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Abstract: Semiconducting transition metal dichalcogenides present a complex electronic band
structure with a rich orbital contribution to their valence and conduction bands. The possibility to
consider the electronic states from a tight-binding model is highly useful for the calculation of many
physical properties, for which first principle calculations are more demanding in computational
terms when having a large number of atoms. Here, we present a set of Slater–Koster parameters for
a tight-binding model that accurately reproduce the structure and the orbital character of the valence
and conduction bands of single layer MX2, where M = Mo, W and X = S, Se. The fit of the analytical
tight-binding Hamiltonian is done based on band structure from ab initio calculations. The model is
used to calculate the optical conductivity of the different compounds from the Kubo formula.
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1. Introduction

Soon after the discovery of graphene by mechanical exfoliation, this technique was applied to
the isolation of other families of van der Waals materials [1]. Among them, semiconducting transition
metal dichalcogenides (TMD) are of special interest because they have a gap in the optical range
of the energy spectrum, which is what makes them candidates for applications in photonics and
optoelectronics [2–4]. The electronic properties of these materials are highly sensitive to external
conditions such as strain, pressure or temperature. For instance, a direct-to-indirect gap and even a
semiconducting-to-metal transition can be induced under specific conditions [5–10]. They also present
a strong spin–orbit coupling (SOC) that, due to the absence of inversion symmetry in single layer
samples, lifts the spin degeneracy of the energy bands [11]. In time reversal–symmetric situations,
inequivalent valleys have opposite spin splitting, leading to the so called spin–valley coupling [12–14],
which has been observed experimentally [15–20]. The coupling of the spin and valley degrees of
freedom in semiconducting TMDs creates the possibility to manipulate them for future applications in
spintronics and valleytronics nanodevices [15,21–24].

On the other hand, TMDs present a high stretchability. Moreover, external strain can be used to
efficiently manipulate their electronic and optical properties [25]. Non-uniform strain profiles can be
used to create funnels of excitons, which allows for capturing a broad light spectrum, concentrating
carriers in specific regions of the samples [5,26]. Strain engineering can be also used to exploit
the piezoelectric properties of atomically thin layers of TMDs, converting mechanical to electrical
energy [27].
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The rich orbital structure of the valence and conduction bands of semiconducting TMDs [28]
complicates the construction of a tight-binding (TB) model for these systems. Such a TB model must
be precise enough as to include all the pertinent orbitals of the relevant bands, but at the same time,
simple enough as to be used without too much effort in calculations of optical and transport properties
of these materials. The advantage of a tight-binding description with respect to first-principles methods
is that it provides a simple starting point for the further inclusion of many-body electron–electron
interaction, external strains, as well as of the dynamical effects of the electron–lattice interaction.
Tight-binding approaches are often more convenient than ab initio methods for investigating systems
involving a very large number of atoms [26], disordered and inhomogeneous samples [29], strained
and/or bent samples [30,31], materials nanostructured in large scales (nanoribbons [32,33], ripples [34])
or in twisted multilayer materials. The aim of the present paper is twofold. Starting from the TB
model for MoS2 developed by Cappelluti et al. [35], we present a more accurate set of Slater–Koster
parameters obtained from a more sophisticated fitting procedure, and we further generalize it to the
other families of semiconducting TMDs, namely WS2, MoSe2 and WSe2. Finally, we apply the obtained
tight-binding models to calculate the optical conductivity of the four compounds.

2. Electronic Band Structure

The crystal structure of MX2 is schematically shown in Figure 1. A single layer is composed
by an inner layer of metal M atoms ordered on a triangular lattice, which is sandwiched between
two layers of chalcogen X atoms placed on the triangular lattice of alternating hollow sites. We use
a notation such that a corresponds to the distance between nearest neighbor in-plane M–M and X–X
atoms, b is the nearest neighbor M–X separation and u is the distance between the M and X planes.
The MX2 crystal forms an almost perfect trigonal prism structure with b '

√
7/12a and u ' a/2.

