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Abstract: We theoretically study the photoelectron angular distribution (PAD) from the
two-photon single ionization of H and He by femtosecond and attosecond extreme-ultraviolet
pulses, based on the time-dependent perturbation theory and simulations with the full
time-dependent Schrödinger equation. The PAD is formed by the interference of the s and
d continuum wave packets, and, thus, contains the information on the relative phase δ and
amplitude ratio between them. We find that, when a spectrally broadened femtosecond pulse
is resonant with an excited level, the PAD substantially changes with pulse width, since the
competition between resonant and nonresonant ionization paths, leading to δ distinct from
the scattering phase shift difference, changes with it. In contrast, when the Rydberg manifold
is excited, and for the case of above-threshold two-photon ionization, δ and the PAD do not
depend much on pulse width, except for the attosecond region. Thus, the Rydberg manifold
and the continuum behave similarly in this respect. For a high-harmonic pulse composed of
multiple harmonic orders, while the value of δ is different from that for a single-component
pulse, the PAD still rapidly varies with pulse width. The present results illustrate a new way
to tailor the continuum wave packet.

Keywords: two-photon ionization; photoelectron angular distribution; free-electron lasers;
high-order harmonic generation
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1. Introduction

Two-photon ionization (2PI), or multi-photon ionization more generally, has consistently been
receiving a great deal of attention for decades (see e.g., [1–11]). Also these processes have been
used in a variety of applications in laser optics and spectroscopy. It is well known that the two-photon
photoelectron angular distributions (PAD) are directly related to the relative amplitudes and the relative
phase between different partial waves [8,12–16]. However, these earlier works dealt with the laser
pulses in the optical range whose pulse width is very long in comparison with the modern standard
of femosecond laser technology. The advent of extreme ultraviolet (EUV) [17,18] and X-ray [19,20]
free-electron lasers (FELs) as well as intense ultrashort high-harmonic sources has led to renewed interest
in two-photon processes in the EUV to X-ray regimes (see, e.g., [11,21–28]). Photoelectron angular
distribution is nowadays extensively studied by the velocity map imaging technique (see e.g., [29,30]).
These new light sources have also enabled two-photon ionization (2PI) of species with a deep ionization
potential such as He [31–35] and N2 [36].

Single-color two-photon single ionization of a helium atom, apart from a hydrogen atom, may
be one of the simplest two-photon processes. For theoretical study, see, for example, the work by
Nikolopoulos et al. [37], van der Hart and Bingham [38], and references cited therein. On the
experimental side, Kobayashi et al. [32] were the first to observe this process and used it for an
autocorrelation measurement of high-order harmonic pulses, and Moshammer et al. [35] recently
used it for an autocorrelation measurement of the EUV FEL pulses provided by the SPring-8
Compact SASE Source (SCSS) test accelerator [18]. The absolute two-photon ionization cross
sections of He were measured using an intense high harmonic source [31] as well as the SCSS test
accelerator [39]. Hishikawa et al. [40] recently investigated two- and three-photon ionization of
He at the SCSS test accelerator by photoelectron spectroscopy using a magnetic bottle spectrometer.
Though not single-color, the PAD from multi-color above-threshold ionization of He has recently been
reported [41,42].

Two-photon single ionization of H and He produces a continuum electron wave packet, which is a
superposition of s and d partial waves. The photoelectron angular distribution provides information
about the ratio of amplitudes for the s and d partial waves and their relative phase. Extracting a phase
shift difference from the PAD that is observed from a photoexcited state is a well-established method.
For example, Haber et al. [29] excited the ground state helium atom to the 1snp Rydberg states by
high-order harmonics and measured the PAD emitted from these excited states using IR and UV lasers
as ionizing pulses. A similar experiment was also performed by O’Keeffe et al. [43] using synchrotron
radiation for the excitation and a laboratory laser for the ionization. Both these experiments confirmed
that the relative phase extracted from measured PADs resulting from sequential two-color excitation and
ionization agrees well with the theoretically predicted scattering phase shift difference.

We have recently studied the PAD from two-photon single ionization of He by femtosecond (fs)
EUV pulses theoretically [44]. In the case of resonance-enhanced 2PI, the resonant ionization path
via resonant levels and the nonresonant path via nonresonant intermediate levels coexist [2]. We have
shown [44] that a feature peculiar to the few fs regime is the competition between the two paths, leading
to a relative phase δ between s and d that is distinct from the value expected from the corresponding
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scattering phase shifts, which is otherwise intrinsic to the target atom or molecule. This extra phase δex
can be controlled by the pulse width, which manifests itself in a pulse width dependence of the PAD.
This will eventually open a new avenue to the coherent control of the continuum wave packets. (In this
connection, see [45] for the control of the resonant two-color two-photon excitation yield and [46] for the
control of the photoelectron angular distributions of the nonperturbative resonant multi-photon ionization
with ultrashort polarization-shaped pulses. See also a very recent review article for photoelectron angular
distributions [47].)

