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Abstract: The terahertz plasmon dispersion of a multilayer system consisting of graphene 

on dielectric and/or plasma thin layers is systematically investigated. We show that 

graphene plasmons can couple with other quasiparticles such as phonons and plasmons of 

the substrate; the characteristics of the plasmon dispersion of graphene are dramatically 

modified by the presence of the coupling effect. The resultant plasmon dispersion of the 

multilayer system is a strong function of the physical parameters of the spacer and  

the substrate, signifying the importance of the substrate selection in constructing  

graphene-based plasmonic devices. 

Keywords: graphene; plasmon; coupling; phonon; scattering rate; optical conductivity; 
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1. Introduction 

Graphene is a two-dimensional layer of carbon atoms in a honeycomb lattice. This unique atomic 

arrangement results in a linear energy-momentum dispersion of carriers in graphene and an ultrahigh 

carrier mobility exceeding 200,000 at room temperature [1]. This ultrahigh mobility  

also implies a long propagation distance of graphene surface plasmons, which are quasiparticles 

arising from the quantized collective oscillations of the charged carriers on the graphene surface.  
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These quasiparticles can be excited with the assistance of a grating structure, such as graphene 

nanoribbons [2–4], a dielectric grating [5,6], or a metal grating [7,8]. Surface plasmons can also be 

induced near the grain boundary [9], or generated through the interaction with metal particles [10]  

or sound waves [11]. Besides these momentum-transfer techniques, electron-energy-loss 

spectroscopy [12,13] and near-field microscopy [14] are also used for the study of graphene 

surface plasmons. The excited surface plasmons have frequencies in the terahertz (THz) and  

far-infrared spectral regions. The wave number q of a graphene surface plasmon is proportional to the 
square of its frequency , i.e., , when q is much smaller than the Fermi wave number (q ˂˂ kF); 

correspondingly,  is much smaller than the physical dimension of the graphene structure. This 

simple relation can be altered by the presence of other quasiparticles, such as surface phonons of a 

polar substrate [3,12], or plasmons of a metal substrate or another adjacent graphene layer [7,10,15–19]. 
In this paper, we show that the coupling strength and the deviation from the  relation can be 

described by a simple analytical model, regardless of the type of quasiparticles being coupled. 

This paper is organized as follows. In Section 2, we discuss the primary scattering sources and 

express the scattering rate as a function of the carrier energy and the Fermi energy. Once the scattering 

rate is determined, the optical conductivity in the THz and far-infrared spectral regions can be 

obtained, which is discussed in Section 3. In Section 4, we use the derived optical conductivity along 

with the coupling model to show the plasmon dispersion of graphene on various substrates. The 

characteristics of the plasmon dispersion are discussed in terms of the distance between the substrate 

and the graphene layer, the substrate thickness, and other physical parameters of the system. The 

conclusion is presented in Section 5. 

2. Scattering Rate 

2.1. Elastic Scattering 

Many scattering mechanisms have been suggested for the explanation of the experimental 

observation [1,20–25]. Among all possible scattering channels, phonon scattering is the intrinsic 

scattering mechanism that serves as the lower bound of the scattering rate that fundamentally limits the 

mobility of carriers in graphene. Two types of phonon scattering mechanisms are considered in this 

paper for carrier transport in graphene: elastic acoustic phonon scattering and inelastic optical phonon 

scattering; the former is discussed in this section and the latter is discussed in Subsection 2.2. The 

scattering rate arising from the longitudinal acoustic phonon scattering is given by [26] 

 

(1)

where  is the energy of charged carriers,  is the reduced Planck constant,  is the Boltzmann 

constant, T is the temperature,  ( ) is the Fermi velocity of carriers in graphene,  is the 

acoustic deformation potential, is the density of graphene per layer, and 

 is the phonon velocity of the longitudinal acoustic mode [27]. In this paper, 

 is assumed, as measured in the experiments [22,25,26,28]. 
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The impurity scattering due to the charged impurity is also considered in the literature for carrier 

transport in graphene [20,21,23]. For a monolayer graphene sandwiched between two media of 
different permittivities  and , the average dielectric permittivity of such a system is 

. The elastic scattering rate arising from the charged impurity scattering can then be 

written as [29] 

 (2)

Where  is the impurity density, q is the scattering wave number,  is the Fourier 

transform of the 2D potential energy, and  is the screening wave number. With , 

where k is the wave number of carriers and θ is the scattering angle, we obtain the analytical 

expression for the impurity scattering rate in the limit of k ˃˃ qs: 

 (3)

In fact,  is a function of both temperature T and wave number q. In this paper, we consider the case 

of a Fermi energy Ef ˃˃kBT and a wave number . Within this limit,  is approximately the 

Thomas-Fermi screening wave number given by , where  is the 

density of states at the Fermi energy [29]. 