The lattice parameters of the bulk compounds corresponding to the more commonly studied TMDs
are given in Table 1 [36–38]. The in-plane Brillouin zone is a hexagon, and it is shown in Figure 2.
It contains the high-symmetry points Γ = (0, 0), K= 4π/3a(1, 0) and M= 4π/3a(0,

√
3/2). The six Q

points correspond to the approximate position of a local minimum of the conduction band.

Figure 1. (a) Sketch of the atomic structure of MX2. The bulk compound has a 2H–MX2 structure with
two MX2 layers per unit cell, each of them being built up from a trigonal prism coordination unit.
The value of the lattice constants for each family is given in Table 1; (b) top view of monolayer
MX2 lattice. Green (blue) circles indicate M (X) atoms. The nearest neighbors (δi) and the next nearest
neighbors (ai) vector are shown in the figure.

Table 1. Lattice parameters for the TMDs (transition metal dichalcogenides) considered in the text.
a represents the M–M atomic distance, u the internal vertical separation between the M and the X
planes, and c′ the distance between the metal M layers. In bulk systems, c = 2c′ accounts for the z-axis
lattice parameter. All values are in Å units.

a u c′

MoS2 3.160 1.586 6.140
MoSe2 3.288 1.664 6.451
WS2 3.153 1.571 6.160
WSe2 3.260 1.657 6.422
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Figure 2. Two-dimensional Brillouin zone (BZ) of MX2. The high symmetry points Γ = (0, 0),
K = 4π/3a(1, 0) and M= 4π/3a(0,

√
3/2) are shown. The Q points (which are not high

symmetry points) indicate the position of the edges of the conduction band in multi-layer samples.

In order to study the electronic band structure of single-layer TMDs, we use the Density
Functional Theory (DFT) calculations presented by some of the authors in Reference [28], in which
the intrinsic spin–orbit interaction term for all atoms is included. Figure 3 shows the band structures
for single-layer MX2 (black lines) together with the TB bands that will be discussed later (red lines)
(DFT calculations were done using the SIESTA code [39,40], with the exchange–correlation potential of
Ceperly–Alder [41] as parametrized by Perdew and Zunger [42]. A split-valence double-ζ basis set
including polarization functions was considered [43]. The energy cutoff and the BZ sampling were
chosen to converge the total energy with a value of 300 Ry and 30× 30× 1. The energy cutoff was set
to 10−6 eV. Spin-orbit interaction of the different compounds was considered by following the method
developed in Reference [44]. The lattice parameters used in the calculation are set to their experimental
values [45–47] and are given in Table 1). One of the main characteristics of TMDs is that, contrary to
what happens in other 2D crystals like graphene or phosphorene, the valence and conduction bands of
MX2 present a very rich orbital contribution. As explained in detail in Reference [35], they are made
by hybridization of the d orbitals of the transition metal, and the p orbitals of the chalcogen. More
specifically, the analysis of the orbital content of the set of bands containing the first four conduction
bands and the first seven valence bands, which cover an energy window from −7 to 5 eV around the
Fermi level, approximately, reveals that these bands are dominated by the five 4d (5d) orbitals of the
metal Mo (W) and the six (three for each layer) 3p (4p) orbitals of the chalcogen S (Se), totaling to up to
93% of the total orbital weight [35].

