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Abstract: Fault detection and isolation in a complex system are research hotspots and 

frontier problems in the reliability engineering field. Fault identification can be regarded as 

a procedure of excavating key characteristics from massive failure data, then classifying 

and identifying fault samples. In this paper, based on the fundamental of feature extraction 

about the fault coefficient, we will discuss the fault coefficient feature in complex 

electrical engineering in detail. For general fault types in a complex power system, even if 

there is a strong white Gaussian stochastic interference, the fault coefficient feature is still 

accurate and reliable. The results about comparative analysis of noise influence will also 

demonstrate the strong anti-interference ability and great redundancy of the fault 

coefficient feature in complex electrical engineering. 
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1. Introduction 

Fault detection is always one of the core problems in the complex electrical engineering field. 

Generally speaking, fault detection can be divided into three categories based on analytical models, 

signal processing, and knowledge [1–5]. Among these fault detection technologies, the analytical 

models based fault detection technology was the earliest development and the most systematical 

research. It can construct a system model based mainly on the connections between components in a 

composition system and can be roughly divided into state estimation method, parameter estimation 

method and equivalence space method [6–8]. The fault detection based on signal processing can avoid 

establishing an object’s mathematical model, and it can directly analyze measurable information by 

signal model, such as correlation function, frequency spectrum, high order statistics, autoregressive 

moving average process and so on. The fault can be detected by extracting amplitude, variance, 

frequency and other characteristic values [9,10]. The fault detection based on signal processing mainly 

includes principle component analysis method, absolute value testing, tendency testing, Kullback 

detection, self-adaptable filter detection, etc. Similar to signal processing based fault detection, the 

fault detection based on knowledge is mainly applied to a nonlinear system. At the knowledge level, 

on the basis of knowledge processing technologies, the dialectical logic and mathematical logic will be 

integrated, and the symbol processing and numerical processing will be unified. It will also mainly 

include an expert system, fuzzy reasoning, neural network and rough set, etc. [11–14]. 

In fact, whichever fault detection technology we will adopt, the effective extraction of the fault 

feature is always the key problem. According to complex electrical engineering, we have carried out 

large numbers of basic research [15–18]. In this paper, based on the fundamental of feature extraction 

about the fault coefficient, we will discuss the fault coefficient in complex electrical engineering. 

The paper is organized as follows. In Section 2, the fundamental of feature extraction about fault 

coefficient are introduced. In Section 3, the Phasor Measurement Unit and Wide Area Measurement 

System are described, and they have provided a real-time data platform for improving the security and 

stabilization of power system. In Section 4, for general fault types in complex electrical engineering, 

the feature extraction process of fault coefficient is clarified in detail. Finally, the paper is concluded in 

Section 5. 

2. The Fundamental of Feature Extraction about the Fault Coefficient 

For general, fault factor model [19,20], 

1 1 2 2μ ε , 

                ( 1, 2, , )
i i i i im m ix a f a f a f

i n

= + + + + +
=




 (1)

where 1 2, , , mf f f  are m  fault factors (common factor), ija  is the loading of ix on jf , μi  is mean 

value of ix , and εi  is specific factor of ix . 

If x  is a random vector that each component has been standardized, then the correlation coefficient 
between ix  and jf  is 
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At this point, ija  is just the correlation coefficient between ix  and jf . 

Calculating variance on both sides of the fault factor model, 
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2
ih  is communality of 1 2, , , mf f f  on ix , and 2

iσ  is specific variance of εi  on ix . 
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2
jg  can be considered to be the total variance contribution of jf  on 1 2, , , px x x . 

Suppose 1 2, , , nx x x  are a group of -p dimensional samples, then the estimations of the sample 

mean value μ  and the sample covariance matrix Σ  are respectively, 
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In order to construct a fault factor model, one needs to estimate factor loading matrix ( )ij p mA a ×=  

and special variance matrix 2 2 2
1 2( , , , )pD diag σ σ σ=  . The parameter estimation methods most commonly 

used include: principal component method, principal factor method and the maximum likelihood method. 

