scapulohumeral rhythm and repeatability of segment axes [34,35], the influence of these fac-
tors on task-specific performance in dynamic, sport-representative environments remains
underexplored. The observed high RMSD values may, therefore, reflect a combination of
methodological limitations, soft tissue-induced artifacts, and the inherent challenges of
capturing highly dynamic, multi-planar movements with portable systems like IMUs.

This study also confirms previous studies suggesting the presence of high between-
systems RMSD values for the abduction-adduction and external-internal joint angles for the
complex motions of the mobile and multiplanar shoulder joint [3] (Table 1). Together with
the high between-participant variability of the SPM plots (Figure 7), the validity of Xsens
to detect these motions accurately for the layup cannot be confirmed. This finding is in line
with the limited number of studies that have incorporated the shoulder joint for complex
tasks (multi-planal motion), suggesting the validity of IMUs’ detection of motion accuracy
is highly variable [24,36–38]. The shoulder joint is very mobile [39], and its biomechanical
modelling requires unique mathematical representation [40]. The shoulder joint, due to its
high degrees of freedom, is expected to perform multi-planar motions simultaneously. In
the context of a basketball layup, while the extension-to-flexion movement of the arm is
consistent throughout the task, motions in the abduction-adduction and external-internal
joint angles can vary, displaying one or a combination of directions depending on player
preference or task-specific constraints, such as defensive pressure. Total joint angles are
derived from the summation of individual rotational components across anatomical planes.
However, this process introduces the potential for cross-talk or noise, whereby inaccuracies
in the measurement or alignment of rotations in one plane may erroneously influence
or be attributed to rotations in another, compromising the accuracy of the resulting total
angle [41,42]. This highlights the inherent challenges in accurately capturing shoulder
kinematics during dynamic, sport-specific tasks.

Similarly, despite comparable hip joint angle waveforms between the systems, high
error rates (Table 1) and the presence of significant difference clusters in the SPM plots
questioned Xsens accuracy. In a recent systematic review by Poitras et al. [3], the validity of
hip kinematics ranged from fair to excellent, with RMSD values spanning 0.2◦ to 9.3◦ and
correlation coefficients (r) between 0.53 and 1.00. Movements involving hip rotation exhib-
ited the greatest inaccuracies, with RMSD reaching up to 11.8◦ and correlations dropping
as low as 0.35. The discrepancies presented in this work may be attributed to the unique de-
mands of this layup shot task, which differ significantly from the predominantly uni-planar
movements typically studied in running and walking datasets [24,25,43–47]. Unlike the
consistent, uni-planar patterns of walking and running, the layup shot demands dynamic,
multi-planar hip movements, including frequent transitions between flexion, abduction,
and rotation to adapt to task-specific constraints. Rapid accelerations, decelerations, and
directional changes add variability, causing noise and algorithmic drift in IMU data. These
factors increase cross-talk between planes (e.g., [41]), reducing accuracy in capturing all
planal motions of the hip and further highlighting the challenges of applying IMUs to
complex sport-specific tasks.

Flexion-extension joint angles of the smaller joints (i.e., wrist and ankle) have demon-
strated relatively low RMSD values (Table 1). This can be confirmed by the SPM trajectory
lacking any difference signifying clusters for the wrist joint and by the general waveform
agreement for the ankle joint flexion-extension angle. However, wrist ulnar-radial devi-
ation and ankle external-internal joint angles also displayed low RMSD results (Table 1),
but this was not reflected congruently across participants’ SPM trajectory ensemble plots.
This may be due to the smaller ranges of motion, which have amplified levels of noise
compared to flexion-extension joint angles [48], with some noise potentially resulting from
between-plane cross-talk when one plane motion is incorrectly detected as the motion of
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another [41]. This has been a common phenomenon reported with studies featuring multi-
planal complex movements in which the accuracy of inertial sensors can be affected by high
segment linear accelerations [3]. Similar disagreements have been noted by previous sensor
vs. marker studies for the ankle external-internal angle [47,48], but the discrepancy in the
agreement of the ankle rotational angle between the systems may also be due to the foot
sensor fixation method being prone to impact, as statistically significance difference has
been detected roughly—but not exceptional to—around ground contact points (i.e., toe-off
and landing). Efforts to secure the foot sensor placement can be made through tightening
the shoe strap or taping the sensor to reduce impact effect.

Despite the flexion-extension knee and elbow joint angles displaying relatively high er-
rors (Table 1) and the presence of supra-threshold clusters across the joint angle trajectories,
the two waveforms remain morphologically similar, except for low deviations at random
time points that do not constitute a marked anomaly, according to the trajectory plots. The
observed SPM clusters between the systems may partly be attributed to differences in their
event detection methods. Although both systems are consistent, slight synchronization
delays, potentially up to ≤4 data points, might occur between the two waveforms. This
could result in misalignment, particularly at time points where rapid changes in joint angles
take place. The notable between-system discrepancies in some of these angles, which occur
during large ranges of motion in short durations, may be explained by the established
argument that dynamic movements are associated with higher error levels. For example,
ref. [49] reported greater errors during countermovement jumps compared to bilateral
squats or single-leg squats. Similarly, ref. [1] noted greater errors in dynamic tasks like
running double-leg vertical jumps and single-leg hops compared to single-leg decelerations
and push-offs or running sidestep cuts.