Single-layer TMDs are direct gap semiconductors, with the gap located at the two inequivalent K
and K’ points of the Brillouin zone (Figure 3). The main orbital character at the edge of the valence
band is due to a combination of dx2−y2 and dxy orbitals of the metal M, which hybridize with px and
py orbitals of the chalcogen X. On the other hand, the edge of the conduction band is formed by
d3z2−r2 orbital of M, plus some contribution of px and py orbitals of X [35]. Contrary to single-layer
samples, multi-layer compounds are indirect gap semiconductors. The edge of the valence band
lies at the Γ point of the BZ, having a major contribution from d3z2−r2 and pz orbitals of M and X
atoms, respectively. The edge of the conduction band in multi-layer samples is placed at the Q point
of the BZ. It is important to notice that the Q point is not a high symmetry point of the Brillouin zone,
and therefore its exact position depends on the number of layers and on the specific compound.
The orbital character at the Q point originates mainly from the dxy and dx2−y2 orbitals of the metal M,
plus px and py orbitals of the chalcogen X, plus a non negligible contribution of pz and d3z2−r2 of X
and M atoms, respectively. Figures 4 and 5 and Figures B1–B3 represent these relative orbital weights
in detail for the different compounds. The extremely rich orbital contribution to the relevant bands that
occur in semiconducting TMDs complicates the derivation of a minimal TB model, valid in the whole
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Brillouin zone. Another important feature of TMDs is that they present a strong SOC, which leads
to a large splitting of the valence band at the K and K’ points of the BZ (see Figure 3). The splitting
is bigger for W than for Mo compounds, due to the heavier mass of the former. SOC also leads to a
splitting of the conduction band at the K point, as well as at the minimum at the Q point [37,48].

Figure 3. Electronic band structure of single-layer MX2 from Density Functional Theory (DFT)
calculations (black lines) and from tight-binding (TB) (red lines).
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Figure 4. Band structure and orbital character of single-layer MoS2. The thickness of the bands
represents the orbital weight, where the d character (d2 = dx2−y2 , dxy and d0 = d3z2−r2 ) refers to the Mo
atom 4d orbitals, while the p character (where pxy = px, py) refers to 3p orbitals of sulfur. Top panels
correspond to orbital weight from DFT calculations, whereas bottom panels correspond to orbital
weight from TB results. The black lines in the bottom panels are the DFT bands. Notice that spin–orbit
coupling is not included in these plots.

3. Tight-Binding Model

In this section, we consider the electronic band structure of TMDs, in the whole BZ,
from a Slater–Koster tight-binding approximation [49]. We use the model developed by
Cappelluti et al. [35], which contains 11 orbitals per layer. In particular, the model contains the
five d orbitals of the metal M atom and the six p orbitals of the two chalcogen X atoms in the unit cell.
The used scheme has been recently used in other works studying the electronic band structure of
TMDs from a tight-binding perspective [50,51]. The corresponding base can be expressed as [35](

pt
x, pt

y, pt
z, d3z2−r2 , dxz, dyz, dx2−y2 , dxy, pb

x, pb
y, pb

z,
)

(1)

where the indices t and b label the top and bottom chalcogen planes, respectively. The model is defined
by the hopping integrals between the different orbitals, which are described in terms of σ, π and
δ ligands. In the following, we reproduce the most important results, and we refer the reader to
Reference [35,48] for details of the model. The Slater–Koster parameters that account for the relevant
hopping processes of the model are Vpdσ and Vpdπ for M–X bonds, Vddσ, Vddπ and Vddδ for M–M
bonds, and Vppσ and Vppπ for X–X bonds. Additional parameters of the theory are the crystal fields
∆0, ∆1, ∆2, ∆p, ∆z, describing, respectively, the atomic level of the l = 0 (d3z2−r2), the l = 1 (dxz, dyz),
the l = 2 (dx2−y2 , dxy) M orbitals, the in-plane (px, py) X orbitals and the out-of-plane pz X orbitals.

