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Abstract: Spatiotemporal compression of ultrashort pulses is one of the key issues of 

chirped pulse amplification (CPA), the most common method to achieve high intensity 

laser beams. Successful shaping of the temporal envelope and recombination of the 

spectral components of the broadband pulses need careful alignment of the  

stretcher-compressor stages. Pulse parameters are required to be measured at the target as 

well. Several diagnostic techniques have been developed so far for the characterization of 

ultrashort pulses. Some of these methods utilize nonlinear optical processes, while others 

based on purely linear optics, in most cases, combined with spectrally resolving device. 

The goal of this work is to provide a review on the capabilities and limitations of the latter 

category of the ultrafast diagnostical methods. We feel that the importance of these 

powerful, easy-to-align, high-precision techniques needs to be emphasized, since their use 

could gradually improve the efficiency of different CPA systems. We give a general 

description on the background of spectrally resolved linear interferometry and demonstrate 

various schematic experimental layouts for the detection of material dispersion, angular 

dispersion and carrier-envelope phase drift. Precision estimations and discussion of 

potential applications are also provided. 
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1. Introduction 

The demonstration of the first working laser had opened up a door for photonics, a new technology 

that revitalized a number of fields of the physical, chemical and biological sciences. One of the early 

directions of its research was to reach short light pulses to make phenomena visible which are 

happening too fast even for high-speed photography to resolve. The technological development was so 

successful that the pulse durations overtook easily the response time of available electronic detectors at 

the time. Mode locking, as a method for the generation of short pulses, was suggested [1] and 

demonstrated [2] in 1964. It is well known from the Fourier analysis that the transform limited time 

duration of a pulse can be decreased when the broader spectrum is applied. In the 1970s, dyes, as laser 

materials with broad spectra, provided the breakthrough to the picosecond regime [3], later leading to 

the first femtosecond-scale laser pulses [4]. Colliding pulse mode-locking was the premiere technique 

for ultrashort pulse generation for more than a decade, and allowed for achieving pulse durations as 

low as 27 fs in 1984 [5]. Three years later, the compensation of the spectral phase up to the third order 

by prism and grating compressor combinations resulted in a 6 fs pulse duration by Fork et al. [6]. 

In the meantime, a new laser material was introduced and turned out to be even more advantageous 

for ultrashort pulse generation. The titanium-doped sapphire crystal [7] as a gain material took over the 

role of dyes, since broader gain bandwidth, better thermal properties and convenient handling made 

femtosecond lasers simple and reliable light sources. However, the fundamentally different properties 

of this material required the invention of a new mode-locking technique [8], identified later as  

Kerr-lens mode-locking [9], which enabled the Ti:sapphire lasers to achieve the same record of pulse 

duration [10,11]. 

Once ultrashort laser pulse generation had become a routine process, researchers turned toward 

reaching extreme high pulse intensities. Relatively early it became obvious that although direct 

amplification of laser pulses proved to be a successful method in the nanosecond pulse length regime, 

this technique is not applicable for ultrashort pulses, since self-phase modulation and related effects 

would arise during amplification. This issue was addressed by G. Mourou and D. Strickland when they 

suggested chirped-pulse amplification, CPA [12], which later revolutionized the processes of amplified 

ultrashort laser pulse generation. In conventional laser laboratories, the advantages of this technique, 

such as economic space requirements and cost-efficient realization, promoted the design of table-top 

laser systems with peak intensities in the terawatt order. In the meantime, leading laboratories paved 

the way to the generation of petawatt-level lasers. 

A CPA system generally consists of four main stages. A mode-locked oscillator emits laser pulses 

of a few nJ pulse energy and a broad bandwidth. These seed pulses travel through a stretcher first, in 

which the various spectral components cover different distances, thus the pulses will be lengthened in 

time by four-six orders of magnitude. An increase in pulse length induces a decrease in field strength 

and therefore also the maximum intensity of the laser pulse. This sufficiently reduced intensity enables 

the amplification of the pulses in the following stage so intensively, that the saturation level of the 

amplifying medium can be reached without damaging the optical elements, and the beam can be kept 

free of nonlinear distortions. In the final stage of CPA systems, a temporal compression of optically 

amplified pulses is carried out by the compressor. The role of this unit is principally the inverse 

compared to that of the stretcher, since it restores the spectral phase shift of the entire system to be 
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zero. Beside this function, the compressor must be able to maintain the spatial and temporal shape of 

the pulses, which is a rather complex task. The idea of grating pair pulse compressors originates from 

Treacy [13], while Martinez [14,15] experimentally developed this technique and presented a  

wave-optical description of its operation first time. 

In experiments observing ultrafast phenomena, it is a fundamental requirement that amplified laser 

pulses reaching the target should be as short as the Fourier transform of their spectra allows for, 

thereby providing as high an intensity as possible. The most important parameter in the 

characterization of the temporal shape is the pulse duration. Since the devices for controlling the 

temporal shape are usually based on angularly dispersive elements (prisms, grisms, gratings), the 

residual angular dispersion is also of high interest. 

Several diagnostic techniques have been developed so far for ultrashort pulse characterization. A 

major part of them can be classified as self-reference methods, since the pulse interferes with its own 

replica usually in a nonlinear crystal or detector. Such techniques are the interferometric 

autocorrelation [16], frequency resolved optical gating (FROG) [17], or spectral phase interferometry 

for direct electric-field reconstruction (SPIDER) [18]. A handful of variations have been developed 

based on these schemes depending on what property of the ultrashort pulses are the subject of the 

observation. A detailed overview can be found, e.g., in [19–21]. The brilliant idea of crossing an 

acousto-optical pulse shaper with either the FROG or the SPIDER techniques has been implemented 

(Phazzler), so that it makes these methods more robust, and may help in extending their measurement 

rate up to few tens of KHz [22]. Another direction in self-referenced pulse characterization is based on 

the use of fast electronic devices, which was suggested initially by Prein et al. in 1996 [23]. Recent 

advances in this field have the promising ability to characterize optical waveform in the sub-

picosecond regime with extremely high sensitivity [24,25]. 

Another group of diagnostics can be described as linear optical methods, as nonlinear processes are 

not involved in their schemes. They have the advantage of being able to measure weak pulses with 

high precision and being sensitive to small changes of the monitored parameters; although in several 

cases, they are restricted to having a relative measurement of pulse characteristics only. In this paper, 

we give a detailed overview of this latter category of diagnostic methods and discuss their advantages 

and disadvantages. 

2. Propagation of Ultrashort Pulses 

To follow the effect of the linear dispersion of the medium on the temporal shape of a pulse, a laser 

pulse with a Gaussian temporal envelope of electric field strength is considered, having a transform 

limited temporal duration (FWHM) of τ0 at the position z = 0. The amplitude of the laser pulse is 

denoted by E0, its carrier wave has a frequency of ω0 and—for the sake of simplicity—zero initial 

phase. In mathematical form, the pulse can be described as 

 
2

0 02
0

( ,0) exp 2ln(2) exp .
t

E t E iω t
τ

 
   

 
 (1)
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Fourier transform provides a relationship between the spectral and the temporal representation of 

the laser pulse. In the spectral domain, the complex field strength of the pulse from Equation (1) can be 

written as 

 
2

20 0 0
0( ) exp .