In this paper, we extend the study and investigate the dependence of the PAD and δex on pulse
parameters in more detail. In our previous study [44], we have chosen He as a target atom for the
following reasons: first, its single-electron excitation energies, e.g., 21.218 eV for 1s2p 1P and 23.087
eV for 1s3p 1P [48], coincide with the 13th and 15th harmonic photon energies of a Ti:Sapphire
laser, respectively, and also with the typical wavelength range (50–61 nm) of EUV FELs such as the
Spring-8 Compact SASE Source (SCSS) [18], the Free-electron LASer at Hamburg (FLASH) [17],
and FERMI [49]. Second, its simple electronic structure allows for exact time-dependent numerical
analysis [50–54], in great contrast to alkali atoms. Basically the same effect, however, is also expected
for other atomic and molecular species. In the present study, in addition to He, we examine the case
of a hydrogen atom, for which simulations are much less demanding and the scattering phase shift is
precisely known as the Coulomb phase shift. We also investigate the case where the photon energy
is close to the ionization threshold and show that the transition from 2PI involving Rydberg-manifold
excitation to above-threshold 2PI is smooth. The Rydberg manifold behaves in a similar manner to the
continuum, even when only a modest numbers of levels are excited by the pulse.

Intense high-order harmonic and self-amplified spontaneous emission (SASE) FEL pulses are rarely
a single coherent pulse; the former is often a train of a few pulses temporally separated by a half cycle
of the driving laser, and the latter fluctuate from shot to shot [55–59]. Hence, we examine how such a
multi-component nature, either coherent or chaotic, affects the PAD.

This paper is organized as follows. In Section 2, we discuss the PAD by a Gaussian pulse, based on
the second-order perturbation theory and TDSE simulations. Then, in Section 3, we examine the PAD
by high harmonic pulses containing multiple harmonic orders and the effects of the chaotic nature of
SASE FEL pulses. Conclusions are given in Section 4.

2. Gaussian Pulse

2.1. Time-Dependent Perturbation Theory

In this subsection, let us do a simple analysis on how the relative importance of the resonant and
nonresonant paths depends on pulse width, based on the second-order time-dependent perturbation
theory within the common rotating wave approximation. The dynamic Stark effect is negligible for
pulse parameters used in the present study. We consider the process where a laser pulse with a central
frequency ω and a pulse envelope f(t), linearly polarized in the z direction, promotes an atomic electron
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from an initial state |i〉 to a final continuum state |f〉 through two-photon absorption. The complex
amplitude cf of the final state after the pulse in the interaction picture can be written as,

cf =
∑
m

∫ ∞
−∞

µfme
i∆f tf(t)

(∫ t

−∞
µmie

i∆mt′f(t′)dt′
)
dt (1)

where µmn denotes the dipole transition matrix element between states m and n, ∆m = ωm − (ωi + ω),
∆f = ωf − (ωm + ω) with ωm being the energy eigen-value of state m, and the sum runs over all the
intermediate bound and continuum states m. One can equivalently express Equation (1) by Equation (3)
of [45] using the Fourier transform of f(t). Although a rectangular pulse is often assumed in previous
work [2] and textbooks, we take, as a more realistic choice, a Gaussian profile f(t) = E0e

−t2/2T 2 , with
E0 and T being the field amplitude and the pulse width, respectively. More precisely, T is related to the
full-width-at-half-maximum (FWHM) pulse width T1/2 as T1/2 = 2

√
ln 2T .

For the case of ωf = ωi + 2ω, in particular, one can perform the integrals in Equation (1) analytically
to obtain a physically transparent expression:

cf = πE2
0T

2
∑
m

µfmµmi

[
e−∆2

mT
2 − i 2√

π
F (∆mT )

]
(2)

where F (x) = e−x
2 ∫ x

0
et

2
dt denotes Dawson’s integral [60], which tends to x near the origin and 1/2x

for x → ∞. Only resonant states within the spectral width of the pulse contribute to the first term,
corresponding to the resonant path. In particular, if a single intermediate level r is resonant with the
pulse spectrum, Equation (2) can be rewritten as,

cf = πE2
0T

2

[
µfrµrie

−∆2
rT

2 − i
∑
m

µfmµmi
2√
π
F (∆mT )

]
(3)