Suppose the characteristic values of sample covariance matrix S  are 1 2
ˆ ˆ ˆ 0pλ λ λ≥ ≥ ≥ ≥  in turn, 

and the corresponding orthogonal unit characteristic vectors are 1 2
ˆ ˆ ˆ, , , pt t t . One should select 
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relatively small m , which can make the cumulative variance contribution rate 1
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where 1 1
ˆ ˆˆ ˆ ˆ ˆ( , , ) ( )m m ij p mA t t aλ λ ×= = , 2 2 2

1 2
ˆ ˆ ˆ ˆ( , , , )pD diag σ σ σ=  . 

Suppose each component of original vector x  have been standardized, if random vector x  satisfies 

fault factor model, then 

R AA D′= +  (10)

where R  is the correlation matrix of x . Let 

*R R D AA′= − =  (11)

then *R  is called reduced correlation matrix of x . In fact, *R  is a nonnegative definite matrix. 
Suppose 2ˆ iσ  is an appropriate initial estimation of special variance 2σi , then the reduced correlation 

matrix can be estimated as 
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where 2 2 2
1 2

ˆ ˆ ˆ ˆ ˆ( ),   ( , , , )ij pR r D diag σ σ σ= =  . And 2 2ˆ ˆ1i ih σ= −  is the initial estimation of 2
ih . Suppose the 

preceding m  characteristic values of *R̂  are * * *
1 2
ˆ ˆ ˆ 0mλ λ λ≥ ≥ ≥ ≥  in turn, corresponding orthogonal 

unit characteristic vectors are * * *
1 2
ˆ ˆ ˆ, , , mt t t , then the principal factor solution of A  is 

* * * * * *
1 1 2 2
ˆ ˆ ˆˆ ˆ ˆ ˆ( , , , )m mA t t tλ λ λ=   (13)

Therefore the ultimate estimation of 2σi  can be expressed as 

2 2 2

1

ˆˆ ˆ1 1 ,   ( 1,2, , )
m

i i ij
j

h a i pσ
=

= − = − =   (14)

3. Phasor Measurement Unit and Wide Area Measurement System 

With the construction of long distance heavily stressed transmission system and the actualization of 

large scale interconnected power grids, the safety and stability problems of modern power system has 

become acute, which has also put forward a high requirement for the safety monitoring technology of 

power network. Based on mature Global Positioning System (GPS) technique and communication 



Appl. Sci. 2015, 5 311 

 

 

technique, Phasor Measurement Unit (PMU) has high stability and reliability, high precision, strong 

processing, calculating, memorizing and communication capabilities, friendly man-machine interface 

and openness, it has provided the foundations for dynamic monitoring in electric power system.  

Under unified time scales, PMU can directly afford the variation curve of voltage, current, phase angle, 

power, etc. in transient process of power grid, which has also created the conditions for state 

estimation, on-line security monitoring and dynamic supervising of power grid. On the basis of PMU, 

Wide Area Measurement System (WAMS) can reflect the dynamic changes of the whole power 

network in real time. As a new technology and important means which can realize real-time dynamic 

monitoring in power grid, WAMS has provided a real-time data platform for improving the security 

and stabilization of power system. 

Table 1. The primary technical specifications of Phasor Measurement Unit. 

Items Technical Specifications 

Sampling for analog input Sampling frequency 4800 Hz, at least 36 channels ,extensible by multiple

GPS timing accuracy 1 μS  

Error limit for angle 0.01 degree 

Error limit for amplitude 0.2%(Relative error) 

Error limit for power 0.5%(Relative error) 

Error limit for frequency 0.001 Hz, measurement range 45–55 Hz 

Dynamic data retained time 25 frames/sec, 50 frames/sec, 100 frames/sec 

Dynamic data retained time ≥14 days 

Dynamic data output rate 25 frames/sec, 50 frames/sec, 100 frames/sec 

Time range for fault recording −5 sec~+15 sec 

As to the technical specification of the PMUs, a list of the items in one commercial product of 

power system real-time dynamic monitoring system is taken as an example and shown in Table 1. The 

relevant technical details of Wide Area Measurement System and Phasor Measurement Unit can refer 

to [15,21]. 

In the research of this paper, the data sources are from Wide Area Measurement System, and they 

can be gathered by Phasor Measurement Unit, of course, the whole process can be completed by 

Bonneville Power Administration (BPA) simulations. Thus, the real-time property can be guaranteed 

by Phasor Measurement Unit and Wide Area Measurement System. Besides, the feature extraction 

technology of fault coefficient advanced in this paper can be able to extract accurate fault 

characteristics with high efficiency, and it has strong anti-interference ability and great redundancy. 