This model can be simplified by performing a unitary transformation that takes the p orbitals of
the top and bottom layers of the X atoms into their symmetric and antisymmetric combinations with
respect to the z-axis. This way, the 11-band model is decoupled into a 6× 6 block with even (odd)
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symmetry of the px, py (pz) orbitals with respect to z → −z inversion, and a 5× 5 band block with
opposite combination. Since low energy excitations belong exclusively to the first block, the fit to DFT
that we will present later will be performed within this sector. Therefore, the relevant bands above and
below the gap are well accounted for by the reduced Hilbert space:

ψ =
(

d3z2−r2 , dx2−y2 , dxy, pS
x , pS

y , pA
z

)
, (2)

where the S and A superscripts stand for the symmetric and antisymmetric combinations of
the p-orbitals of the X atom, pS

i = 1/
√

2(pt
i + pb

i ) and pA
i = 1/

√
2(pt

i − pb
i ), with i = x, y, z.

The tight-binding Hamiltonian defined by base (2), including local spin–orbit coupling, can be
expressed in real space as

H = ∑
i,µν

εµ,νc†
i,µci,ν + ∑

ij,µν
[tij,µνc†

i,µcj,ν + H.c.], (3)

where c†
i,µ(ci,µ) creates (annihilates) an electron in the unit cell i in the atomic orbital µ = 1, . . . , 6,

belonging to the Hilbert space defined by base (2). The Hamiltonian in k-space can be expressed
as [30,35,48]:

H =

(
HMMHMX
HMX

†HXX

)
,

HMM = εM + 2 ∑i=1,2,3 tMM
i cos (k · ai),

HXX = εX + 2 ∑i=1,2,3 tXX
i cos (k · ai),

HMX = ∑i=1,2,3 tMX
i e−ik·δi ,

(4)

where the vectors (δi) and (ai) are shown in Figure 1b. The analytical expressions for the TB model are
given in Appendix A.

4. Slater–Koster Parameters from Fitting to Ab Initio Calculations

Finding the optimal set of Slater–Koster parameters for the TB model considered here is a
difficult task. Two main requirements must be satisfied: a good reproduction of the structure of the
relevant electronic bands, and faithful representation of the orbital contribution along such bands. The
last condition is especially relevant because, for example, different kinds of strains do not affect all the
hoppings in the same manner. Therefore, capturing the proper orbital contribution is essential when
using the TB model for calculations of physical properties of strained membranes. The same happens
when one considers the effect of vacancies, adatoms, etc.

In this work, we have obtained the Slater–Koster parameters for each compound from
a minimization procedure that has the possibility to consider a band/momentum resolved weight
that allows us to resolve more accurately particular k regions of selected bands (e.g., edges of
the valence and conduction bands)(The calculation of tight-binding band structure and fitting
to DFT have been performed using the MathQ package, developed by P. San-Jose. (Source:
http://www.icmm.csic.es/sanjose/MathQ/MathQ.html)). Furthermore, we can apply constrictions
for the orbital contribution at specific band regions, taking as a reference the information from the DFT
wave-functions. The sets of Slater–Koster parameters that we have obtained for the four compounds
are given in Table 2. During the fitting, we have used only the 6× 6 block of the Hamiltonian because,
as explained above, it accounts for the valence and conduction bands. Therefore, we obtain as output
all the Slater–Koster parameters but one, ∆1, which is the crystal field corresponding to d2 = dxz,yz

orbitals, whose contribution is absent in the 6× 6 block. What we have done to estimate the value
of ∆1 is to impose that the edges of the TB and DFT bands coincide for the lower energy band of
the 5× 5 block at the K point of the Brillouin zone. The band structure calculated with the 6× 6
block of this model is plotted in Figure 3, as compared to DFT calculations. In Figures 4 and 5
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and Figures B1–B3, we compare the orbital contribution of the TB model, using the Slater–Koster
parameters of Table 2, to the corresponding orbital contribution as obtained from DFT. We show the
results for the most relevant orbitals (d0 = d3z2−r2 , d2 = dxy, dx2−y2 , pxy = px, py and pz), and we can
conclude that the TB model not only presents an acceptable fit to the band structure, but, importantly,
the wave-functions also reproduce the DFT orbital contribution at the most important points of the
band structure. Table 3 contains the main orbital contribution of each compound at the most relevant
edges of the band structure, namely valence and conduction bands at K point, and valence band at
Γ point of the Brillouin zone. We notice that the main restriction of the TB model considered here is
that it only includes up to next-nearest-neighbor hopping terms, and this is why the fit to the DFT
bands cannot be perfect. More sophisticated methods such as DFT based tight-binding Hamiltonians
represented in the basis of maximally localized Wannier functions can lead to better agreements, at
the cost of inclusion of longer-range hopping terms [52]. For the case presented here, and due to the
automatised fitting procedure, we can conclude that the set of parameters presented in Table 2 must be
close to the ideal solution.