8ln(2)2 ln(2)

 
   

 
 E τ τ
E ω ω ω  (2)

The shape of the pulse after travelling a distance of z in a medium with an index of refraction n(ω) is 

given by  

 1
( , ) ( )exp ( ( ) ) .

2





   E t z E ω iω t n ω z c dω
π

 (3)

A simplified representation can be achieved if we introduce the spectral phase 

( , ) ( )  φ ω z ω n ω z c  (4)

corresponding to a geometrical distance z. 

The function of the spectral phase describes the phase evolution of a light wave through any optical 

system. In the case of optical bulk material, its expression seems relatively simple (see Equation (4)), 

but in many cases, calculations with the refractive index functions can be rather complicated. The 

spectral phase expression of sophisticated optical elements or assemblies, like a compressor or 

stretcher, may become pretty cumbersome. In the experimental practice, moreover, the determination 

of the full spectral phase function is not possible. Hence, the usual way of handling spectral phase 

functions is to describe them through their Taylor series as 

0 0 0

2 3
2 3
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 (5)

Once the coefficients of the series is determined to the required (or experimentally feasible) order, 

the spectral phase function can be constructed in a semi-empirical way, i.e., with the use of fitting 

algorithm to find the coefficients of the required function (e.g., Sellmeier-type function for bulk 

dielectrics, etc.). It has to be noted that the Taylor coefficients should be always used with caution, 

since they are only approximations: the reconstructed spectral polynomial may diverge from the actual 

spectral phase function at frequencies far from ω0. 

The derivatives of spectral phase, the so-called phase derivatives, have the following conventional 

notations: 

0
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The definitions above give group delay (GD), group-delay dispersion (GDD) and third order 

dispersion (TOD). It could be very useful in some cases, when material dispersion is given for a unity 

geometrical length of propagation. For this purpose, we can use specific terms like SGD, SGDD and 

STOD for the derivatives of (6)–(8) by parameter z. 

Phase derivatives considerably influence the temporal shape of the envelope. For example, let us 

consider a medium with first and second order dispersion. The evolution of the electric field will be 

given by 

2
0 0 0

1 1
( , ) ( ) exp ( ) ( ) ( ) d ,

22





             
 E t z E ω iωt i φ ω GD ω ω GDD ω ω ω

π
 (9)

which provides a mathematically similar solution to the formalism of the Gaussian beam approximation. 

A pulse with an initial shape described by Equation (1) will have a form of 

 
2

*
2
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( , ) exp 2 ln(2) exp ( , ) ,

t GD
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τ
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is the peak of the envelope of the electric field 
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is the pulse duration, and 
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(13)

is the temporal phase. It can be seen, that GDD affects E* and τ considerably, while GD determines 

only the temporal position of the pulse. Figure 1 shows the effects of the first three derivatives on the 

carrier wave and the envelope. The shape of the pulse in the case of TOD is calculated numerically. 

Figure 1. Schematic temporal effect of the first three phase derivatives. 
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For few-cycle pulses, the position of the carrier wave under the envelope plays a significant role 

since the outcome of many experiments could be drastically influenced if the electric field exceeds the 

ionization threshold by more or less one time during the course of a pulse relative to the previous ones. 

The quantity for the characterization of this property is the phase at t – GD = 0 (i.e., at the peak of the 

pulse) and is the so-called carrier-envelope phase (CEP, see Figure 2), which can be approximated by 

0 0( , ) .  CEP φ ω z GD ω  (14)

Figure 2. Definition of the carrier-envelope phase. 
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The different spectral components of an ultrafast laser pulse may propagate not only at different 

velocities but also into different directions. In this latter case, the propagation is affected by the 

angular dispersion. Such phenomenon takes place when e.g., a beam of ultrashort laser pulses refracts 

at the boundary between media with different dispersions, passes through a prism, or diffracts  

on a grating. 

Angular dispersion can be defined in two ways. The most obvious one, based on geometrical optical 

considerations, is the wavelength dependence of the direction of propagation of the different spectral 

components, and is called propagation direction angular dispersion, denoted by γPD [26]. The other 

definition originates from wave optics and hence addresses the wavelength dependence of the angle 

between the phase fronts; this approach results in the so-called phase front angular dispersion,  

γPF [27]. Comparing the two definitions (Figure 3), one can see that they are equivalent for plane 

waves, but different for spherical, hence the Gaussian beams [28]. 

Figure 3. Comparison of the two types of angular dispersion in the case of plane wave and 

Gaussian beam approximation. 

(b) Gaussian beams

λ

λ + dλ

dθ

dθ*

(a) Planewaves

λ

λ + dλ

dθ

dθ*

d d

d d




θ θ

λ λ

d d

d d




θ θ

λ λ
 



Appl. Sci. 2013, 3 521 

 

Figure 4 demonstrates the effect of angular dispersion on ultrashort laser pulses propagating in 

vacuum. The spectral components of the initial pulse are spatially and temporally overlapping, but 

their directions of propagation are slightly different due to the angular dispersion. In the case of plane 

waves propagating in vacuum (or in any isotropic media), the magnitude of angular dispersion remains 

constant; however, its effect on the pulse becomes more significant with increasing path length of the 

pulse travelling from the source of angular dispersion. Conversely, the magnitude of angular dispersion 

affecting Gaussian beams usually decreases during propagation [28]. 

Figure 4. Illustration of spatial effects of the angular dispersion and pulse front tilt. 

 

In Figure 4, the spatial intensity distribution of the spectral components constituting the pulse is 

represented for different scenarios, after having propagated a certain distance of z. If angular 

dispersion is present, with increasing distance measured from the middle of the pulse along the 

direction x perpendicular to the direction of propagation, pulse length also increases and the spectrum 

becomes shifted at the same time. The pulse length in the center (at x = 0) will also differ from the 

original pulse length, since the pulse will be affected by a phase modulation [19] corresponding to the 

group delay dispersion 
20 .  AD PD

zω
GDD γ

c
 (15)

This can be converted easily into a stretch in pulse length based on Equation (12) [29]. 

Angular dispersion is practically always accompanied by some pulse front tilt and spatial chirp, 

both demonstrated in Figure 4. Pulse front tilt means a group delay along the cross-section of the 

beam, in the direction perpendicular to the propagation z and with a magnitude of 2πc·γPD/ω0 per unit 

length along the cross sectional area [19,30,31]. Spatial chirp involves a spatial anisotropy in the 

spectral content across the beam [32]. This means that one part of the beam (the blue side of the pulse 

in Figure 4) is shifted toward the shorter wavelengths, while the other part (the red side of the pulse) is 

shifted toward the longer wavelengths. 