4. Fault Coefficient Feature Extraction in Complex Electrical Engineering 

In order to illustrate the superior feature extraction abilities of fault coefficient feature extraction 

fundamental, IEEE 39-BUS New England power system will be an experimental subject. The electric 

diagram of IEEE 39-BUS New England power system is presented in Figure 1. In the network 

architecture, failures will be discussed in detail. In particular, different levels of Gaussian stochastic 

interference will be introduced. The anti-interference capability of the fault coefficient feature 

extraction technology will be deeply analyzed. 
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Figure 1. IEEE 39-BUS New England power system. 

4.1. Fault Coefficient Feature Extraction in Asymmertical Short Circuit Fault 

In the IEEE 39-BUS New England power system, an asymmertical short circuit fault breaks out 

suddenly, and BUS-18 is the actual fault location. By BPA simulations, one can get the node negative 
sequence voltages. Meanwhile, one has also introduced a white Gaussian stochastic noise 2(0,0.003 )N , 

and carries out detailed analysis about these original electrical information vectors. 

According to the fundamental of feature extraction about the fault coefficient, one can calculate the 

initial characteristic values, initial characteristic vectors, squared loadings and rotation squared 

loadings. Among them, the initial characteristic value of the first fault factor is 0.01563622, the 

variance percentage is 0.9852, and the cumulative variance percentage is also 0.9852. For the second 

fault factor, the initial characteristic value of the first fault factor is 0.00008786, the variance 

percentage is 0.0056, and the cumulative variance percentage is 0.9908. For the third fault factor, the 

initial characteristic value of the first fault factor is 0.00007585, the variance percentage is 0.0048, and 

the cumulative variance percentage is 0.9956. For the fourth fault factor, the initial characteristic value 

of the first fault factor is 0.00007056, the variance percentage is 0.0044, and the cumulative variance 

percentage is 1.0000. Actually, only the first fault factor needs to be extracted in this simulation. 
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Figure 2. The noise influence in asymmertical short circuit fault. 

Furthermore, we calculate the fault coefficient of all fault factors, as shown in Table 2. Because we 

have focused on the first fault factor, and the general form of the first fault factor is: 

Fault1 0.080184BUS1+0.162261BUS2+0.266219BUS3+0.127872BUS4

             0.101886BUS5+0.094243BUS6+0.060710BUS7+0.092570BUS8

             +0.056463BUS9+0.105765BUS10+0.096482BUS11+0.106159BUS12

         

=
+

    +0.109040BUS13+0.128760BUS14+0.178810BUS15+0.204963BUS16

             +0.337853BUS17+0.520984BUS18+0.092290BUS19+0.057301BUS20

             +0.144469BUS21+0.120420BUS22+0.106459BUS23+0.224937BUS24

             +0.146205BUS25+0.228639BUS26+0.269287BUS27+0.130908BUS28

             +0.110627BUS29+0.069968BUS30+0.058711BUS31 0.065727BUS32

             +0.063605BUS33 0.044253BUS34+0.091074BUS35+0.047710

+
+ BUS36

             +0.082034BUS37+0.069996BUS38 0.003890BUS39+

 (15)

In the first fault factor, we will concentrate on the coefficient feature. For all of these coefficients in 

Fault1, the coefficient of BUS-18 is 0.520984, which is the biggest one. Consequently, we come to the 

conclusion that BUS-18 is just the fault BUS. In the meantime, the expression of the first fault factor 

without the interference of white Gaussian stochastic noise has also been obtained through the same 

approach, namely 

Fault1 0.072173BUS1+0.168284BUS2+0.282617BUS3+0.138272BUS4

             0.092896BUS5+0.088251BUS6+0.076103BUS7+0.073602BUS8

             +0.037873BUS9+0.095754BUS10+0.093253BUS11+0.091824BUS12

        