Table 2. Spin–orbit coupling λα and tight-binding parameters for single-layer MX2, where the metal
M is Mo or W and X is S or Se. All of the Slater–Koster parameters are in units of eV. Spin-Orbit (SO)
coupling parameters are taken from Reference [37].

MoS2 MoSe2 WS2 WSe2

SOC λM 0.086 0.089 0.271 0.251
λX 0.052 0.256 0.057 0.439

Crystal Fields

∆0 −1.094 −1.144 −1.155 −0.935
∆1 −0.050 −0.250 −0.650 −1.250
∆2 −1.511 −1.488 −2.279 −2.321
∆p −3.559 −4.931 −3.864 −5.629
∆z −6.886 −7.503 −7.327 −6.759

M–X Vpdσ 3.689 3.728 7.911 5.803
Vpdπ −1.241 −1.222 −1.220 −1.081

M–M
Vddσ −0.895 −0.823 −1.328 −1.129
Vddπ 0.252 0.215 0.121 0.094
Vddδ 0.228 0.192 0.442 0.317

X–X Vppσ 1.225 1.256 1.178 1.530
Vppπ −0.467 −0.205 −0.273 −0.123

Table 3. Comparison of the orbital contribution at band edges at K and Γ points obtained from DFT
(Density Functional Theory) and TB (tight-binding) models. Kv (Kc) refers to the edge of the valence
(conduction) band at K point, and Γv refers to the edge of the valence band at the Γ point.

Kv Kc Γv

DFT TB DFT TB DFT TB

MoS2

d0 0.0 0.0 0.82 0.77 0.66 0.96
d2 0.76 1.0 0.0 0.0 0.0 0.0
pxy 0.20 0.0 0.12 0.23 0.0 0.0
pz 0.0 0.0 0.0 0.00 0.28 0.04

MoSe2

d0 0.0 0.0 0.83 0.83 0.71 0.96
d2 0.78 1.0 0.0 0.0 0.0 0.0
pxy 0.18 0.0 0.10 0.17 0.0 0.0
pz 0.0 0.0 0.0 0.0 0.23 0.04

WS2

d0 0.0 0.0 0.80 0.76 0.64 0.98
d2 0.74 0.94 0.0 0.0 0.0 0.0
pxy 0.21 0.06 0.07 0.24 0.0 0.0
pz 0.0 0.0 0.0 0.0 0.28 0.02

WSe2

d0 0.0 0.0 0.82 0.86 0.69 0.99
d2 0.73 0.95 0.0 0.0 0.0 0.0
pxy 0.20 0.05 0.05 0.14 0.0 0.0
pz 0.0 0.0 0.0 0.0 0.23 0.01
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5. Optical Conductivity

Once we have the tight-binding models for the four compounds, we can use them to calculate
physical observables as, for example, the optical conductivity σ(ω). For this aim, we use the
Kubo formula