One can see easily that spatiotemporal pulse distortions usually arise simultaneously; moreover, 

they are coupled with each other. A general mathematical analysis of these coupling effects is 

discussed in Reference [33]. 
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3. Linear Optical Methods for Pulse Characterization 

3.1. Historical Outlook 

The nature of ultrashort pulses makes it more convenient to examine their properties in the spectral 

domain instead of the time domain, simply because detectors that are fast enough do not exist yet. 

However, steady or slowly changing patterns can be created by the means of interferometry. By its 

nature, it is extremely sensitive to the phase properties of short pulses, which is also very important to 

know in the temporal reconstruction process. Therefore, the possibility to involve interference methods 

for ultrafast pulse characterization becomes evident. When interference patterns are recorded in the 

time domain, multiple shots and pulse scanning are usually required. On the contrary, however, in the 

spectral domain, it is feasible to have single-shot measurement without moving parts. The spectral 

distribution of the pulse can be easily measured by spectrographs, and can be transformed to the time 

domain to calculate the transform-limited pulse duration. Last but not least, some of the special 

propagation issues may require the detection of the intensity distribution of the pulse in space. The 

technique called spectrally and spatially resolved interferometry (SSRI) fulfills all of these aspects. 

SSRI employs two beams forming an angle during propagation, and the interferometric pattern is 

established via spatially tilted phase fronts. Spectral resolution of the produced interference results in 

such an interferogram, on which the pattern of the interference fringes almost directly reveals the 

shape of the spectral phase difference function, and thus the magnitude of spectral phase difference can 

be obtained by visual analysis. 

Methods using crossed-beam interferometry date back relatively early, well before the age of lasers. 

L. Puccianti published his first measurement results about the anomalous dispersion of  

oxy-hemoglobin [34] in 1901. Eleven years later, D. Roschdestwensky used essentially the same 

technique to measure the oscillator strengths of atomic transitions in sodium vapor [35]. In his 

experiments, he placed a test tube containing metal vapor into one arm of a Jamin– or Mach–Zehnder 

interferometer, and empty tube in the other in order to compensate the dispersion of the end-windows. 

Near the absorption lines, a hook-like interference pattern emerged, and a high-precision measurement 

could be obtained by reading off their spectral position. An analytical description of this hook method 

(Hakenmethode) was presented by Marlow [36]. After photo plates had been replaced by CCD 

detectors allowing for a computerized analysis, H.J. Kim and B.W. James established a Fourier 

transform-based evaluation method that significantly improved the accuracy of the measurements [37].  

At present, the SSRI method is preferable for investigating the ranges of normal dispersion rather 

than for anomalous dispersion. In early years, this method was used to determine the phase dispersion 

of metal layers [38] and multilayered thin films [39]. Later, researchers turned toward its ultrashort 

pulse-related utilization through high-precision measurement of the spectral phase shift of dispersion-

compensating laser mirrors [40–44]. The extended versions of SSRI using arbitrary broadband light 

source (e.g., white light or ultrashort laser pulses) quickly became a widespread technique. In addition 

to further measurements on the phase shift of dispersion-compensating chirped mirrors [45,46], SSRI 

was used among others for pump-and-probe experiments [47], fine adjustment of the stretcher and 

compressor units of phase-modulated pulse amplifying systems [48], characterization of laser  

pulses [49–51], as well as the investigation of devices controlling the temporal shape of laser  
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pulses [52,53]. Most recently, a high-power passive optical resonator was studied by this technique [54]. In 

addition, a linear interferometric method has even been proposed for characterization of attosecond 

pulses [55]. 

How these linear interferometric methods essentially work will be described in the next section, 

taking the general case of spectrally and spatially resolved interferometry.  

3.2. Spectrally and Spatially Resolved Interferometry 

The experimental implementation of SSRI is based on the combination of a two-beam 

interferometer and a two-dimensional imaging spectrograph. For the sake of simplicity, a  

Mach–Zehnder interferometer is considered, illuminated by a broadband light source (Figure 5). 

The arm of the interferometer containing the dispersive object is called the sample arm; the other 

one is the reference arm. The spatial and spectral intensity distribution of the laser pulses travelling 

through the corresponding arms are denoted by IS(y,ω) and IR(y,ω), respectively. The pattern is finally 

detected by a spectrograph, which is equipped with a two-dimensional CCD detector. For the pulses 

propagating in the reference arm, the shape of the spectral phase function at the output generally is not 

influenced by the sample arm and remains unaltered; therefore, these pulses can be considered a 

reference for the measurement of the spectral phase change caused by the dispersive sample. However, 

a delay stage is inserted usually in the reference arm in order to adjust the timing of the  

reference pulses. 

Figure 5. Schematic experimental layout of the SSRI technique. 
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In order to establish a spatial resolution, the angle between the crossed beams must also be adjusted. 

The outcoupling mirrors of the individual arms are tilted vertically so that the beams cross each other 

at an angle α, and overlap spatially along the vertically aligned slit. After the correct adjustment of the 

spatial and temporal overlapping of the pulses travelling through the sample arm, a vertically 

modulated interference pattern emerges on the spectrograph slit as illustrated in Figure 6. 

The interference pattern on the two-dimensional detector surface of the imaging spectrograph is 

described by 

( , ) ( , ) ( , ) 2 ( , ) ( , ) cos( ( , )),    S R S R ifgI y ω I y ω I y ω I y ω I y ω φ y ω  (16)

where the phase of the interferogram can be calculated as 

0( , ) ( ) ( ) ( ) / .     med
ifg S Rφ y ω φ ω φ ω y y αωn c  (17)



Appl. Sci. 2013, 3 524 

 

Figure 6. Formation of interference in the case of crossed monochromatic beams. 

 

In the formula above, φS(ω) and φR(ω) denote the spectral phase of the pulses arriving from the 

sample arm and the reference arm, respectively. These quantities are supposed to be independent of the 

spatial coordinate y. The third term of Equation (17) describes a phase modulation in direction y, 

caused by the crossed arrangement of the beams, assuming that α is small (see Figure 6). Here y0 

denotes a reference point, where the phase difference arising from the tilted phase fronts is zero. At 

this height, the total group delay at the central frequency of ω0 is exactly the same for the pulses 

travelling along the two different pathways when an empty interferometer is considered. If the group 

delay in any of the arms changes (e.g., the length of the reference arm changes through the operation of 

the delaying unit, or extra material is inserted into the sample arm), the equal GD level will be shifted 

along the y axis from the position of y0. 