On the other hand, the asymptotic behavior of F (x) suggests that all the intermediate states except for
the exact resonance (∆m = 0) participate in the second term, as expected for nonresonant paths. While
either term dominates for a relatively long pulse (ps and ns), assuming that resonant excitation is not
saturated, we can expect that the two terms are comparative for sufficiently short pulses and that their
relative importance, which may be expressed as arg cf , varies with T . In such a situation, the amplitude
ratio cS/cD between the final S and D continuum states is complex, since the branching ratio µSm/µDm
of the transitions from the intermediate P statesm to each state depends onm. While the actual outgoing
wave packets involve the contribution from the final states with ωf 6= ωi + 2ω, it is instructive to write
arg cS/cD using Equation (3) as follows:

cS
cD

=
µSr
µDr

√
πTe−∆2

rT
2 − i[aS + 2F (∆rT )T ]√

πTe−∆2
rT

2 − i[aD + 2F (∆rT )T ]
(4)

with af (f = S,D) = (µfrµri)
−1
∑

m(6=r) µfmµmi/∆m. Here we have assumed that F (∆mT ) ≈
(2∆mT )−1 for all the other intermediate states. Hence, the competition between the resonant and
nonresonant paths affects the interference between the outgoing S and D wave packets and manifests
itself in the photoelectron angular distribution that depends on the pulse width.
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2.2. Photoelectron Angular Distribution

The photoelectron angular distribution from 2PI of H and He is given by [12],

I(θ) =
σ

4π
[1 + β2P2(cos θ) + β4P4(cos θ)] (5)

where σ is the total cross section, θ is the angle between the laser polarization and the electron velocity
vector, and β2 and β4 are the anisotropy parameters associated with the second- and fourth-order
Legendre polynomials, respectively. The interference of the S and D wave packets produces a
photoelectron angular distribution,

I(θ) ∝ |cSY00 − cDY20|2 =
∣∣c̃Seiδ0Y00 − c̃Deiδ2Y20

∣∣2 (6)

where c̃S and c̃D are the real amplitudes that have absolute values of |cS| and |cD|, respectively, and can
be either positive or negative in principle, and δl is the phase of the partial wave, or the apparent phase
shift. The apparent phase shift difference,

δ ≡ δ0 − δ2 = δsc + δex (7)

consists of a part δsc intrinsic to the continuum eigen wave-functions (scattering phase shift difference),
which has previously been studied both theoretically [61–63] and experimentally [29], and the extra
contribution δex = arg cS/cD (if c̃S/c̃D > 0), π − arg cS/cD (if c̃S/c̃D < 0) from the competition of
the two paths. This situation presents a contrast to the case of the photo-ionization from photo-excited
states [29], where the nonresonant path is absent and only δsc is present (δ = δsc).

Figure 1. Photon-energy dependence of (a) the relative phase (phase-shift difference) δ and
(b) the amplitude ratioW between the s and dwave packets for a pulse width of 7 fs (circles)
and 14 fs (squares). The target atom is hydrogen. Thin sold and dashed lines in (a): |δsc| and
π − |δsc|, respectively. Vertical dotted lines: positions of 2p to 6p resonances.
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The amplitude ratio W ≡ c̃S/c̃D and δ are related with the anisotropy parameters as [64],

β2 =
10

W 2 + 1

[
1

7
− W√

5
cos δ

]
, β4 =

18

7(W 2 + 1)
(8)
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It should be noticed that, when one extracts W and δ from β2 and β4, one cannot distinguish between
(W, δ) and (−W,π − δ). One cannot distinguish between δ and −δ, either. Hence, in what follows, let
us take W as positive, i.e., W = |cS/cD| and define the value of δ within the range [0, π]. Then, δsc in
Equation (7) should be replaced by |δsc| or π− |δsc| for appropriate interpretation in some cases (see the
discussion on Figure 1 below).

2.3. Hydrogen Atom

Let us now verify the above qualitative idea for the case of a hydrogen atom, for which an analytical
expression of the Coulomb phase shift δsc,l for an azimuthal quantum number l is at hand as,

δsc,l = arg Γ(l + 1− i/k) (9)

where Γ(z) denotes the gamma function, and k the wave number.
In principle, one could calculate cS and cD using the analytical expression for the dipole transition

matrix elements in Equation (2), but it is not trivial to perform an integration over the continuum
intermediate states, since the Dawson’s integral has a long tail (∼ 1/x). Instead, we take an approach in
the time domain, namely, direct numerical solution of the time-dependent Schrödinger equation (TDSE)
in the length gauge,

i
∂Φ(r, t)

∂t
=

[
−1

2
∇2 − 1

r
− zf(t) sinωt

]
Φ(r, t) (10)

where we have assumed that the field is linearly polarized in the z direction. Equation (10) is numerically
integrated using the alternating direction implicit (Peaceman–Rachford) method [9,65–73]. Sufficiently
long (typically a few times the pulse width) after the pulse has ended, the ionized wave packet
moving outward in time is spatially well separated and clearly distinguishable from the non-ionized
part remaining around the origin. We calculate β2 and β4 by integrating the ionized part of |Φ(r)|2 over
r and φ, from which one obtains W and δ by solving Equation (8). We have monitored the convergence
of the results by calculating the PAD at different times. The calculation has been done for a Gaussian
pulse envelope with a peak intensity of 1010 W/cm2, at which we have confirmed that the interaction is
still in the perturbative regime.