σ(ω) = e2

h
h̄

Aω ∑mn,k( f (En)− f (Em))×

|〈Ψn(k)|v̂|Ψm(k)〉|2 δ[h̄ω− (En(k)− Em(k))],
(5)

where A is the area of the unit cell, Ψn(k) is the eigenstate of energy En, f (En) = 1/(1 + eβEn) is the
Fermi–Dirac distribution function, in terms of the inverse temperature β = 1/kBT and considering
that the Fermi energy lies in the gap, and v̂ = (1/h̄)∂Ĥ/∂k is the velocity operator. The results
are shown, for the approximate range of validity of our TB models (∼1 eV above and below the
band gap), in Figure 5. We observe that, for all the compounds, there is a threshold for the onset
of optical transitions that is equal to the gap ∆. The steplike structure of σ(ω) at low energies (see
insets of each panel in Figure 5) is due to the SOC, which leads to two sets of optical transitions in
the spectrum. Due to the stronger SOC of heavier W atoms, the effect is especially visible in WS2 and
WSe2, with plateaus of ∼0.4 eV in σ(ω), corresponding to the energy splitting of the valence band
at the K and K’ points of the Brillouin zone (see Figure 3). These transitions lead to the well-known
A and B absorption peaks observed in photoluminescence [16]. We further notice that our results
for the optical conductivity are in good agreement, even for the onset energy, with experimental
measurements (see e.g., Reference [53]). At higher energies, the optical conductivity shows a series
of peaks that are associated with optical transitions between flat bands in the spectrum (van Hove
singularities). Such van Hove singularities are clearly evident for the valence and conduction bands at
the M point of the Brillouin zone (see Figure 3). We notice that disorder (vacancies, adatoms, etc.), not
included here, can lead to the creation of midgap states that allow for additional optical transitions in
the spectrum [29].
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Figure 5. Optical conductivity of the four compounds, calculated from the TB model. The insets show
the respective low energy zooms of σ(ω) around the onset of optical transitions.
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6. Conclusions

In summary, we have generalized the tight-binding model for MoS2 of Reference [35] to the other
families of semiconducting TMDs: MoSe2, WS2 and WSe2. Our main result is the set of Slater–Koster
parameters of Table 2, which have been obtained from a fit to DFT calculations in which special
care was paid to capture the main orbital contribution of the TB bands at the relevant regions of
the band structure. The obtained models have been used to calculate the optical conductivity of
the different compounds. This approximation can be straightforwardly generalized to multi-layer
systems with arbitrary stacking orders, heterostructures made from the stacking of layers of different
compounds, twisted multilayers, strained and/or disordered samples, etc.

Acknowledgments: We appreciate useful conversations with Emmanuele Cappelluti, Pablo Ordejón,
Francisco Guinea, María Pilar López-Sancho and Habib Rostami. Jose Angel Silva-Guillén acknowledges
financial support from European Union’s Seventh Framework Programme (FP7/2007–2013) through the ERC
Advanced Grant NOV- GRAPHENE (GA 290846). Pablo San-Jose was supported by MINECO through Grant
No. FIS2015-65706-P and the Ramón y Cajal programme RYC-2013-14645. Rafael Roldán acknowledges financial
support from MINECO (FIS2014-58445-JIN).

Author Contributions: J.S.-G. performed the ab-initio calculations. P.S.-J. calculated the conductance curves.
R.R. devised the project, performed the tight-binding fits and wrote the manuscript. All authors contributed to
discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. On-Site and Hopping Matrices of the 6× 6 Block

For convenience, we reproduce in this appendix the analytical expressions for the model.
The on-site terms of the Hamiltonian can be written in the compact form [48]:

ε =

(
εM 0
0 εX

)
, (A1)

where

εM =

∆0 0 0
0 ∆2 −iλM ŝz

0 iλM ŝz ∆2

 ,

(A2)