4.2. Between-Condition Analysis

The paired-sample t-test revealed no significant differences between the Vicon and
Xsens systems in detecting changes between conditions for both jump height and take-
off angle. Specifically, the differences detected by Vicon (jump height: 0.028 m; take-off
angle: 2.03◦) and Xsens (jump height: 0.022 m; take-off angle: 2.91◦) were not statistically
significant (p ≥ 0.238 and p ≥ 0.225, respectively). These findings reinforce the reliability of
both systems in consistently detecting condition-induced changes in performance metrics.

Due to the inability to confirm joint angle accuracy between the two systems,
a between-condition analysis was conducted to evaluate Xsens’ reliability in captur-
ing condition-specific biomechanical changes. This analysis revealed a mean offset of
1.3◦ between systems, with most joint angles differing by less than 1.0◦. In line with the
prior literature, an RMSD threshold of ≤5◦ was considered indicative of excellent agree-
ment [24,25]. Our results showed that the majority of joint angles, particularly in the sagittal
plane, fell within or near this threshold, supporting the practical use of IMUs in applied
sport settings where high relative precision is desirable, but absolute accuracy is not always
critical. Prior research has noted that IMUs may not replicate raw joint angles as precisely
as optical systems, especially during complex, multi-planar movements [50,51]. Therefore,
assessing condition-specific trends rather than direct system comparisons offers a more
suitable approach for evaluating movement adaptations.

The condition-based SPM analysis (Figures 8 and 9) supported these findings by
identifying comparable cluster sizes and locations for defended and undefended conditions
across both systems. The analysis demonstrated that Xsens was capable of detecting similar
magnitudes of condition-based differences in shoulder joint angles as Vicon, particularly
during the layup task. While absolute measurement precision could not be confirmed,
Xsens reliably detected changes induced by defensive conditions.
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This result is significant for tasks involving complex upper-limb mechanics, such as
layup shots, shooting, and passing under defensive pressure, where shoulder position-
ing and rotation are critical. The ability of Xsens to capture condition-induced changes
underscores its practical application in performance analysis and training. Its portability
and capacity to provide real-time feedback make it particularly advantageous for applied
sports settings.

These findings further demonstrate that Xsens effectively captures relative biome-
chanical changes under varying conditions. Minor differences in timing or magnitude of
significance clusters, such as Xsens showing slightly broader time windows of significant
effects, may reflect subtle discrepancies in precision or noise sensitivity. Nonetheless, con-
sistent kinematic differences between defended and undefended conditions were observed
across both systems, with critical-t values and p-values confirming the statistical robustness
of the results.

By focusing on within-system, condition-specific changes, the potential for confound-
ing factors introduced by inter-system variability is minimized. This ensures that observed
trends in joint angles, timing, and coordination patterns can be reliably attributed to ex-
perimental conditions rather than inconsistencies between measurement platforms, thus
providing strong validation for the use of Xsens in layup mechanics analysis.

5. Implications
The findings of our study, alongside the existing literature, highlight the utility of

wearable IMUs in providing accessible, portable, and cost-effective solutions for field-
based sports biomechanics. IMUs like Xsens are particularly effective for assessing global
metrics and sagittal plane kinematics, making them suitable for applications in performance
monitoring, skill acquisition analysis, and injury prevention strategies. However, the
study’s findings emphasise the need for caution when using IMUs for detailed kinematic
analyses, particularly for tasks involving high velocities or complex multi-planar dynamics.

Xsens demonstrated strong capability in capturing and detecting relative biomechan-
ical changes under varying conditions, highlighting its practicality for applied sports
biomechanics, particularly in real-world, non-laboratory settings where optical systems
like Vicon may not be feasible. Its ability to identify kinematic adaptations, such as those
athletes make in response to external constraints like defensive pressure, reinforces its
value as a robust alternative for performance analysis. The comparable results between
Xsens and Vicon in differentiating defended and undefended conditions further emphasise
its reliability in applied biomechanics research.

6. Conclusions
The between-condition analyses revealed Xsens’ capability to detect changes between

defended and undefended conditions, aligning closely with Vicon’s detection in certain
instances. This additional analysis underscores the ability of wearable sensors like Xsens
to identify changes in movement mechanic under varying conditions, demonstrating
performance similar to Vicon in most cases, despite limitations in absolute accuracy.

These findings suggest that wearable sensors like Xsens can facilitate informed de-
cisions by players and coaches regarding the impact of layup shooting mechanics on
performance and injury risk within their specific environments. By providing portable and
efficient motion analysis tools, Xsens supports practical sports biomechanics applications,
paving the way for improved athlete monitoring and training in field-based settings. We
can generalise that our method should be used to verify detection capabilities before apply-
ing these systems to other sports contexts, ensuring reliable performance assessment across
diverse athletic scenarios.
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