The spectral phase shift in the arms of the interferometer can be approximated by Taylor expansion, 

similarly to Equation (5). If LS and LR distances are supposed to be travelled by the laser pulses in the 

arms filled by a medium (usually air) having an index of refraction nmed, then their contributions to the 

total spectral phase shifts can be written as 

. 20 0
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med med
med medX X
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med
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n ω ω L SGDD L
φ ω SGD L ω ω ω ω
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ω ω X S R


       
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 (18)

where X can be replaced by either S or R, depending on whether the sample arm or the reference arm is 

considered. Beside these factors, a further phase shift must be considered, induced by certain optical 

elements such as beam splitters, output couplers, filters, dielectric and chirped mirrors. Those physical 

quantities which summarize their effects will be denoted by a superscript index “opt”. Since phase 

derivatives are additive quantities according to the theory of laser pulse propagation discussed  

before [19] (this can easily be shown if their linear dependence of z is considered), the total phase 

derivatives of the sample arm are 

,   med opt
S S S sampleGD SGD L GD GD  (19)

,   med opt
S S S sampleGDD SGDD L GDD GDD  (20)

,   med opt
S S S sampleTOD STOD L TOD TOD  (21)
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while that of the reference arm are 

,  med opt
R R RGD SGD L GD  (22)

,  med opt
R R RGDD SGDD L GDD  (23)

.  med opt
R R RTOD STOD L TOD  (24)

A precondition of interference is that the components with identical frequency should coincide 

within the coherence time and the coherence length. Interference can emerge not only between such 

laser pulses, which were generated at the same time. Those interferometers which establish 

interference between consecutive laser pulses at their outputs are called asymmetric interferometers. In 

this case, the optical path difference of the arms must equal to the multiple of distance between 

subsequent pulses of the train. Based on Equation (10), pulses propagating in different pathways will 

overlap each other in time if the difference of the total group delays between the arms and the delay 

corresponding to m periods of the temporal separation between the pulses (the latter originates from 

the asymmetry of the interferometer) are together within the coherence time tcoh, i.e. 

. ( )    ZS R cohGD GD m T t m  (25)

In the frames of the spectral resolution of ultrashort laser pulses, the meaning of coherence time 

slightly differs from its common definition, since here the coherence of the individual modes of the 

frequency comb must be considered. This falls in the picosecond range, taking into consideration that 

the line width of a mode is approx. 150 Hz [56]. In this case, the observation of interference is (beside 

the noise resulted from the mechanical vibrations of the interferometer) only limited by the resolution 

of the spectrograph, which may correspond to several millimeters in terms of the difference between 

the arms. 

Figure 7. Simulated SSRI interferogram with arms of equal dispersions. 
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Figure 7 demonstrates a typical interference pattern resulted in a SSRI, when the dispersion in the 

arms is identical. The interferogram presented here is centered along the vertical axis to the position of 

y0, and the interference fringe corresponding to this height is set to be horizontal. In the interferogram, 

interference fringes diverge in a fan-shaped manner from left to right toward increasing frequencies, 

thereby increasing also the periodicity of the y-directed modulation. 
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Figure 8. Demonstration of separated effect of phase derivates on simulated interferograms. 

The values of the applied phase derivates are GD = 60 fs (a), GDD = 200 fs2 (b) and  

TOD = 2400 fs3 (c), respectively. 
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With increasing distance measured from the position y0 along the spatial axis y, the slope of the 

interference fringes increases in absolute value, which can be explained by the group delay between 

the phase fronts corresponding to the position y. If the spectral phase difference between the two arms 

is not zero, then the pattern of the interferogram exactly follows the shape of the spectral phase 

difference function between the sample arm and the reference arm, apart from the extra group delay 

caused by the distance measured from the position y0. Figure 8 demonstrates how the effect of the 

phase derivatives of different orders are reflected in the interferograms. 

3.3. Pulse Measurement 

As it may become obvious from the preceding sections, SSRI offers a fast, simple and robust 

technique to measure the relative spectral phase of an unknown pulse to a well-described one. That is, 

unlike other pulse characterization techniques based on the (nonlinear) interferometry SPIDER [18,21] 

and similar solutions, SSRI is a linear, but not a self-referencing method [49]. Hence, the parameters of 

the reference pulse have to be well known at a certain point of the laser system (e.g., at the output of 

the oscillator, or measured by a different technique, which provides absolute measurements). Let us 

suppose that the phase derivates between the reference point and the input of the interferometer  

change by 

,med opt
F F FGD SGD L GD    (26)

,  andmed opt
F F FGDD SGDD L GDD    (27)

med opt
F F FTOD STOD L TOD    (28)

during the free-space propagation of the geometrical length of LF and passing through certain optical 
elements with well-known dispersion ( ,  and opt opt opt

F F FGD GDD TOD ). If the absolute phase derivates at 

the reference point are GDRP, GDDRP and TODRP, the pulses of the sample arm at the output of the 

interferometer are characterized by 

,P R F RPGD GD GD GD GD m T        (29)

,med
P R F RP med

T
GDD GDD GDD GDD GDD SGDD m

SGD
        (30)
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,med
P R F RP med

T
TOD TOD TOD TOD TOD STOD m

SGD
        (31)

where ΔGD, ΔGDD and ΔTOD are measured from the recorded interferograms. This process gives a 

simple method to determine absolute pulse parameters at basically any point of the system. 

Please note that this is basically a single-shot, linear method which describes the absolute spectrum 

and the relative spectral phase of the pulse to be characterized, so that the relative temporal shape can 

be calculated to great accuracy. Linear interferometric methods can be utilized in most of the practical 

applications like spectroscopy, linear and nonlinear dispersion measurements, time-resolved studies, as 

well as compressor alignment and beam monitoring along high intensity laser systems. On the one 

hand, these methods provide the experimentalists with more accurate information than the nonlinear 

measurements methods, which offer an absolute temporal shape, but with a factor of 2–5 higher error 

than the linear methods. On the other hand, the linear methods would never be able to provide the 

absolute pulse duration on their own, since the first-order auto- (and cross-) correlation function to be 

determined by linear interferometry offers coherence information of the interacting pulses only [19]. 

3.4. Dispersion Measurement of Optical Elements 

Although the SSRI measures only the relative spectral phase of a light pulse, even this can be used 

for absolute measurement of dispersion of any optical element. The scheme is simple: let us measure 

the relative spectral phase of a light pulse to a reference pulse before and after the optical element. The 

difference of spectral phases arises purely from the dispersion of the optical element. In detail, as the 

first step of the measurement, differences of phase derivatives are measured in case of the empty 

interferometer, so the phase derivatives of the arms are revealed as: 
(0) (0) ,med opt
X X XGD SGD L GD    (32)

(0) (0) andmed opt
X X XGDD SGDD L GDD    (33)

(0) (0) , where , .med opt
X X XTOD STOD L TOD X S R     (34)

After an identical group delay has been adjusted, the left side of Equation (24) equals to zero, therefore 

 (0) (0) (0) (0) (0) ( )          Zmed opt opt
S R S R S RGD GD GD SGD L L GD GD m T m  (35)

can be written, where m equals zero if the same pulses interfere at the output, which were split at the 

input of the interferometer. 