2.2. Inelastic Scattering 

Using Maxwell’s equations and appropriate boundary conditions, a surface optical phonon (SP) 

mode can be solved for a planar interface between two semi-infinite dielectrics with one dielectric 

characterized by a transverse optical (TO) frequency [30]. This SP mode has a frequency slightly 

higher than the associated TO mode; it can efficiently couple with electrons of graphene if the 
graphene layer is close enough to the polar substrate [31,32]. The SP scattering rate  

contributed by various SP modes v with the phonon energy  is approximately given by [33] 

 (4)

where the scattering wave number is , with ± standing for the 

phonon emission (plus sign) and absorption (minus sign) in the scattering process; e is the electronic 

charge;  is the equilibrium phonon occupation number of the 

surface phonon mode v; d is the spacing between the graphene layer and the substrate; 

 is the Fermi–Dirac function, with  being the chemical potential; 

 is the electron-phonon coupling parameter given by [31,34] 

(5)
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where  and  are the high-frequency and low-frequency dielectric permittivities of the polar 

substrate, respectively, and  is the permittivity of free space. Equation (4) is a good approximation 

of  if the phonon energy  is small. For large phonon energies, each term in the summation 

of Equation (4) has to be multiplied by a correction factor , where  is in the unit 

of meV [33]. 

Besides the aforementioned extrinsic inelastic SP scattering, there is also intrinsic inelastic 

scattering, i.e., optical phonons scattering, in graphene. Among various optical phonon modes, the ZO 

mode at the Brillouin zone center ( ) has the lowest phonon energy (110 meV) and therefore the 

highest phonon occupation number [35]. Because the  mode is out-of-plane vibrations, its 

coupling with in-plane conduction electrons is weak. By comparison, degenerated  and  

modes can efficiently couple with conduction electrons [36], but at room temperature their 

contributions to the scattering rate is limited because these modes are energetic (200 meV). The TO 

mode at the zone boundary ( ) has a lower energy around 160 meV; it is therefore suggested to 

have the highest efficiency in coupling with electrons [37]. However, as we previously showed 

theoretically [33], the SP modes have a higher coupling efficiency than the mode, which is 

also confirmed experimentally [22]. Therefore, in this paper, we only consider the surface optical 

phonon scattering as the dominant inelastic scattering mechanism. The  phonon scattering 

becomes important when graphene is deposited on a substrate such as SiC or h-BN where the surface 

optical phonon scattering is inefficient. 
The scattering rate  as a function of the carrier energy calculated 

from Equations (1), (3), and (4) for graphene in the air at a distance of  above a  

semi-infinite SiO2 substrate is shown in Figure 1a. The physical parameters of graphene used in the 

calculation are , , and charged impurity density  on 

the same order of magnitude as the carrier density given by , where . The physical 

parameters of SiO2 for the calculation of  can be found in Reference [32]. As can be seen from 

the data plotted in Figure 1a,  contributes the most to the total scattering rate. For carriers of 

large carrier energy E,  decreases with increasing E, approaching the behavior described by 

Equation (3). The second important scattering mechanism is , which is contributed by two 

surface phonon modes  and  of SiO2. The overall  increases with E mostly due to the 

fact that the density of states increases with the carrier energy. Most notably  begins to increase 

rapidly for , which marks the onset of the intraband phonon emission of . 

The scattering rate  contributed by different scattering mechanisms as a function of  is 

shown in Figure 1b. To better see the dependence of the scattering rate on , the curves in Figure 1b 

are normalized to  and are shown in Figure 1c. As can be seen, the relative weight of phonon 

scattering increases due to the increase of the density of states with . By contrast,  

decreases with  because of the enhanced screening by the increasing carrier density . 
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Figure 1. Scattering rate of carriers in graphene as a function of (a) the carrier energy; and 

(b) the Fermi energy. Curves from top to bottom: the total scattering rate 
 (blue curves),  (red curves), and  (black curves). Curves 

plotted in (c) are scattering rates plotted in (b) but normalized to the total scattering rate. 