′ =
+

     +0.105044BUS13+0.130054BUS14+0.168642BUS15+0.202942BUS16

             +0.347645BUS17+0.521645BUS18+0.107902BUS19+0.063419BUS20

             +0.150062BUS21+0.116477BUS22+0.115762BUS23+0.193652BUS24

             +0.153635BUS25+0.204371BUS26+0.263681BUS27+0.144346BUS28

             +0.126838BUS29+0.086465BUS30+0.052879BUS31 0.056809BUS32

             +0.067171BUS33 0.051807BUS34+0.078961BUS35+0.06252

+
+ 6BUS36

             +0.092181BUS37+0.087179BUS38 0.012862BUS39+

 (16)
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In the above expression, the BUS-18 fault certainly has been identified. Let’s further discuss the 

noise influence for fault coefficients shown in Figure 2. The total average deviation level is 

0.00041346. Thus, despite the fact that there is stochastic influence of white Gaussian noise, the fault 

coefficient feature is still distinct. 

Table 2. The fault coefficient in asymmertical short circuit fault. 

BUS 1 2 3 4 5 

BUS-1 0.080184 −0.131590 −0.101984 0.080719 −0.003175 
BUS-2 0.162261 0.083017 −0.250354 −0.026744 −0.013902 
BUS-3 0.266219 0.001688 −0.118200 −0.064936 −0.015069 
BUS-4 0.127872 −0.312857 0.106917 −0.028192 0.007209 
BUS-5 0.101886 −0.139861 0.059463 −0.079273 0.003251 
BUS-6 0.094243 −0.105051 −0.019010 0.066930 −0.004484 
BUS-7 0.060710 0.063427 −0.020301 0.092355 −0.011011 
BUS-8 0.092570 0.178899 0.444781 −0.033685 −0.011589 
BUS-9 0.056463 0.241210 −0.003291 0.021823 −0.015598 

BUS-10 0.105765 −0.019603 0.252826 −0.001555 −0.005394 
BUS-11 0.096482 0.078763 −0.153092 0.514546 −0.033082 
BUS-12 0.106159 −0.291748 −0.167308 −0.441553 0.025298 
BUS-13 0.109040 −0.154105 −0.140309 0.315717 −0.014559 
BUS-14 0.128760 0.029623 −0.235643 0.039650 −0.012181 
BUS-15 0.178810 0.104209 −0.050374 −0.018207 −0.015830 
BUS-16 0.204963 −0.218805 0.025884 0.064883 −0.006450 
BUS-17 0.337853 0.222826 −0.222634 −0.000227 −0.032912 
BUS-18 0.520984 0.008621 0.103751 −0.109780 −0.029657 
BUS-19 0.092290 0.056933 0.056848 0.250654 −0.019615 
BUS-20 0.057301 −0.102682 −0.000145 −0.105831 0.005540 
BUS-21 0.144469 −0.108241 0.150710 0.117057 −0.009449 
BUS-22 0.120420 −0.151639 0.326165 0.254042 −0.011526 
BUS-23 0.106459 0.019505 −0.207799 0.109369 −0.013268 
BUS-24 0.224937 0.025912 0.090412 0.105611 −0.020465 
BUS-25 0.146205 0.161939 −0.111320 −0.011973 −0.016714 
BUS-26 0.228639 −0.168502 −0.098185 −0.027499 −0.006507 
BUS-27 0.269287 0.036244 −0.110314 −0.081870 −0.016063 
BUS-28 0.130908 0.062338 0.239487 −0.136104 −0.004834 
BUS-29 0.110627 −0.203351 0.176203 0.087581 −0.001551 
BUS-30 0.069968 0.010437 −0.040059 −0.089817 −0.001214 
BUS-31 0.058711 −0.027466 0.051000 −0.165169 0.004804 
BUS-32 0.065727 0.044988 −0.002490 0.044075 0.995845 
BUS-33 0.063605 −0.108394 0.026131 −0.216139 0.010330 
BUS-34 0.044253 0.222910 0.019923 −0.096440 −0.008673 
BUS-35 0.091074 0.437935 0.166688 0.058293 −0.027958 
BUS-36 0.047710 0.113603 0.083594 −0.173864 −0.000377 
BUS-37 0.082034 −0.157442 0.263679 0.102439 −0.002176 
BUS-38 0.069996 0.287236 0.128940 −0.199584 −0.008440 
BUS-39 0.003890 0.035845 −0.112979 −0.053292 0.000200 
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4.2. Fault Coefficient Feature Extraction in Symmetrical Short Circuit Fault 

Now, let us further analyze a more complex symmetrical short circuit fault in IEEE 39-BUS New 

England power system. This time BUS-18 is subjected to a three-phase short circuit fault. By BPA 

simulations, the node positive sequence voltages have been calculated. In this simulation, let’s 
introduce a stronger white Gaussian stochastic noise 2(0,0.06 )N . 