In the second step, the sample having a geometrical length of Lsample is inserted in the sample arm of 

the empty interferometer. This leads to the fact that Equations (32)–(35) will be applied with the 

following modifications: on one hand, the laser pulses will travel in the sample arm a length shorter by 

Lsample compared to the empty interferometer, thus 
(0) ,S S sampleL L L   (36)

and on the other hand, the length of the reference arm must be modified by ΔLR to compensate the 

group delays, thereby 
(0) .R R RL L L    (37)
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After this adjustment, the equation GDS – GDR = m’T can be used, where m’ is an integer as well, 

though not necessarily the same as m. For the group delay of the sample 

  ( )      med
sample sample RGD SGD L L m m T  (38)

can be deducted. The group delay dispersion is given by  

 (0) ( ) / ,med med
sample sample RGDD GDD GDD SGDD L L m m T SGD            (39)

where ΔGDD(0) and ΔGDD are obtained from the evaluation of the interferograms captured during the 

two measurements. Similarly, third-order dispersion can be acquired from 

 (0) ( ) / .med med
sample sample RTOD TOD TOD STOD L L m m T SGD            (40)

Depending on the nature of the sample, further measurements are also possible if the spectral phase 

shift of the sample can be tuned in such a way that neither the sample length nor the phase derivatives 

of the other components of the interferometer change (for example, changing the temperature of an 

optical element, the concentration of a solution, or the pressure of a gas). Besides such tuning of a state 

variable of the sample, equal group delays should be adjusted before each measurement if necessary, 

and the differences of the phase derivatives will finally be determined. If the dispersions of all the 

other elements within the system remain constant during the series of measurement, the correlation 

between the object’s variable quantity and the phase derivatives of the sample’s material can be 

represented by a fitted function. 

After the first experimental demonstration of pulse measurement by the SSRI [49], its precision and 

reliability were investigated in an extensive study in Reference [57]. Simulations showed that one of 

the most dominant sources of inaccuracy originates from the noise of the spectrograph’s detector. 

Cooled CCD can reach such signal-to-noise levels, where SSRI is capable to provide 0.02 fs2 and 0.7 

fs3 precisions in GDD and TOD, respectively. Without cooling, 0.1 fs2 and 2 fs3 can be considered 

typical values. The effect of bandwidth, fringe visibility and density, spherical phase fronts (based on 

Gaussian beam approximation), optical path fluctuations and intensity irregularities were also 

examined separately in Reference [57]. 

When the determination of specific phase derivatives are the aim of an experiment, the precision is 

affected by the measurement accuracy of the geometrical length of the object. Depending on the length 

of the object, e.g., interferometric length measurement methods (for under mm scale), micrometer 

screw gauge (for mm scale), vernier caliper (for mm and cm scale) or laser rangefinder (for cm and m 

scale) are to be used. Hence, the geometrical length can be determined with an accuracy higher than 

0.1 percent, which is at least one order of magnitude better than the accuracy of the phase derivatives. 

A modified version of crossed-beam interferometry-based techniques combined with SPIDER and 

FROG methods resulted in the so-called spatially encoded arrangement for temporal analysis by 

dispersing a pair of light E-fields, SEA-TADPOLE [51]. This method reveals interference patterns 

almost identical with that of the SSRI methods, although the experimental implementations of the two 

methods are different. The implementation of spatial encoding significantly improved the accuracy of 

the former SPIDER and FROG methods [58–62]. 
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3.5. Spectrally Resolved Interferometry 

One of the most common methods used for the measurement of spectral phase shift is the so-called 

spectrally resolved interferometry, SRI [63–72], which can be interpreted as a special case of SSRI 

when α = 0. The beams here leave the Michelson or Mach-Zehnder interferometer in a collinear 

manner, and an interference is established due to the temporal delay t* within the time scale of the 

coherence time, kept to be constant between the beams. The beams are directed in a spectrograph and 

reveal a modulated spectrum as represented in Figure 9a. The larger t* delay is set the narrower is the 

period of the modulation. Since in most cases spatial modulation is not present along the slit, a 

spectrograph with array detector is sufficient. 

One of the most widely used Fourier transform-based evaluation methods of SRI interferograms 

was developed by Lepetit et al. [64]. According to his method, the measured spectral interferogram 

(Figure 9a) is first inverse Fourier-transformed, and then a filter is applied on it at the time difference 

corresponding to the time interval between the pulses, t*, using a window function having optimal 

width (Figure 9b). In the final step, the filtered signal is transformed back into the spectral domain. 

The angle of the complex values of this spectrum reveals the spectral phase difference of the pulses 

(Figure 9c). The slope of the phase at ω0 corresponds to ω0·t*, and the phase derivatives of higher 

orders can also be determined by a polynomial fitting. 

This method can be used with broadband laser pulses as well as with continuously operating white 

light sources, since the only precondition of the measurement is that the spectral bandwidth of the light 

source should be broad enough. SRI is thereby often used to determine the dispersion of optical material, 

using an interferometer illuminated by continuously operating white-light lamps [43,44,73,74]. 

Figure 9. Steps of the spectral phase calculation by Fourier-transform SRI. The recorded 

interferogram (a) is inverse Fourier-transformed to time domain, and filtered (b). Finally, 

the remainder is transformed back to spectral domain. The complex angle corresponds to 

the spectral phase difference between the arms of the interferometer (c). 
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When overwhelming difference in dispersion of the sample and reference arms is present, SSRI and 

SRI might be able to resolve the interference pattern only on a small wavelength range of spectrum. 

Stationary phase point method, SPP [75,76] is an implementation of SRI (i.e., α = 0 is still a necessary 

condition), which can be applied in this case. The plane-wave approximation can no longer be applied 

because the different curvatures of the phase fronts play an important role in the  

position-dependence of the phase difference occurring between the pulses that meet on the detector 



Appl. Sci. 2013, 3 530 

 

surface. SPP method is based on the determination of the spectral position of the stationary phase point 

as a function of the delay between the sample ad the reference pulse. This technique is particularly 

useful when one wants to compare stretched pulses of a CPA system with nearly transform-limited 

seed pulses from the oscillator [48]. It has been also proved to be useful during the measurements of 

the dispersion of optical fibers [77–79]. 

Figure 10. A typical example of spectrally and spatially resolved interferograms with the 

stationary phase point. 
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Let us suppose that the two beams are coaxial, and they reach the detector at the position y0. The 

stationary phase point is located at the central frequency ω0, if the group delays of the arms are 

carefully aligned to satisfy the condition in Equation (30). In this case, the temporal delay t* is zero. 