The pulse-width dependence of δ and W for ~ω = 10.2 eV corresponding to the 2p resonance is
shown in Figure 2 (a). The calculations have been done at different values of full-width-at-half-maximum
(FWHM) pulse width T1/2 = 2

√
ln 2T between 1 and 21 fs. As expected, both δ and W

substantially change with pulse width, especially when the pulse is shorter than 10 fs. δ approaches
|δsc| ≡ |δsc,0 − δsc,2| = π

2
for a larger pulse width. Accordingly, the PAD also varies as shown in

Figure 3 (a). One finds that the distribution to the direction perpendicular to the laser polarization, i.e.,
θ ≈ 90◦, 270◦ decreases as the pulse is shortened, which is more prominent for He as we will discuss
later [Figure 3 (b)]. This can be understood as follows: roughly speaking, δ changes from ∼ π

2
to ∼ π

as T1/2 varies from 21 fs to 1 fs. Thus, cs/cd is approximately real and negative in the short-pulse limit,
which leads to the cancellation between Y00(θ, ϕ) and Y20(θ, ϕ) around θ = π

2
.

In Figure 1, we plot the photon energy dependence of the phase difference δ and the amplitude ratio
W for 7 fs and 14 fs pulse widths. By noting that the spectral width is 0.26 eV and 0.13 eV for each
pulse width, respectively, we can identify several photon energy ranges.
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Figure 2. Pulse-width dependence of the TDSE-derived apparent phase shift difference
(relative phase) δ (left axis) and W = |cs/cd| (right axis). (a) The target atom is hydrogen,
and ~ω = 10.2 eV. The thin horizontal line denotes the value (= π/2)) of the Coulomb
phase-shift difference; (b) The target atom is helium, and ~ω = 21.2 eV. The thin horizontal
line denotes the value (1.511 [63]) of the intrinsic scattering phase-shift difference δsc for
~ω = 21.2 eV.
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Figure 3. Pulse-width dependence of the photoelectron angular distribution for (a) H and
~ω = 10.2 eV; and (b) He and ~ω = 21.2 eV.
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First, if the pulse is not resonant with any level and the first term in Equation (3) is negligible,
Equation (4) can be approximated as,

cS
cD

=

∑
m µSmµmi/∆m∑
m µDmµmi/∆m

(11)

which is real. In our plots, we define the value of δ within the range [0, π]. Hence, the value of δ is
either |δsc| [thin black line in Figure 1(a)] or π − |δsc| (thin dashed black line), depending on the sign of
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cS/cD. This situation corresponds to ~ω . 9.8 eV and 10.6 eV . ~ω . 11.6 eV. The relative phase δ
between the S and D partial waves does not depend on the pulse width [Figure 4(a)], except for the case
of very short pulses where the broadened spectrum begins to be resonant with a 2p or 3p level, which
belong to the second category. We can also see from Figure 1 that the sign of cS/cD changes, e.g., around
~ω = 10.9 eV and ~ω = 11.7 eV, where W sharply peaks or approaches to zero [Figure 1(b)]. The jump
in δ is not completely step-function-like, since the contribution from the resonant path can be neglected
no longer there.

Second, if the pulse is resonant with a single excited level (near ~ω = 10.2 eV and 12.1 eV for the 2p

and 3p resonance, respectively), the competition between the resonant and nonresonant ionization paths
leads to the value of δ that deviates from its intrinsic value (|δsc| or π−|δsc|) and varies with pulse width,
as we have already seen above [Figure 2(a)] and can also see in Figure 4(b). It tends to either |δsc| or
π − |δsc| for the longer pulse width. Interestingly, at ~ω = 11.7 eV [blue line in Figure 4(b)], δ first
decreases with increasing pulse width, approaching |δsc| = 1.40 (i.e., the resonant path is dominant),
but then, for T1/2 & 8 fs, increases again, tending to π − |δsc| = 1.74 (i.e., the nonresonant paths are
dominant). Similar features can be observed for 9.0 and 11.0 eV in Figure 4(a) as well.

Then, above the 3p resonance, the pulse is always resonant with one or, more often, multiple levels.
In this case, again, the value of δ deviates from its intrinsic value and varies with pulse width [see the
lines for 12.75 and 13.0 eV in Figures 4(a) and 4(c)], while its photon-energy dependence is somewhat
complicated. A new feature is that δ is roughly constant at T1/2 . 4 fs and 7 fs for 12.75 and 13.0 eV,
respectively, which we will discuss below.