 

3. Optical Conductivity 

3.1. Drude Model 

Semiclassically, the optical conductivity of monolayer graphene can be described by [29,38] 

 (6)

where ω is the angular frequency of the electric field. Because the behavior of  is complicated, 

as we have shown in Figure 1a, the analytical solution to Equation (6) is difficult to obtain. 
Alternatively, we can replace  in Equation (6) with an effective energy-independent but 

frequency-dependent scattering rate  to obtain an analytical expression [33]: 

 (7)

It can be shown that if μ ˃˃ kBT,  and Equation (7) becomes the familiar simple 

Drude model  with , which is commonly used in fitting the 

experimental data. If the condition μ ˃˃ kBT is not valid,  has to be calculated numerically. 

Nevertheless, with  and , it has been shown that  is a weak function of 

frequency, and  is a fairly good approximation for Equation (7) [33]. 

3.2. RPA Model 

In the Drude model, the nonlocal effect is ignored. To describe the organized oscillation of 

electrons due to the long-range nature of Coulomb force among them, the Drude model is insufficient 

when the oscillation is characterized by a large wave number q. To account for the nonlocality, the 

optical conductivity of graphene as a function of both ω and q can be derived within the random phase 
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approximation (RPA). In the RPA, the out-of-phase response of electrons to the external field is 

assumed to average out to zero due to the random location of the electrons in a large quantity [39]. 

The polarizability of graphene within the RPA is given as [40] 

 (8)

where A is the area of graphene, and  denote the band indices having the values of  for the 
conduction band or  for the valance band,  is an infinitesimal number, ,  is the 

scattering angle between  and , and . The analytical expression for Equation (8) has 

previously been obtained in the limit of μ ˃˃ kBT [40,41] and in the collisionless limit of . To 
account for the finite scattering rate, we replace  with  in Equation (8) and follow 

the same procedure as the one in References [40,41] assuming μ ˃˃ kBT; the result is 

 (9)

where ;  if  and  otherwise. Equation (9) is identical 

to Equation (7) of Reference [42] in a slightly different form. Apparently, by setting  for 

, Equation (9) reduces to the collisionless results in References [40,41]. To comply with local 

electron conservation, Equation (9) needs to be modified to [43,44] 

 (10)

where  is given by Equation (9) and is obtained by setting both  and  to 

zero in Equation (9). Equation (10) is called the RPA relaxation time (RPA-RT) approximation, which 

properly accounts for the finite scattering rate and the conservation of local electrons [44]. 

The optical conductivity within the RPA-RT approximation is given by 

 (11)

The optical conductivity obtained from the Drude model and that from the RPA-RT approach in the 
long-wavelength limit ( ) are plotted in Figure 2. As can be seen in Figure 2a, the RPA-RT 

result, , is almost identical to the Drude result in the region ħω ˂˂ μ. By contrast, in the  

high-frequency region where  is comparable to , the Drude model fails to account for the 

interband transition, whereas the RPA-RT results properly account for it, as seen in Figure 2b. Due to 

the simplicity of the Drude model, in this paper we use Equation (7) for the conductivity of graphene. 

The RPA-RT conductivity, given by Equation (11), is calculated to show that the obtained results 

using the Drude model are good approximations in the low-energy region. 
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Figure 2. Optical conductivity of graphene for (a) , and (b) . The solid 

curves are derived from the Drude model (Equation (7)), and the dashed curves are 

obtained using the RPA-RT approach (Equation (11)). The real part and the imaginary part 

of the optical conductivity are plotted in red and black colors, respectively. For both 
figures, the parameters used are , , and . 

 

4. Plasmon Dispersion 

The plasmon dispersion of graphene sandwiched between air and a substrate of a constant 
permittivity  is well known [40,43,45]. The physical structure is illustrated in Figure 3a. Using 

Maxwell’s equations with appropriate boundary conditions, the plasmon dispersion can be obtained by 

solving the equation: 

 (12)

where . Because of the finite scattering rate,  has to be a complex 

number with  for Equation (12) to be valid. In Equation (12) and below, we have ignored the 

retardation effect in view of the fact that the speed of light c in vacuum is 300 time higher than the 

Fermi velocity of graphene. As a result, ω/q1 ˂˂ c is generally true as we shall see in the following 

figures for the plasmon dispersion of graphene on various substrates. The region where the retardation 
effect is important, i.e.,  is comparable to c, is indistinguishable from the  axis, and thus is 

not considered in this paper. 