When one introduces the delay t* of the pulses of the sample arm, the stationary phase point will be 

shifted along the ω-axis. We can neglect the dispersion of the medium surrounded by the 

interferometer (usually air), since the dispersion difference in the arms is greater by several order of 

magnitudes. The spectral phase difference can be written as a modified form of Equation (10), namely 
(0) (0)( , ) ( ) ( ) .    SPP S Rφ ω t φ ω φ ω ω t  (41)

The first derivative by ω of Equation (41) gives 
(0) (0)0 ( ) ( ) ,S RGD ω GD ω t      (42)

if ω* is the frequency where the stationary phase point is observed. Eventually, scanning through the 

spectrum of the pulse, the difference of the group delay between the arms can be measured with 

respect to the ω*, since t* can be calculated easily from length position of the precision translator. The 

first and second order coefficients of polynomial fitted on the t*(ω*) relationship will provide the 

GDD and the TOD difference between the arms, respectively. It can be seen that the larger the GDD to 

be measured, the more accurate the SPP method; therefore, it is especially appropriate for the 

measurement of stretched pulses. However with decreasing the relative GDD, the width of the 

interference fringes (i.e., their extension along the ω-axis) increases, and the determination of the 

position of the stationary phase point becomes unreliable. In such a case, the position can only be 

obtained by fitting a phase modulated cosine function. Although the SPP method can improve the 

accuracy of dispersion measurements, no additional information is provided compared to the 
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dispersion calculated from the parameters of the phase-modulated cosine function fitted on the data at 

one single delay [80]. 

It is worth mentioning that the elliptical nature of the two-dimensional fringes (as illustrated in 

Figure 10) was observed as early as in 1927 for glass plates used as samples [81]. 

A spectrograph equipped with two-dimensional detector for this measurement in order to ensure 

collinearity has been suggested. However, the position of the stationary phase point can be determined 

even if only a one-dimensional detector (e.g., a diode array) is available, positioned parallel to the 

wavelength axis. Stationary phase point method does not exploit the information about the dispersion 

of the sample encoded in the two-dimensional structure of the fringes. 

The accuracy of measurement by SRI method was thoroughly examined by Dorrer et al. [66–68]. 

Among other error sources, spectral calibration issues, detector response inaccuracies, resolution and 

sampling problems were investigated. Experimental demonstrations showed about 1% relative error in 

the determination of GDD, which is a little bit worse comparing to SSRI [57]. 

3.6. Evaluation of Interferograms 

One of the simplest methods of interferogram evaluation is based on cosine function fitting. This 

method requires the intensity distribution of the individual arms. Substituting these values into 

Equation (16), a normalized intensity  

( , ) ( , ) ( , )
( , )

2 ( , ) ( , )
S R

N

S R

I y ω I y ω I y ω
I y ω

I y ω I y ω

 



 (43)

can be revealed. Then y coordinates should be limited to a range where noise is supposed to be 

negligible, in order to avoid misleading phase information. After normalization, Figure 11 shows the 

basic steps of the evaluation of interferograms. In step 1, a function of f(x) = cos(a·x + b) form is to be 

fitted with the least-square method on the ith column, corresponding to the angular frequency ωi. This 

procedure results in parameters ai and bi. If the regression procedure is applied to only a short range 

(e.g., one and a half cycles, marked with red curve in the plot for step 1 in Figure 11.) at one time, the 

residual irregularities of the normalized interferogram have less influence on the extracted phase and 

the fitting information can be retrieved pixel-by-pixel. This fitting routine needs to be carried out on 

each column of the interferogram. In step 2, a phase surface can be constructed from the  

regression results. 

Figure 11. Steps of the phase extraction from the interferograms. 
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From the aspect of the spectral phase, the values of bi parameters play an important role. The cosine 

fitting causes an ambiguity, namely that beside bi, every bi + q·2π value can be the solution of the 

fitting, where q is an arbitrary integer. Therefore, when connecting these bi values along the phase 

jumps of q·2π, the resulting value will only differ from the spectral phase with the whole multiples of 

2π. This constant difference, however, does not affect the values of the phase derivatives, so they can 

be obtained by fitting a proper (usually third-order) polynomial function. 

4. Multiple-Beam Interferometer for CEP Drift Measurement 

The influence of the CEP on the outcome of experiments increases dramatically with decreasing the 

duration of the pulses driving the interaction below a few optical cycles [82]. The generation of high 

harmonics [83–85] and attosecond pulses [86–88], as well as frequency comb-based metrology 

techniques [89] demand precise detection and subsequent low-jitter stabilization of CEP [90]. 

Nowadays, CEP stabilization is well-established for Ti:sapphire lasers by the means of f-to-2f and  

0-to-f interferometry [91,92]. Recent developments suppressed the CEP noise of the few cycle pulses 

in the visible- near infrared spectral range to a previously unexpected level of a few tens of  

mrad [93,94]. Unfortunately, a wide range of lasers cannot satisfy the necessary conditions for such 

nonlinear interferometries [92] i.e., octave-spanning spectrum or enough power for frequency 

doubling. It is possible to overcome the condition of broad spectrum by the generation of white light 

continuum of the laser pulse to be measured, but it requires a complex experimental setup with 

multiple nonlinear conversions [95]. 

Similarly to the dispersion coefficients, the relative CEP between two interfering pulses can be also 

measured by SSRI and SRI. The difference in CEP can be calculated from Equation (13), where φ(ω0) 

and the GD are derived from spectral phase of the recorded interferogram. It can be used effectively to 

observe a phenomenon which introduces variation to the CEP of the pulses only in the sample arm, 

when certain properties of the sample object are modified. Another useful application of these methods 

is using them to determine the jitter of CEP between the arms. For instance, from the blurriness of the 

interference pattern, one can deduct that how stable the fringe position and density during the 

integration time of the detector is [96]. 

Not only the relative CEP of a pulse, but also the CEP drift of a pulse train, can be determined. The 

most advanced device relies solely on a multiple-beam interferometer (MBI) and a spectrograph [97,98]. 

The advantage of using spectrally resolved interferometry is that besides properties of the detector, the 

system is practically free of wavelength conditions, including the bandwidth, the spectral range or the 

central wavelength. This technique offers not only the measurement of the pulse-to-pulse CEP drift, 

but also seems to be fast enough to apply feedback to lasers with prohibitively low pulse energy for 

regular CEP stabilization schemes. Moreover, this scheme allows simultaneous monitoring of 

intracavity refraction and linear dispersion for a virtually unlimited range of mode-locked lasers, 

including monolithic designs where such insight is otherwise difficult to obtain [54]. 
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Figure 12. Schematic layout for the linear detection of the CEP drift (a). The variation of 

the actively stabilized path length provides the accuracy of the CEP measurement at  

800 nm (b). 
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Instead of using Michelson and Mach–Zehnder interferometers, a resonant ring layout was 

implemented to keep information of the pulse phase for several round trips (see Figure 12a). After a 

part of the initial pulse makes one round trip in the MBI, at the output––if the ring length is carefully 

aligned––it will interfere with the next pulse of the train. The rest of the pulse before the initial one is 

still in the system, and it also contributes to the interference, although with a lower intensity. This 

effect is similar to the principle of the Fabry–Perot interferometer, and it will result in a weighted 

averaging for many subsequent pulses. In the spectral domain, spectral interference fringes will appear, 

very similarly to the case of SRI. 