Finally, when the pulse excites a Rydberg manifold (~ω & 13.0 and 13.3 eV for 7 and 14 fs,
respectively), δ varies smoothly with photon energy even across the ionization threshold (13.6 eV),
indicating that the Rydberg manifold behaves similarly to the continuum for the case of an ultrashort
pulse (note that a similar smooth transition can also be seen in the 2PI photoelectron spectrum [73]).
Moreover, the relative phase is different from its intrinsic value, but surprisingly constant as a function
of T1/2 within the pulse width range investigated here [Figure 4(c),(d)]. These features, seen also for He
[Figure 4(g)] and presumably general for all the atoms, can be understood as follows. Let us assume that
the spectral width of the pulse contains a sufficient number of levels that the sum in Equation (1) can be
approximately replaced by an integral,

cf ≈ πE2
0T

2

∫ ∞
−∞

[
e−∆2

mT
2 − i 2√

π
F (∆mT )

]
s(∆m)d∆m (12)

where s(∆m) denotes the density of states multiplied with µfmµmi. By noting that F (∆T ) ≈ (2∆T )−1,
thus, F (∆T ) ≈ F (∆)/T is a good approximation in most region of ∆T , Equation (12) can be
rewritten as,

cf ≈ πE2
0T

∫ ∞
−∞

[
e−∆2

s(∆/T )− i 2√
π
F (∆) s(∆)

]
d∆ (13)

Since s(∆/T ) in the first term in the integrand can usually be approximated as s(0) for the central
frequency, the ratio cS/cD, and thus δ and W , becomes roughly independent of T . Also, due to
the continuity of the oscillator strength distribution across the ionization threshold [74], one can
see that cS/cD also changes smoothly as a function of ~ω. It should be noticed that, for the case
of two-photon above-threshold ionization [37] and in the long-pulse limit, the first (resonant path)
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and second (nonresonant path) terms of Equation (12) tend to, e.g., the second and first terms of
Equation (3.2) of [37], respectively.

Figure 4. Pulse-width dependence of the phase-shift difference δ for H [(a)–(d)] and He
[(d)–(g)] for different values of photon energy. Panel (d) is the close-up of the vertical-axis
range between 2.5 and 3.0 radians of panel (c). The pulse is nonresonant for (a) and (e),
resonant with a single level for (b) and (f), and resonant with multiple levels for (c), (d), and
(g). The resonant excitation energies for He 1s2p1P , 1s3p1P , 1s4p1P , 1s5p1P levels are
21.218, 23.087, 23.742, and 24.046 eV [48].
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Figure 4. Cont.
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How dense should the levels be within the spectral width for the above discussion to be valid? One
can estimate it by investigating how well the integral

∫∞
−∞ e

−x2
dx can be approximated by the sum∑∞

n=−∞ e
−x2

n∆x of the values at discrete points, where xn = (n + δn)∆x, with ∆x(> 0) and δn being
the increment of x and the offset of n, respectively. In Figure 5 we plot the ratio,∑∞

n=−∞ e
−x2

n∆x∫∞
−∞ e

−x2dx
= θ3(δn π, e−

π2

∆x2 ) (14)

as a function of ∆x for δn = 0, 1
4
, and 1

2
, where θa(u, q) denotes the theta function [60].

The approximation is surprisingly good even with ∆x = 1, though the FWHM of e−x
2 is

2 ln 2 (= 1.66511 · · · ). This explains why ∆ varies smoothly even in the range of ~ω where the level
spacing is not negligibly small compared with the spectral width in Figure 1.

Figure 5. Ratio given by Equation (14) as a function of ∆x for different offset values δn.
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2.4. Helium Atom

Let us now turn to a helium atom. As we have emphasized in Section 1, He is much more relevant to
experiments than H, since it is much easier to handle experimentally, and its excitation energies lie well
within the typical wavelength range of HHG and EUV FEL sources.

We use direct numerical solution of the full-dimensional two-electron TDSE in the length gauge [54]:

i
∂Φ(r1, r2, t)

∂t
= [H0 +HI(t)]Φ(r1, r2, t) (15)

with the atomic and interaction Hamiltonian,

H0 = −1

2
∇2

1 −
1

2
∇2

2 −
2

r1

− 2

r2

+
1

|r1 − r2|
(16)

HI(t) = (z1 + z2)f(t) sinωt (17)

We solve Equation (15) using the time-dependent close-coupling method [50–54]. The numerically
obtained excitation energies for the 1s2p 1P and 1s3p 1P states are 21.220 and 23.086 eV, respectively,
in fair agreement with the experimental values (21.218 and 23.087 eV [48], respectively). Similarly
to the case of a hydrogen atom, sufficiently long after the pulse has ended, we calculate β2 and β4 by
integrating the ionized part of |Φ(r1, r2)|2 over r1, r2, θ2, φ1, φ2, from which one obtains W and δ by
solving Equation (8). We use the values of δsc from [63] to calculate δex = δ − δsc. The calculation
has been done for a Gaussian pulse envelope with a peak intensity of 1011 W/cm2, at which we have
confirmed that the interaction is in the perturbative regime. Our preliminary investigation indicates that
the interaction begins to deviate slightly from this regime around 1012 W/cm2 if we increase the intensity,
but the correction is still small below 1013 W/cm2, which is the typical focal intensity of SCSS [40].