Jablan et al. [43] have shown that as long as q2 ˂˂ q1 and ħω ˂˂ 2EF, the Drude model is sufficient 

to determine the plasmon dispersion described by Equation (12) without the need of the RPA-RT 

approach. By plugging Equation (7) in Equation (12), we obtain 

 (13)
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original amplitude, it is meaningful to define  as a figure of merit. Clearly, regarding 

surface plasmons in terms of , a high frequency is preferred for graphene, whereas for a 

metal,  decreases with increasing frequency in the optical region [46]. Note that  is also a 

function of frequency [33]. For a frequency  that is too large, above either 48 THz or , the 

optical phonon scattering or the interband scattering becomes important; then,  decreases and 

therefore  might decrease with increasing frequency. 

The plasmon dispersion of graphene can be greatly altered by coupling graphene plasmons with 

other quasiparticles. Both theoretically and experimentally, it has been shown that graphene plasmons 

can couple with surface phonons of polar substrates [3,12], and with plasmon modes of metal particles 

or a metal surface [7,10,15]. Coupled plasmon modes resulted from the coupling of two graphene 

layers have also been studied [16–19,47]. Coupled plasmon modes of these systems can be determined 

from the following equation when the retardation effect is ignored [15]: 

 (15)

where  is the thickness of the substrate that has the permittivity ,  is the thickness of the 

spacer between the graphene layer and the substrate, , and , ,  are 

respectively the permittivity of the medium below the substrate, the permittivity of the spacer, and  

the permittivity of free space above the graphene layer, as shown in Figure 3b,c. In the case of  
double-layer graphene, as shown in Figure 3d, Equation (15) is reduced by setting . In the 

following, we thoroughly study the coupled plasmon dispersion of these systems while considering the 

existence of a finite scattering rate of carriers in graphene. 

Figure 3. Structures considered in this paper: (a) graphene on a semi-infinite substrate of a 

constant permittivity; (b) graphene on a polar substrate; (c) graphene on a metal substrate; 
and (d) double-layer graphene. The substrate is characterized by a permittivity of  and 

a thickness of . The spacer between the graphene layer and the substrate is 

characterized by a permittivity of  and a thickness of . Below the substrate is a  

semi-infinite dielectric medium that has a permittivity of . 
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4.1. Graphene on a Polar Substrate 

Consider a graphene layer at a distance  above a polar substrate, as shown in Figure 3b. The 

polar substrate is characterized by a permittivity given by 

 (16)

where  and  are the two lowest TO frequencies of the substrate with , and  is 

the intermediate permittivity for frequency  between the two TO frequencies, . 

These parameters for different materials can be found in Reference [32]. Using Equations (7), (15), 
and (16), the coupled plasmon-phonon dispersion of graphene at a distance  above a SiO2 substrate 

is shown in Figure 4a, where q is normalized to , and  is used; the 

scattering rare is chosen to be  as a reasonable value given in Figure 1b. As can be seen, the 

dispersion of the coupled plasmon mode deviates from the decoupled mode given by Equation (12) 
with  (dashed curve). The deviation is especially strong around  

where the surface phonon mode is located and the coupling of plasmons and phonons is the strongest. 
As the distance  between graphene and the substrate increases, the dispersion of the coupled 

plasmon mode (red curve) approaches that of the decoupled mode. As the thickness of the substrate 
 increases, the effective permittivity  increases as the space otherwise filled by air  is 

now filled with SiO2. As a consequence,  also increases for the same  (blue curve), as can be 

told from their relation in Equation (13). Therefore, we see that  and  can serve as tuning 

parameters for shaping the plasmon dispersion. 

Figure 4. Plasmon dispersion of graphene on (a) SiO2 and (b) various semi-infinite polar 
substrates ( ). The structure considered is shown in Figure 3b. In all figures, 

, , , and are used. In (a), unless otherwise 

specified,  and  are used for the calculation. In (b), different 

materials for the polar substrate are represented by different colors as specified in the 
legend;  is used for the solid curves, and  is assumed for the dashed 

curve. The black curves in (a) calculated using the Drude conductivity are plotted again in 

(c) to compare with the dotted curve obtained using the RPA-RT approach. The parameters 
used for the RPA-RT calculation are  and . 
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In Figure 4b, we plot the dispersion of the coupled plasmon-phonon mode for graphene at a 
distance 2d  above a semi-infinite substrate of various materials. As can be seen, some dispersion 

relations are characterized by two peaks because they are associated with substrates that have two 

surface phonon modes of energies within the plotted range. Note that as q increases, nonlocal effects 

become strong, and the results obtained in Figure 4a,b using the Drude conductivity for graphene 
deviate from the dispersion obtained using RPA , as shown in Figure 4c for graphene on SiO2 with 

sub 50nmd   and 2 30nmd   as an example. 