If the MBI is free from second and higher-order dispersion, the fringe pattern could be described 

simply by two parameters: fringe position (i.e., φ(ω0)) and spacing (i.e., GD). This could be important 

in those cases where fast detection and response is required, most notably, for CEP stabilization. 

Practically, the spacing of the spectral fringes, or more precisely their deviation from equidistance, is 

affected by the GDD of the multilayer mirrors [99], the ambient air of the interferometer [100] and 

beam splitters forming the cavity. Small residual GDD contributions can be removed from the phase 

extraction by suitable calibration as long as they are static. Therefore, linear interference in a single 

ring resonator suffices, in principle, to completely characterize the CEP drift of a pulse train. All 

required information is readily retrieved from the measured spectral interference pattern via Fourier 

processing [64]. Due to the independent thermal drift of the laser oscillator and the MBI, at least the 

optical path length of MBI has to be carefully stabilized. In the developed device [101], it is achieved 

with a frequency-stabilized He–Ne laser. The half of cw beam follows the exact same path like the 

ultrashort pulses (but in the opposite direction) and interferes with the other half of the beam. The 

interference fringes are deflected directly to the CCD detector. The recording and fast evaluation of the 

pattern drives the piezo translator to compensate for the eventual change of the optical path. The 

recorded path length variation is showed in Fig 12.b. For the sake of an easy comparison with CEP 

noise of the ultrashort pulses, the actual length values are converted into optical phase noise at 800 nm, 

and over an 8-h period, a noise of 68 mrad RMS was measured. This type of stabilization can 

dramatically decrease the noise in CEP drift detection. A comparative study showed exceptional 

agreement with the results obtained from the f-to-2f technique, while demonstrated 120 mrad RMS 

noise of the CEP drift provided by the MBI method [98]. 
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The significance of this technique was emphasized by the CEP drift measurement of a picosecond 

laser with less than 0.2 nm bandwidth [102]. An ultrahigh finesse, long Fabry–Perot cavity, designed 

for Compton backscattering applications, exhibited severe sensitivity to the instabilities of the 

frequency comb. Its error signal was related to the carrier-envelope offset frequency, the equivalent 

quantity for CEP drift in the frequency domain. The MBI was equipped with an ultrahigh resolution 

spectrograph, and recorded the CEP drift simultaneously. When the repetition rate of the oscillator was 

manually varied, the error signal for the Fabry–Perot cavity and the CEP drift measured by the MBI 

showed very good agreement, which is an undeniable proof of the capability of the MBI method to 

detect the CEP drift independently from the spectral bandwidth of the laser. 

5. Methods for Angular Dispersion Detection 

5.1. Measurement of Propagation Direction Angular Dispersion 

The characterization of the angular dispersion of ultrashort laser pulses is inevitable when complete 

spatiotemporal compression of the pulses is necessary. When the angular dispersion is not 

compensated carefully, it can lead to an unexpected decrement in the peak intensity. At the same time, 

spectral components may also be separated spatially, thereby inducing a so-called spatial chirp, which 

involves an asymmetry of the spectral content in the beam profile. A direct consequence of this spatial 

chirp is the tilt of the phase front, which raises some further unwanted increase in the pulse duration. 

Elimination of angular dispersion (i.e., the divergence of the spectral components) does not necessarily 

remove the spatial chirp, since the spectral components may still propagate along distinct parallel axes, 

even if they travel in the same direction. 

A simple and direct method to measure of propagation direction angular direction is based on 

spectrally and spatially recorded intensity distribution of the focused spot of the beam. The layout of 

the technique is shown in Figure 13.  

Figure 13. Schematic diagram for measuring the propagation direction angular dispersion. 

Input
pulses

Achromatic 
lens

2D imaging
spectrgraph

Beam
rotation

y

ω
 

An achromatic lens or spherical mirror is used to focus the beam on the slit of the spectrograph. In 

case of angular dispersion, spectral components have different propagation directions, therefore, in the 

focal plane, also a different spatial position. This position y is related to relative angle of the 

propagation direction of an actual spectral component, whereby the component’s frequency needs to 

be determined. This can be done with a spectrograph, which provides a spectrally resolved intensity 

distribution on its detector and eventually leads to a tilted and elongated spot on the image. The angle 

of the tilt corresponds directly to the propagation direction angular dispersion. 
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Unfortunately, this method can only detect the angular dispersion along the cross-section of the 

beam, which is defined by the slit of the spectrograph. In most cases, it is highly desired to ensure that 

the beam is free of angular dispersion in both horizontal and vertical direction. It can be executed only 

when the beam or the spectrograph is rotated by 90°. For this purpose, it is most convenient to use a 

mechanical beam rotator, which is practically a twistable periscope, but does not alternate the direction 

of the beam when it is passing through. 

Since this method is limited to measure along one spatial dimension only, at least two subsequent 

measurements required for complete beam profile characterization. This leads to a lengthy and 

iterative alignment of the stretcher-compressor stages of the CPA system. Concerning the precision, it 

is typically sensitive for the pulse bandwidth and the focal length of the focusing element (i.e., the 

sharpness of the elongated spots). During alignment of compressor systems, an accuracy of  

0.1 μrad/nm was demonstrated [103]. 

5.2. Two-Dimensional Detection Method for Propagation Direction Angular Dispersion 

When a broadband light beam is affected by angular dispersion, its spectral components will 

propagate in various directions. If the beam is focused directly on the sensor chip of a two-dimensional 

detector by an achromatic imaging element, a relatively elongated spot will appear in the image 

compared to a beam without the effect of dispersion. The intensity distribution of this elongated spot is 

in direct correlation with the spectral angular deviation. However, the spot itself is not suitable for 

accurate measurements. On one hand, chromatic aberration of the spot must be separated from optical 

aberrations of different nature. On the other hand, this elongated spot contains no information on the 

spectral calibration required for the measurement, i.e., different parts of the spot cannot be matched 

with the frequency of the corresponding spectral components. Both problems can be eliminated with 

the purposive spectral modulation and calibration of the broadband beam. 

A method for single-shot, two-dimensional measurement of propagation direction angular 

dispersion of broadband light sources (e.g., ultrashort laser beams) was introduced recently. In this 

case, spectral calibration is achieved by spectrally filtering the beam in order to create well-separated 

peaks in the spectrum. Since these components are still overlapping spatially, we use an achromatic 

lens to image them onto a two-dimensional detector. In this way, the spectrally separated components 

of an angularly dispersed beam will appear as dissociated spots on the surface of the detector 

according to the orientation of the angular dispersion. 