The pulse-width dependence of δ and W for ~ω = 21.2 eV close to the 1s2p resonance (21.218 eV)
is shown in Figure 2(b). The calculations have been done at different values of pulse width T1/2 between
500 as and 21 fs. As expected from the discussions in Sections 2.1 and 2.2, and similarly to the case
of a hydrogen atom (Subsection 2.3), both δ and W substantially change with pulse width, especially
when the pulse is shorter than 10 fs. Accordingly, the PAD also varies as shown in Figure 3(b). One
finds that the distribution to the direction perpendicular to the laser polarization again decreases as the
pulse is shortened. As stated earlier, strictly speaking, Equation (4) is applicable only to ωf = ωi + 2ω,
and the actual PAD involves integration over ωf . Nevertheless, the results in Figure 2(b) can well be
described by Equation (4) [44], except for δ in the ultrashort pulse regime T1/2 . 1 fs, where the spectrum
becomes broader than the level spacing. If we compare Figure 2(a) for H and (b) for He, both for the 2p

resonance, the phase-shift difference δ has a similar pulse-width dependence. As for the amplitude ratio
W = |cs/cd|, it is smaller than unity, i.e., |cd| > |cs| regardless of pulse width for H, while its variation
is larger for He; |cd| > |cs| in the short-pulse limit, and |cd| < |cs| in the long-pulse limit. Accordingly,
the variation in PAD is more prominent for He than for H (Figure 3).

It is interesting at this stage to examine some limiting cases. With increasing pulse duration,
δ approaches the scattering phase shift difference δsc, and the PAD changes only slowly with T1/2

[Figure 3(b)]. When the pulse is resonant (∆rT � 1) and sufficiently long (T � aS, aD) at the same
time, assuming that the resonant excitation is not saturated, one can approximate the extra phase shift as

δex ≈ (aD − aS)/
√
π T (18)
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hence, it is proportional to the spectral width, which can be confirmed in Figure 3 of [44].
On the other hand, if we plot δ as a function of spectral width, δ tends to an asymptotic value in

the wide-spectrum, i.e., short-pulse limit. Correspondingly, the PAD does not change much with the
pulse width for T1/2 . 1 fs [Figures 3(b) and 6(b),(c)]. This is because the pulse becomes resonant with
multiple levels; the spacing between the 1s2p and 1s3p is 1.9 eV. As we have shown in the previous
subsection, when many neighboring states are resonantly excited by the pulse, the extra phase shift
difference δex does not much depend on the pulse duration. Similarly to the case of the hydrogen atom,
this especially applies when the photon energy lies in the Rydberg manifold, and exceeds the ionization
potential (24.59 eV), i.e., in the case of above-threshold two-photon ionization.

Figure 6. Pulse-width dependence of the photoelectron angular distribution for
(a) ~ω = 20.3 eV; (b) ~ω = 21.3 eV; (c) 23.0 eV; (d) 23.9 eV; (e) 24.3 eV; and (f) 25.0 eV.
The target atom is helium.
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Figure 6. Cont.

0

45

90

135

180

225

270

315

 0.5 fs
 1 fs
 2 fs
 3.5 fs
 7 fs
 14 fs
 21 fs

(e) He 24.3 eV

0

45

90

135

180

225

270

315

 0.5 fs
 1 fs
 2 fs
 3.5 fs
 7 fs
 14 fs
 21 fs

(f) He 25.0 eV

In Figures 4(e)–(g) and 6 we compare the pulse-width dependence of δex and the PAD, respectively,
for different values of ~ω, where we find trends similar to the case of H. While δ ≈ δsc (δex ≈ 0) and
the PAD are nearly independent of T1/2 for nonresonant pulses (~ω = 20.3 eV, T1/2 & 3.5 fs), when the
pulse is close to resonance with an excited level (~ω = 21.2, 21.3, and 23.0 eV), δex and PAD rapidly
change with T1/2. On the contrary, δex is finite and nearly constant for ~ω = 24.3, 24.6, and 25.0 eV

[Figure 4(g)]; accordingly, the PAD hardly varies with pulse width. At T1/2 . 1 fs, the spectrum is so
broad that δex restarts to change slightly. One also sees that the transition across the ionization potential
is smooth [Figure 4(g)], as has been seen for a hydrogen atom in Figures 1 and 4(c),(d). It should be
pointed out that the extra phase shift difference due to free-free transitions plays a significant role in the
recently observed time delay in photoemission by attosecond EUV pulses [75–79].

Figure 7. Photon-energy dependence of (a) the relative phase (phase-shift difference) δ and
(b) the amplitude ratio W between the S and D wave packets for a pulse width of 7 fs. The
target atom is helium. Thin sold and dashed lines in (a): |δsc| and π − |δsc|, respectively.
Vertical dotted lines: positions of 1s2p1P to 1s6p1P resonances.
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Figure 7 shows the photon energy dependence of the phase difference δ and the amplitude ratio W
for a pulse width of 7 fs. Although the number of data points is limited, we can see features basically
similar to those in Figure 1 for H.