Figure 5. Plasmon dispersion of (a) graphene on a gold substrate and (b,c) double-layer 
graphene. The related structures are shown in Figure 3c,d. In all figures,  and 

 are used for graphene. Thin solid, thick solid, and dashed curves are 

calculated for , , and , respectively. Black and red curves 

are calculated for  and , respectively. The dotted curves are obtained using 

the RPA-RT approach with parameters and . In (a), , 

, , and  are used. In (b,c),  is assumed. Curves 

for the same plasmon mode are grouped by an ellipse. 

 

4.2. Graphene on A Metal Substrate 

Consider a structure shown in Figure 3c where a monolayer graphene is at a distance  above a 

metal substrate of a thickness of  deposited on a semi-infinite dielectric material. The permittivity 

of the metal substrate is modeled as 

 (17) 

where  is the bulk plasma frequency and  is the scattering rate of the metal. Using Equations (7), 

(15) and (17), the plasmon mode of the system due to the coupling between the graphene layer and the 

metal slab can be numerically solved, as shown in Figure 5a, where the metal is assumed to be gold 
with  and  [48]. As can be seen, by coupling graphene with a metal substrate, 

the wave number q of the plasmon mode increases. This coupling effect gradually vanishes as  

increases. A larger  (larger ) also gives a larger q according to Equation (13). However,  
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and  have nearly no effect on shaping the plasmon dispersion because  is always much larger 

than the skin depth of gold, which is about  in the THz frequency region. We also 

calculated the plasmon dispersion for graphene on different metal substrates; the dispersion curves 

overlapped and can hardly be distinguished. Therefore, the choice of the metal substrate is not 

important regarding the plasmon dispersion within the THz frequency region. The plasmon dispersion 
of the system is also calculated using  and plotted as the dotted curve in Figure 5a. At high  

region, the RPA-RT results start to deviate from the curves obtained using the Drude conductivity. 
Nevertheless, in the low-  region, the Drude model is sufficiently accurate to describe the plasmon 

dispersion of the system. 

4.3. Double-Layer Graphene 

Consider the double-layer graphene shown in Figure 3d with the bottom graphene layer serving as a 
substrate having the conductivity  and . By applying the limit  and substituting 

 in Equation (15) with 

 (18) 

the coupled plasmon modes of double layer graphene can be solved. Note that  does not have to be 

equal to  of the upper graphene layer because they do not necessarily have the same  or . For 

simplicity, here we set ; then with  given by Equation (18), Equation (15) becomes 

 (19) 

which has been derived previously [47]. Equation (19) can also be derived by finding zeros of the 

linear-response function of the double layer graphene system [15]. The coupled plasmon modes are 

plotted in Figure 5b,c using Equations (7) and (19). As can be seen, the plasmon dispersion described 
by Equation (13) is strongly hybridized as the distance between two graphene layers  decreases. We 

also see that similar to the case of a metal substrate,  increases for the same  as  increases. In 

Figure 5b, the plasmon dispersion of the double-layer graphene is also calculated using  and 

plotted as the dotted curve. As in the case of graphene on a metal substrate, the Drude model is a good 
approximation for the plasmon dispersion in the low-  region. 

5. Conclusions 

In this paper, the plasmon dispersion of graphene on various substrates is systematically 

investigated. We start from the calculation of the scattering rate and the optical conductivity. Once 

these physical parameters are known, the plasmon dispersion of a multilayer system consisting of 

graphene on dielectric and/or plasma thin layers can be determined. We show that the characteristics  

of the plasmon dispersion are a strong function of the distance between the graphene layer and  

the substrate, the permittivity of the spacer, the surrounding permittivity, and various physical 

parameters of the substrate. Our studies show the importance of the substrate selection as well as the 
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system configuration in designing graphene-based plasmonic optoelectronic devices in the THz 

frequency region. 

Acknowledgments 

This work was supported by U.S. Air Force AOARD under Grant Award No. FA2386-13-1-4022. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.;  

Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 

100, 016602. 