The role of the spectral filter can be filled with various, either passive or active solutions. For 

example, multiple bandpass interference filters or wavelength-selective reflectors can be used for this 

purpose. Another very simple idea is to block parts of the spectrally resolved beam in the stretcher; 

although it might be not suitable, if the stretcher itself is the object of examination. Acousto-optical 

programmable modulators can be used also to create an arbitrarily modified spectrum. A less expensive 

solution to create separated spectral peaks is the use of a Fabry–Perot interferometer (FPI) [104] with 

either adjustable or fixed baselength, which allows high spectral purity when one is using  

high-reflection mirrors. When it is equipped with a precision translator, the wavelength spacing of the 

transmitted spectrum can be controlled easily through its baselength. This feature makes the FPI the 

optimal choice as the spectral filtering device. 
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Figure 14. Typical layout for simple, two-dimensional detection of propagation dispersion 

angular dispersion (a). If the original beam is not angularly dispersed enough to separate 

the peaks, an additional grating or prism can be inserted to have a well-known constant 

bias in the angular dispersion (b). On the right side, a sample image is shown (c). 

Input
pulses

Fabry-Perot
interferometer

Achromatic 
lens

y

x

(a)

Input
pulses

2D detector

(b)

Grating for additional
constant angular disperison

Achromatic 
lens

Fabry-Perot
interferometer

2D detector

(c)

 

The scheme of the technique can be seen in Figure 14a, where a FPI is pictured as a spectral filter. 

A broadband beam with unknown angular dispersion is propagating through the partially reflecting 

mirrors of the FPI, where the spectrum of the beam becomes modulated, and thus well defined, sharp 

spectral peaks appear. The transmitted parts of the spectrum preserve their original propagation 

directions, which––in case of angular dispersion––can be different for each spectral component. 

However, the spatial distributions of these spectrally separated beams are still overlapping. For this 

reason, an achromatic lens is positioned after the FPI to image the beams onto the chip of a  

two-dimensional detector. 

When the beam has weak angular dispersion only, it is possible that the spectral spots cannot be 

separated effectively with the base length modulation of the FPI. In these cases, a grating or prism 

with very well-known and calibrated angular dispersion can be inserted between the FPI and the 

achromatic lens (see Figure 14b). It provides an additional constant bias in the angular dispersion only, 

but with the spots very well separated, it increases the precision of the extraction of the spot 

coordinates, and by that, the precision of the measurement. 

Experimental verification with different prisms showed that the precision does not decrease 

significantly compared to the one-dimensional method, as standard deviation from the expected values 

was 0.15 μrad/nm [104]. 

5.3. Phase Front Angular Dispersion––An Absolute Measurement with SSRI 

The SSRI technique can be applied also for the determination of either the relative (i.e., occurring 

between the arms) or the absolute phase front angular dispersion γPF along the direction of the slit of 

the spectrograph. Keeping in mind that when reflected on a mirror, angular dispersion changes sign 

along the plane of reflection, the method can be modified accordingly. When a  

Mach–Zehnder interferometer is used with the same number of reflections in the arms (or their 

difference is an even number), the angular dispersion of an object inserted in the sample arm can be 

measured as the difference in angular dispersion of the interfering pulses. For the measurement of the 
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absolute angular dispersion, an empty Mach–Zehnder interferometer has to be altered so that the 

difference between the numbers of reflections from optical surfaces in the two arms is an odd number 

(e.g., one arm should contain an additional mirror). Therefore, at the output of the interferometer, the 

pulse will establish interference with its replica, mirrored to the direction of the propagation. The 

magnitude of the angular dispersion will be unaffected by this reflection; however, its direction  

will be inverted. This implementation of the interferometer is called inverted Mach-Zehnder  

interferometer [105,106]. The accordingly modified scheme is shown on Figure 15. 

Figure 15. Experimental set-up of the interferometric detection of phase front angular 

dispersion with an inverted Mach–Zehnder interferometer. 
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The angle between the phase fronts will then be measured by spectrally and spatially resolved 

interferometry, and will depend on the wavelength due to the angular dispersion. If a small angle is 

adjusted between the beams in the direction of polarization, then this (wavelength-independent) angle 

will also occur between the phase fronts, and thereby the interference pattern will be modulated in the 

direction of polarization. The frequency of this modulation is directly proportional to the angle and to 

the frequency of the light. The manually adjusted angle between the beams can be measured as the 

function of the wavelength by a two-dimensional imaging spectrograph having a slit oriented in the 

direction of polarization. The derivative of the measured angle with respect to the wavelength results 

in a value twice the phase front angular dispersion occurring in the direction of polarization. 

The angle between the phase fronts as defined by Equation (17) will depend on the wavelength. 

Using the parameters ai of the cosine fit outlined earlier, α values can easily be obtained for each 

wavelength. Phase front angular dispersion reveals then as follows: 

0

1 d ( )

2 dPF

λ λ

α λ
γ

λ


  (44)

An inappropriate adjustment of the optical elements in a CPA system may cause an angular 

dispersion not only in the horizontal, but also in the vertical plane, therefore beam rotational stage is 

required here as well. 

Accuracy of the phase front angular dispersion depends on the detector noise similarly as it was 

shown in the case of SSRI [57], since the phase extraction process is the very same in both cases. 

Experimental studies demonstrated 0.2 μrad/nm precision [53,106]. 

Spatial invertion of the beam profile can be effectively used in nonlinear autocorrelators as well. 

Since no spectral dimension is needed during the evaluation, both spatial directions can be inverted, 
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hence pulse front tilt can be detected in 2D in a single-shot measurement [107]. The accuracy of the 

phase front angular dispesion is similar to the linear method presented above; however, in case of 

Gaussian beams, it might be complicated to determine the phase front angular dispersion from the 

measured pulse front tilt [108]. 

6. Conclusions 

Experiments with intense ultrashort pulses require precise characterization of both spatial and 

temporal properties. For this purpose, the class of diagnostic tools based on linear schemes has been 

found to be simple, fast and reliable. In this review article, we demonstrated their capabilities and some 

of their potential applications. The combination of interferometry with spectrally resolved detection 

provides a flexible, multifunctional technique, which can be displayed best by spectrally and spatially 

resolved interferometry (SSRI). Different alignment of its experimental realization can be made 

capable of high precision measurement of material dispersion properties of optical elements and 

examine pulse propagation in various media. Relative CEP and CEP drift of subsequent pulses are also 

detectable with slight modifications of this technique, which could be very important and might be the 

only available solution for a large range of lasers, where the conditions of the thus far standardized 

methods such as octave spanning spectra and wavelength range cannot be satisfied. Both relative and 

absolute angular dispersion of broadband laser pulses can be characterized by SSRI, and other simple, 

linear techniques, as well. Since the elimination of the angular dispersion is inevitable for proper 

spatiotemporal recompression of this type of light pulses, diagnostic tools based on linear methods 

should be basic equipment for every CPA system. Their scalability, flexibility, simple experimental 

layout and potentially real-time data extraction make them uniquely advantageous instruments for a 

wide range of applications. 
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