Based on the fundamental of feature extraction about fault coefficient, the initial characteristic 

values, initial characteristic vectors, squared loadings and rotation squared loadings can also be 

calculated. Among them, the initial characteristic value of the first fault factor is 1.83004634, the 

variance percentage is 0.8828, and the cumulative variance percentage is also 0.8828. For the second 

fault factor, the initial characteristic value of the first fault factor is 0.24305527, the variance 

percentage is 0.1172, and the cumulative variance percentage is 1.0000. Obviously, the first fault 

factor is just what we are seeking. 

The fault coefficient of all fault factors can be obtained through the same approach (see Table 3). 

Therefore, the general form of the first fault factor can be written as: 

Fault1 0.074346BUS1+0.193963BUS2+0.195029BUS3+0.169430BUS4

             0.088094BUS5+0.106626BUS6+0.090224BUS7+0.139135BUS8

             +0.042615BUS9+0.130098BUS10+0.117286BUS11+0.130002BUS12

         

=
+

    +0.123483BUS13+0.115265BUS14+0.160039BUS15+0.156472BUS16

             +0.349494BUS17+0.380180BUS18+0.080870BUS19+0.094795BUS20

             +0.173913BUS21+0.162841BUS22+0.104185BUS23+0.239691BUS24

             +0.122016BUS25+0.234122BUS26+0.245774BUS27+0.109912BUS28

             +0.109377BUS29+0.137135BUS30+0.156919BUS31 0.064740BUS32

             +0.041073BUS33 0.061483BUS34+0.039357BUS35+0.087746

+
+ BUS36

             +0.133753BUS37+0.083942BUS38 0.258362BUS39+

 (17)

Table 3. The fault coefficient in symmetrical short circuit fault. 

BUS 1 2 3 4 5 

BUS-1 0.074346 0.052964 −0.001593 −0.000682 −0.005143 
BUS-2 0.193963 0.012428 −0.007633 −0.007139 −0.012111 
BUS-3 0.195029 0.039759 −0.006921 −0.006016 −0.012461 
BUS-4 0.169430 −0.011105 −0.007275 −0.007172 −0.010351 
BUS-5 0.088094 0.160465 0.000814 0.003357 −0.007109 
BUS-6 0.106626 0.068563 −0.002489 −0.001293 −0.007299 
BUS-7 0.090224 0.073833 −0.001669 −0.000420 −0.006341 
BUS-8 0.139135 −0.062473 −0.007449 −0.008164 −0.007946 
BUS-9 0.042615 0.066201 0.000078 0.001137 −0.003320 

BUS-10 0.130098 0.068635 −0.003453 −0.002218 −0.008750 
BUS-11 0.117286 0.075571 −0.002734 −0.001416 −0.008030 
BUS-12 0.130002 0.026162 −0.004623 −0.004025 −0.008303 
BUS-13 0.123483 0.080095 −0.002864 −0.001468 −0.008460 
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Table 3. Cont. 