3. Pulse Shapes Typical of Experiments

We have considered coherent Gaussian pulses so far. Such a pulse may be generated either by
extracting a single harmonic order of HHG sources or by HHG-seeded FELs [80]. In practice, however,
high-harmonic pulses are composed of several orders. Also, as is well known, the temporal pulse
shapes of FEL operating in the self-amplified spontaneous emission (SASE) mode fluctuate from shot
to shot [55–59]. In this section, we investigate the effects of these properties of practical pulses for the
case of a He atom. While Gaussian pulses are characterized by a single time scale, i.e., the width of
the (whole) pulse, both FEL and HHG pulses have two time scales: coherence time and mean pulse
width for the former, and the width of each pulse in the pulse train and the overall pulse width for the
latter. From the analysis of these pulses, we may also estimate to what extent the relative phase δ can be
controlled by the pulse shape.

3.1. SASE-FEL Pulses

In order to investigate the effects of the chaotic nature of typical FEL pulses, we have performed
numerical experiments for EUV pulses randomly generated by the partial-coherence method [81].
Typical pulse shapes for the case of a photon energy of 23.0 eV, coherence time (CT) of 2 fs, and
mean pulse width (MPW) of 7 fs are presented in Figure 8. The pulse shape significantly fluctuates from
shot to shot, and such pulses may be considered to be composed of many pulses that have a pulse width
of 2 fs on average, random phases with each other, and a whole envelope corresponding to 7 fs pulse
width on average.

Figure 8. Typical pulse shapes generated by the partial-coherence method [81] for the case
of 23.0 eV photon energy, 2 fs coherence time, and 7 fs mean pulse width.
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The obtained values of W and δ for several combinations of CT and MPW for ~ω = 21.2, 21.3, and
23.0 eV, and some of the corresponding PAD are shown in Table 1 and Figure 9, respectively. The PADs
for ~ω = 20.3 and 24.3 eV are also shown in Figure 9. For ~ω = 20.3 and 24.3 eV, for which the PAD
hardly depends on pulse width, the PAD for a chaotic pulse is similar to that for a Gaussian pulse. For
~ω = 21.2, 21.3, and 23.0 eV, we can see from the table that δ takes values between those corresponding
to the CT and the MPW in most cases. Also, in general, the PAD is of a shape between those for the CT
and the MPW (Figure 9). It is somewhat surprising that this simple empirical rule applies to most of the
combinations of CT, MPW, and photon energy studied here. This may be because different constituent
pulses have basically random phases from each other, smearing out the interference between different
electron bursts.

Table 1. W and δ calculated for chaotic pulses generated by the partial-coherence method
for several pairs of coherence time (CT) and mean pulse width (MPW). The target atom is
helium. The average values and standard deviation errors ofW and δ by typically 48 runs are
listed. The rows with the same CT and MPW values are for fully coherent Gaussian pulses.

~ω (eV) CT (fs) MPW (fs) W δ

21.2 2 5 1.31± 0.08 2.03± 0.04

2 7 1.42± 0.09 1.91± 0.04

3.5 7 1.49± 0.09 1.87± 0.03

2 2 1.05 2.26
3.5 3.5 1.41 2.05
5 5 1.57 1.92
7 7 1.67 1.81

21.3 2 7 2.21± 0.17 2.26± 0.06

7 21 1.92± 0.08 1.62± 0.009

2 2 1.13 2.34
7 7 2.04 1.87
21 21 2.31 1.59

23.0 2 7 0.645± 0.061 2.14± 0.08

3.5 7 0.890± 0.058 2.15± 0.06

7 21 1.50± 0.154 1.79± 0.033

2 2 0.464 2.71
3.5 3.5 0.679 2.45
7 7 1.08 2.10
21 21 1.31 1.58

The difference in PAD between the cases of Gaussian and SASE-FEL pulses is larger for ~ω = 21.2
and 21.3 eV than for 23.0 eV, since the variation of PAD with T1/2 in the case of Gaussian pulses is
already larger for the former, especially at T1/2 < 10 fs [Figures 3(b) and 6]. This suggests that the
controllability of PAD by pulse shape can be roughly estimated by the results for Gaussian pulses.
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Figure 9. Photoelectron angular distribution by a chaotic pulse for a photon energy,
coherence time (CT), and mean pulse width (MPW) indicated in each panel. The target
atom is helium. The red and blue curves are for Gaussian pulses whose widths are given by
the CT and MPW, respectively of the chaotic pulse. For example, in panel (b), the photon
energy, CT, and MPW, are 21.2 eV, 3.5 fs, and 7 fs, respectively.
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3.2. High-Harmonic Pulses Containing Multiple Harmonic Orders

We simulate the 2PI of He by an attosecond pulse train composed of the ninth (H9) to the seventeenth
(H17) harmonics of a fundamental wavelength of 808.7 nm, whose fifteenth harmonic (H15, 23.0 eV)
is resonant with the 1s3p 1P state. We use the relative intensity of each harmonic component reported
in Figure 1 of [82], neglecting inter- and intra-order chirps usually observed in experiments [83]. Each
component is expressed as a Gaussian pulse with a common pulse width Tov, referred to as overall pulse
width hereafter. We show the pulse shape and intensity spectrum for Tov = 7 fs in Figure 10. The
whole pulse has a 7 fs envelope, while composed of many individual pulses with a pulse width ∼ 0.3

fs [Figure 10(a)]. The pulse spectrum, though composed of discrete harmonic peaks, is so broad as a
whole that it spans from 13.8 eV (H9) to 26.1 (H17) [Figure 10(b)]. This latter manifests itself as a fact
that each pulse in the pulse train [Figure 10(a)] has a sub-femtosecond duration, while the overall pulse
width corresponds to the spectral width of each harmonic component.