2. Christensen, J.; Manjavacas, A.; Thongrattanasiri, S.; Koppens, F.H.L.; de Abajo, F.J.G. 

Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons.  

ACS Nano 2011, 6, 431–440. 

3. Yan, H.; Low, T.; Zhu, W.; Wu, Y.; Freitag, M.; Li, X.; Guinea, F.; Avouris, P.; Xia, F.  

Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 2013, 7, 

394–399. 

4. Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.; Zettl, A.; 

Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 

2011, 6, 630–634. 

5. Zhan, T.R.; Zhao, F.Y.; Hu, X.H.; Liu, X.H.; Zi, J. Band structure of plasmons and optical 

absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies. 

Phys. Rev. B 2012, 86, 165416. 

6. Bludov, Y.V.; Peres, N.M.R.; Vasilevskiy, M.I. Graphene-based polaritonic crystal. Phys. Rev. B 

2012, 85, 245409. 

7. Gu, X.; Lin, I.T.; Liu, J.-M. Extremely confined terahertz surface plasmon-polaritons in  

graphene-metal structures. Appl. Phys. Lett. 2013, 103, 071103. 

8. Popov, V.V.; Polischuk, O.V.; Davoyan, A.R.; Ryzhii, V.; Otsuji, T.; Shur, M.S.  

Plasmonic terahertz lasing in an array of graphene nanocavities. Phys. Rev. B 2012, 86, 195437. 

9. Fei, Z.; Rodin, A.S.; Gannett, W.; Dai, S.; Regan, W.; Wagner, M.; Liu, M.K.; McLeod, A.S.; 

Dominguez, G.; Thiemens, M.; et al. Electronic and plasmonic phenomena at graphene grain 

boundaries. Nat. Nanotechnol. 2013, 8, 821–825. 

10. Niu, J.; Shin, Y.J.; Lee, Y.; Ahn, J.-H.; Yang, H. Graphene induced tunability of the surface 

plasmon resonance. Appl. Phys. Lett. 2012, 100, 061116. 

11. Farhat, M.; Guenneau, S.; Bağcı, H. Exciting graphene surface plasmon polaritons through light 

and sound interplay. Phys. Rev. Lett. 2013, 111, 237404. 

12. Liu, Y.; Willis, R.F. Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B 

2010, 81, 081406. 



Appl. Sci. 2014, 4 40 

 

 

13. Politano, A.; Marino, A.R.; Formoso, V.; Farías, D.; Miranda, R.; Chiarello, G. Evidence for 

acoustic-like plasmons on epitaxial graphene on Pt(111). Phys. Rev. B 2011, 84, 033401. 

14. Fei, Z.; Andreev, G.O.; Bao, W.; Zhang, L.M.; McLeod, S.A.; Wang, C.; Stewart, M.K.; Zhao, Z.; 

Dominguez, G.; Thiemens, M.; et al. Infrared nanoscopy of dirac plasmons at the graphene–SiO2 

interface. Nano Lett. 2011, 11, 4701–4705. 

15. Lin, I.-T.; Liu, J.-M. Coupled surface plasmon modes of graphene in close proximity to a plasma 

layer. Appl. Phys. Lett. 2013, 103, 201104. 

16. Wang, B.; Zhang, X.; Yuan, X.; Teng, J. Optical coupling of surface plasmons between graphene 

sheets. Appl. Phys. Lett. 2012, 100, 131111. 

17. Profumo, R.E.V.; Asgari, R.; Polini, M.; MacDonald, A.H. Double-layer graphene and 

topological insulator thin-film plasmons. Phys. Rev. B 2012, 85, 085443. 

18. Stauber, T.; Gómez-Santos, G. Plasmons in layered structures including graphene. New J. Phys. 

2012, 14, 105018. 

19. Correas-Serrano, D.; Gomez-Diaz, J.S.; Perruisseau-Carrier, J.; Alvarez-Melcon, A.  

Spatially dispersive graphene single and parallel plate waveguides: Analysis and circuit model. 

IEEE Trans. Microw. Theory Tech. 2013, 61, 4333–4344. 

20. Hwang, E.H.; Adam, S.; Das Sarma, S. Carrier transport in two-dimensional graphene layers. 

Phys. Rev. Lett. 2007, 98, 186806. 

21. Chen, J.H.; Jang, C.; Adam, S.; Fuhrer, M.S.; Williams, E.D.; Ishigami, M. Charged-impurity 

scattering in graphene. Nat. Phys. 2008, 4, 377–381. 

22. Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance 

limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209. 

23. Tan, Y.W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E.H.; Das Sarma, S.;  

Stormer, H.L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. 

Phys. Rev. Lett. 2007, 99, 246803. 

24. Tanabe, S.; Sekine, Y.; Kageshima, H.; Nagase, M.; Hibino, H. Carrier transport mechanism in 

graphene on SiC(0001). Phys. Rev. B 2011, 84, 115458. 

25. Zou, K.; Hong, X.; Keefer, D.; Zhu, J. Deposition of high-quality HfO2 on graphene and the effect 

of remote oxide phonon scattering. Phys. Rev. Lett. 2010, 105, 126601. 

26. Hwang, E.H.; Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional 

extrinsic graphene. Phys. Rev. B 2008, 77, 115449. 

27. Castro, E.V.; Ochoa, H.; Katsnelson, M.I.; Gorbachev, R.V.; Elias, D.C.; Novoselov, K.S.;  

Geim, A.K.; Guinea, F. Limits on charge carrier mobility in suspended graphene due to flexural 

phonons. Phys. Rev. Lett. 2010, 105, 266601. 

28. Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.;  

Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene 

electronics. Nat. Nanotechnol. 2010, 5, 722–726. 

29. Hwang, E.H.; Das Sarma, S. Screening-induced temperature-dependent transport in two-dimensional 

graphene. Phys. Rev. B 2009, 79, 165404. 

30. Wang, S.Q.; Mahan, G.D. Electron scattering from surface excitations. Phys. Rev. B 1972, 6, 

4517–4524. 



Appl. Sci. 2014, 4 41 

 

 

31. Konar, A.; Fang, T.; Jena, D. Effect of high-κ gate dielectrics on charge transport in graphene-based 

field effect transistors. Phys. Rev. B 2010, 82, 115452. 

32. Lin, I.T.; Liu, J.-M. Surface polar optical phonon scattering of carriers in graphene on various 

substrates. Appl. Phys. Lett. 2013, 103, 081606. 

33. Lin, I.T.; Liu, J.M. Terahertz frequency-dependent carrier scattering rate and mobility of 

monolayer and AA-stacked multilayer graphene. IEEE J. Sel. Top. Quantum Electron. 2014,  

20, 8400108. 

34. Fratini, S.; Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 2008,  

77, 195415. 

35. Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in 

graphene. Phys. Rep. 2009, 473, 51–87. 

36. Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A.C.; Robertson, J. Kohn anomalies and electron-phonon 

interactions in graphite. Phys. Rev. Lett. 2004, 93, 185503. 

37. Yao, Z.; Kane, C.L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. 

Phys. Rev. Lett. 2000, 84, 2941–2944. 

38. Stauber, T.; Peres, N.M.R.; Guinea, F. Electronic transport in graphene: A semiclassical approach 

including midgap states. Phys. Rev. B 2007, 76, 205423. 

39. Bohm, D.; Pines, D. A collective description of electron interactions. I. magnetic interactions. 

Phys. Rev. 1951, 82, 625–634. 

40. Hwang, E.H.; Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional 

graphene. Phys. Rev. B 2007, 75, 205418. 

41. Wunsch, B.; Stauber, T.; Sols, F.; Guinea, F. Dynamical polarization of graphene at finite doping. 

New J. Phys. 2006, 8, 318. 

42. Pyatkovskiy, P.K. Dynamical polarization, screening, and plasmons in gapped graphene. J. Phys. 

Condens. Matter 2009, 21, 025506. 

43. Jablan, M.; Buljan, H.; Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 

2009, 80, 245435. 

44. Mermin, N.D. Lindhard dielectric function in the relaxation-time approximation. Phys. Rev. B 

1970, 1, 2362–2363. 

45. Koppens, F.H.L.; Chang, D.E.; de Abajo, F.J.G. Graphene plasmonics: A platform for strong 

light–matter interactions. Nano Lett. 2011, 11, 3370–3377. 

46. West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. Searching for better 

plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808. 

47. Gan, C.H.; Chu, H.S.; Li, E.P. Synthesis of highly confined surface plasmon modes with doped 

graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B 2012, 85, 125431. 

48. Zeman, E.J.; Schatz, G.C. An accurate electromagnetic theory study of surface enhancement 

factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. 

J. Phys. Chem. 1987, 91, 634–643. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