BUS 1 2 3 4 5 

BUS-14 0.115265 0.027552 −0.003978 −0.003383 −0.007407 
BUS-15 0.160039 0.012319 −0.006241 −0.005803 −0.010014 
BUS-16 0.156472 0.151342 −0.002250 0.000264 −0.011238 
BUS-17 0.349494 0.184110 −0.009282 −0.005971 −0.023503 
BUS-18 0.380180 0.074222 −0.013582 −0.011868 −0.024257 
BUS-19 0.080870 −0.058891 −0.004954 −0.005708 −0.004384 
BUS-20 0.094795 0.064737 −0.002108 −0.000989 −0.006528 
BUS-21 0.173913 0.086564 −0.004759 −0.003186 −0.011643 
BUS-22 0.162841 −0.009310 −0.006954 −0.006835 −0.009963 
BUS-23 0.104185 −0.067407 −0.006148 −0.006993 −0.005736 
BUS-24 0.239691 0.013811 −0.009475 −0.008888 −0.014950 
BUS-25 0.122016 0.064783 −0.003227 −0.002063 −0.008211 
BUS-26 0.234122 −0.000439 −0.009640 −0.009275 −0.014458 
BUS-27 0.245774 −0.016099 −0.010552 −0.010404 −0.015015 
BUS-28 0.109912 0.208295 0.001239 0.004533 −0.008954 
BUS-29 0.109377 −0.027594 −0.005261 −0.005501 −0.006470 
BUS-30 0.137135 −0.124739 −0.009088 −0.010739 −0.007175 
BUS-31 0.156919 −0.015092 −0.006870 −0.006848 −0.009537 
BUS-32 0.064740 −0.166245 −0.007259 −0.009646 −0.002272 
BUS-33 0.041073 −0.027614 0.998774 0.000000 0.000000 
BUS-34 0.061483 0.010516 −0.002238 −0.001983 0.998048 
BUS-35 0.039357 −0.042477 −0.002793 0.998318 0.000000 
BUS-36 0.087746 0.191227 0.001679 0.004682 −0.007407 
BUS-37 0.133753 0.032855 −0.004592 −0.003888 −0.008604 
BUS-38 0.083942 0.085576 −0.001086 0.000329 −0.006075 
BUS-39 0.258362 −0.843064 −0.033934 −0.046151 −0.007201 

In the first fault factor, the coefficient feature is always crucial. For all of these coefficients in 

Fault1, the coefficient of BUS-18 is 0.380180, which is also the biggest one. As a result, we come to 

the conclusion that BUS-18 is the fault BUS. At the same time, the expression of the first fault factor 

without the interference of white Gaussian stochastic noise can be described:  

Fault1 0.080303BUS1+0.171509BUS2+0.266442BUS3+0.165149BUS4

             0.124600BUS5+0.119829BUS6+0.112038BUS7+0.109471BUS8

             +0.059017BUS9+0.124305BUS10+0.122919BUS11+0.125781BUS12

        

′ =
+

     +0.133050BUS13+0.155540BUS14+0.186957BUS15+0.205857BUS16

             +0.306195BUS17+0.425979BUS18+0.129325BUS19+0.097090BUS20

             +0.165830BUS21+0.131574BUS22+0.129598BUS23+0.195589BUS24

             +0.161128BUS25+0.200178BUS26+0.247223BUS27+0.148679BUS28

             +0.132369BUS29+0.105041BUS30+0.075669BUS31 0.079530BUS32

             +0.088549BUS33 0.081280BUS34+0.096113BUS35+0.07853

+
+ 1BUS36

             +0.108539BUS37+0.095568BUS38 0.022421BUS39+

 (18)
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In the former expression, the real fault location BUS-18 certainly has also been identified. In 

addition, the noise influence for fault coefficients is presented in Figure 3. In this simulation, the total 

average deviation level is 0.0016. Therefore, the fault coefficient feature is completely reliable. 

 

Figure 3. The noise influence in symmetrical short circuit fault. 

5. Conclusions 

In order to realize real time and accurate fault detection in complex electrical systems, one needs to 

obtain fault information of electric networks. In the process of power system operation, rich 

monitoring data includes the system’s normal operation information. Once the fault of a system or 

equipment occurs, large amounts of fault feature information will be presented, such as operation 

sequence of protection and circuit breaker recorded by fault recorder, the switching action information, 

electrical quantities and measuring information provided by the Wide Area Measurement System. All 

of these have provided data guaranteed for accurate and reliable fault detection. 

In this paper, based on the fundamental of feature extraction about the fault coefficient, we have 

discussed the fault coefficient in complex electrical engineering. According to the research in this 

paper, the system failure is corresponding to the variable with the biggest coefficient in the first fault 

factor. For asymmetrical short circuit fault and symmetrical short circuit fault in IEEE 39-BUS New 

England power system, even if there is strong white Gaussian stochastic interference, the fault 

coefficient feature is still accurate and reliable. The feature extraction technology about fault 

coefficient proposed in this paper can extract fault characteristics with high efficiency, and it can 

satisfy the real-time and accuracy requirements of Wide Area Measurement System and Phasor 

Measurement Unit. The comparative analysis results of noise influence have also demonstrated the 

strong anti-interference ability and great redundancy of the fault coefficient feature in complex 

electrical engineering. 
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