Figure 10. (a) Pulse shape and (b) intensity spectrum of a 7 fs high-harmonic pulse
(attosecond pulse train) composed of multiple harmonic orders used in the present study
(see text).
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The triangles in Figure 11 plot the calculated relative phase δ between the S and D partial waves for
several values of Tov. Although δ changes with Tov especially at Tov < 4 fs, its variation is much smaller
than for the case of a Gaussian pulse centered at 23.0 eV (squares in Figure 11). This is probably because
the H9–H13 (nonresonant) and H17 (in the continuum) components would lead to a constant phase if
alone, and that only resonant excitation by H15 contributes to the variation.

As can be seen from Figure 10(b), H15 is the most intense harmonic component in the spectrum,
resonant with the 1s3p 1P state. The corresponding 2PI photoelectron energy is 21.4 eV, while the
other photoelectron peaks are separated by 3.07 eV from each other. Then, in order to highlight the
contribution from H15, let us focus ourselves on the wave packet between 20 and 23 eV, for which the
values of δ are plotted as circles in Figure 11. Only the results at Tov ≥ 2 fs are plotted, since the pulse
is so short at Tov < 2 fs that the photoelectron peaks are not well separated from each other anymore. As
expected, we can see that δ now varies with Tov as rapidly as for the case of the Gaussian pulse, though its
value is somewhat shifted due to an additional contribution from the H13+H17 and H17+H13 processes.
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The change in PAD corresponding to the wave packet between 20 and 23 eV, shown in Figure 12, is
not so large as one might expect from the variation in δ, again probably due to the relatively small
variation with pulse width below 10 fs even for the case of Gaussian pulses. Nevertheless, it is clearly
different from what would be expected from the scattering phase shift difference [see the curve for 21
fs in Figure 6(c)], well indicating the presence of the competition between the resonant and nonresonant
ionization paths.

Figure 11. Pulse-width dependence of the phase shift difference δ for high-harmonic pulses
composed of multiple harmonic orders (see text). The target atom is helium. Black triangles:
derived from the whole 2PI photoelectron wave packets. Red circles: derived from the 2PI
photoelectron wave packets within the 20–23 eV energy range. Green squares: for Gaussian
pulses with a photon energy of 23 eV. The thin horizontal line denotes the value (1.410 [63])
of the intrinsic scattering phase-shift difference δsc for ~ω = 23.0 eV.
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Figure 12. Pulse-width dependence of the photoelectron angular distribution for
high-harmonic pulses. The target atom is helium.
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4. Conclusions

We have numerically studied the two-photon ionization of a hydrogen and helium atom by an
ultrashort EUV pulse. Due to the competition between the resonant and nonresonant ionization paths,
the relative phase δ between the S and D photoelectron wave packets from the resonance-enhanced
two-photon ionization by fs EUV pulses is different from the scattering phase shift difference, |δsc| or
π−|δsc|more precisely, which would be expected for single-photon ionization from an excited level [29]
and nonresonant two-photon ionization, and rapidly changes with the pulse width when the pulse is
resonant with an intermediate excited state and 2 fs . T1/2 . 10 fs. Accordingly, the photoelectron
angular distribution varies with T1/2 as well. Hence, the control of the competition between the resonant
and nonresonant paths in H and He by pulse width is a unique feature of a-few-fs EUV pulses.

Also, δ is different from |δsc| and π− |δsc| but nearly constant independent of T1/2 when the Rydberg
manifold is excited and in the case of above-threshold two-photon ionization. The transition across the
ionization threshold is smooth.

The PAD as well asW and δ is affected by the chaotic nature of SASE FEL pulses and by neighboring
harmonic components typical of HHG. For the former case, the relative phase δ takes a value between
those corresponding to the coherence time and the mean pulse width of the pulses. For the latter case,
i.e., for the case of 2PI by high-harmonic pulses with multiple harmonic orders, δ does not depend much
on the pulse width, similarly to the case of the Rydberg manifold excitation. On the other hand, by
selecting an appropriate photoelectron energy range, one can recover the pulse-width dependence of δ
originating from the competition of the resonant and nonresonant ionization paths.

The results of the present study stress the importance of the account of the nonresonant paths in the
interpretation of resonant two-photon, single- or two-color, ionization experiments, including coherent
control, by state-of-the-art ultrashort EUV sources.
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