εX =

∆p + t⊥xx −iλX
2 ŝz 0

iλX
2 ŝz ∆p + t⊥yy 0
0 0 ∆z − t⊥zz

 ,

where λM and λX are the SOC of the metal (M) and chalcogen atoms (X), respectively, and ŝz = ±
is the z-component of the spin degree of freedom [48]. The effects of vertical hopping Vpp between
top and bottom X atoms are considered through the terms t⊥xx = t⊥yy = Vppπ, and t⊥zz = Vppσ.
The nearest-neighbor hopping between M and X atoms are

tMX
1 =

√
2

7
√

7

−9Vpdπ +
√

3Vpdσ 3
√

3Vpdπ −Vpdσ 12Vpdπ +
√

3Vpdσ
5
√

3Vpdπ + 3Vpdσ 9Vpdπ −
√

3Vpdσ −2
√

3Vpdπ + 3Vpdσ
−Vpdπ − 3

√
3Vpdσ 5

√
3Vpdπ + 3Vpdσ 6Vpdπ − 3

√
3Vpdσ

 , (A3)

tMX
2 =

√
2

7
√

7

 0 −6
√

3Vpdπ + 2Vpdσ 12Vpdπ +
√

3Vpdσ
0 −6Vpdπ − 4

√
3Vpdσ 4

√
3Vpdπ − 6Vpdσ

14Vpdπ 0 0

 , (A4)
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tMX
3 =

√
2

7
√

7

 9Vpdπ −
√

3Vpdσ 3
√

3Vpdπ −Vpdσ 12Vpdπ +
√

3Vpdσ
−5
√

3Vpdπ − 3Vpdσ 9Vpdπ −
√

3Vpdσ −2
√

3Vpdπ + 3Vpdσ
−Vpdπ − 3

√
3Vpdσ −5

√
3Vpdπ − 3Vpdσ −6Vpdπ + 3

√
3Vpdσ

 , (A5)

where the direction of the hopping labelled by subindices 1, 2, and 3 is shown in Figure 1b.
Hopping terms corresponding to processes between the same kind of atoms, M–M or X–X (see
Figure 1b), are given by

tMM
1 =

1
4

 3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ) − 3
2 (Vddδ −Vddσ)√

3
2 (−Vddδ + Vddσ)

1
4 (Vddδ + 12Vddπ + 3Vddσ)

√
3

4 (Vddδ − 4Vddπ + 3Vddσ)

− 3
2 (Vddδ −Vddσ)

√
3

4 (Vddδ − 4Vddπ + 3Vddσ)
1
4 (3Vddδ + 4Vddπ + 9Vddσ)

 , (A6)

tMM
2 =

1
4

 3Vddδ + Vddσ
√

3(Vddδ −Vddσ) 0√
3(Vddδ −Vddσ) Vddδ + 3Vddσ 0

0 0 4Vddπ

 , (A7)

tMM
3 =

1
4

 3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ)
3
2 (Vddδ −Vddσ)√

3
2 (−Vddδ + Vddσ)

1
4 (Vddδ + 12Vddπ + 3Vddσ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ)
3
2 (Vddδ −Vddσ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ)
1
4 (3Vddδ + 4Vddπ + 9Vddσ)

 , (A8)

tXX
1 =

1
4

 3Vppπ + Vppσ
√

3(Vppπ −Vppσ) 0√
3(Vppπ −Vppσ) Vppπ + 3Vppσ 0

0 0 4Vppπ

 , (A9)

tXX
2 =

Vppσ 0 0
0 Vppπ 0
0 0 Vppπ

 , (A10)

tXX
3 =

1
4

 3Vppπ + Vppσ −
√

3(Vppπ −Vppσ) 0
−
√

3(Vppπ −Vppσ) Vppπ + 3Vppσ 0
0 0 4Vppπ

 . (A11)

Appendix B. Orbital Contribution of the Tight-Binding Bands

In this appendix, we show the orbital contribution of the tight-binding bands, as compared to the
DFT results, for MoSe2 (Figure B1), WS2 (Figure B2) and WSe2 (Figure B3).
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Figure B1. Same as Figure 4 but for MoSe2.

Figure B2. Same as Figure 4 but for WS2.
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Figure B3. Same as Figure 4 but for WSe2.
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