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Abstract: Background: Smartphone overdependence is a type of mental disorder that requires
continuous treatment for cure and prevention. A smartphone overdependence management system
that is based on scientific evidence is required. This study proposes the design, development and
implementation of a smartphone overdependence management system for self-control of smart
devices. Methods: The system architecture of the Smartphone Overdependence Management
System (SOMS) primarily consists of four sessions of mental monitoring: (1) Baseline settlement
session; (2) Assessment session; (3) Sensing & monitoring session; and (4) Analysis and feedback
session. We developed the smartphone-usage-monitoring application (app) and MindsCare personal
computer (PC) app to receive and integrate usage data from smartphone users. We analyzed
smartphone usage data using the Chi-square Automatic Interaction Detector (CHAID). Based on the
baseline settlement results, we designed a feedback service to intervene. We implemented the system
using 96 participants for testing and validation. The participants were classified into two groups:
the smartphone usage control group (SUC) and the smartphone usage disorder addiction group
(SUD). Results: The background smartphone monitoring app of the proposed system successfully
monitored the smartphone usage based on the developed algorithm. The usage minutes of the SUD
were higher than the usage minutes of the SUC in 11 of the 16 categories developed in our study.
Via the MindsCare PC app, the data were successfully integrated and stored, and managers can
successfully analyze and diagnose based on the monitored data. Conclusion: The SOMS is a new
system that is based on integrated personalized data for evidence-based smartphone overdependence
intervention. The SOMS is useful for managing usage data, diagnosing smartphone overdependence,
classifying usage patterns and predicting smartphone overdependence. This system contributes to
the diagnosis of an abstract mental status, such as smartphone overdependence, based on specific
scientific indicators without reliance on consultation.

Appl. Sci. 2016, 6, 440; doi:10.3390/app6120440 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci


Appl. Sci. 2016, 6, 440 2 of 12

Keywords: smartphone; overdependence; telepsychiatry; monitoring system

1. Introduction

The use of smartphones has increased convenience in all sectors of everyday lives. However,
numerous studies in the previous have stated the following side effects of excessive smartphone
usage [1,2]: Due to a lack of self-control [3], smartphone overuse interferes with daily life and sleep [4];
The side effects are severe at times and may cause depressive symptoms and social relationship
failure [5]; Negative effects are valid regardless of gender, particularly in the case of hindering
academic achievements [6].

The term smartphone overuse includes all addictive activities regarding the problematic use of
the Internet [7], playing games, logging on to messengers, or accessing virtual communities to the
extent that they neglect positive areas of life [8].

Sufficient evidence supports the fact that the overdependence of smartphones requires continuous
mental treatment sessions to cure this disorder and, if possible, prevent the disorder. Both treatment
and prevention should be accompanied by a systemized monitoring environment for appropriate
intervention. Information technology (IT) has been extensively applied in other healthcare systems,
and many variants of medical information systems (MIS), which enable efficient monitoring of health
statuses, have been created [9–11]. Although previous studies have addressed telepsychiatry [12],
they primarily rely on videoconferencing.

However, the proper management of mental-related issues is difficult compared with the
management of physical illness, such as those caused by viruses or bacteria, because these issues do not
accompany distinct causal biomarkers. A recent report has stated that studies about reproducible and
clinically actionable markers are lacking in the general case of psychiatry, such as overdependence [13].

This is shown in past literature also, with many utilizing smartphone monitoring application
on physical indicators that monitors the changes in heart activity [14], screens for hearing loss [15],
or assesses mobility of the elderly [16], etc. As mentioned, mental status such as overuse is still a
difficult psychological marker to monitor, with conventional treatment relying on “perceived overuse”,
and not scientific evidence.

Therefore, we propose the Smartphone Overdependence Management System (SOMS), which is
a smartphone overdependence management system that delivers mental medical services based on
scientific evidence. The goal of the study is to develop a system that scientifically analyzes behavioral
patterns that directly cause smartphone overdependence, prevents and monitors smartphone
overdependence, and treats patients with integrated information. The system service was developed
and implemented for potentially and currently addicted adults and adolescents.

2. Related Research

The majority of studies have focused on social scientific findings regarding the risks and causal
pathways of smartphone overuse [17–19]. Few studies consider smartphone overuse as a psychiatric
problem and apply telemedicine for intervention. Lee et al. [20] proposed the Smartphone Addiction
Management System (SAMS); however, it lacked a proper automated measurement algorithm
(as mentioned in their limitations) and appeared to include location information, which exhibits
weak importance in the case of smartphone usage monitoring.

Telepsychiatry, which is a variant of telemedicine, has been the center of solutions in medical
information systems regarding mental health. Telepsychiatry initially emerged due to the difficulty
of providing mental treatment service [21] in rural and geographically isolated regions. Although it
is costly and some patients from remote distances are unable to travel to urban medical centers
for psychiatric treatment, the expected outcome of this IT-converged service was subjected to
skepticism because many experts believed that mental status issues can be solved only with face-to-face
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consultation. However, previous consecutive studies indicate that telepsychiatry services, such
as interactive videoconferencing, are as effective as face-to-face psychiatry treatment [12] in most
psychiatry fields. Positive results were similar for adults, adolescents and children. The studies prove
that telepsychiatry is a feasible and acceptable approach to providing mental medical services to
youths [22] with educational effects [23].

Additional unique possibilities by applying telemedicine facilitates monitoring using up-to-date
mobile technology [24]. Focusing on monitoring and preventing the relapse of alcohol addicts using
smartphones, Gustafson et al. [25] proved the effectiveness of smartphone monitoring. Specialized
and personalized intervention is possible only based on individually monitored specific data and
evidence. This study proposes a medical information system that is based on an optimized algorithm
that provides monitoring services to patients to diagnose based on objective data.

3. System Overview

3.1. Total System Architecture

The system architecture of the SOMS consists of four main sessions of mental monitoring:
(1) Baseline settlement session; (2) Assessment session; (3) Sensing & monitoring session; and
(4) Analysis session. Figure 1 shows the total system architecture.
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Figure 1. Total System Architecture of the Smartphone Overdependence Management System (SOMS).

In the baseline settlement session, we obtain the psychological information of all patients
using surveys and an offline medical test. The psychological information is obtained to assess the
socio-demographical status, Internet usage status, smartphone usage status, Smartphone Addiction
Proneness Scale (SAPS), depression status, anxiety status, impulsivity status, and self-control status
of each patient. In the assessment phase, the patient information is processed using the Chi-square
Automatic Interaction Detector (CHAID) algorithm [26]. Six important indicators—gaming costs,
average weekday game usage, offline community, average weekend and holiday game usage, marital
status, and perceived addiction—are assessed using the CHAID algorithm.

After the assessment phase, the mobile device usage behavior of the patient is sensed and
monitored via the mobile application (app), which is developed as a part of the SOMS. The general
device usage, game usage periodical pattern, social network service (SNS) and Internet usage are
monitored to obtain usage behavior evidence.

The analysis session includes the total Internet dependency analysis of the patient. This session
provides a conclusion for the overdependence usage status. Personalized feedback and treatment
programs are developed.

Considering the diagnosis based on scientific indicators, the system provides a feedback service
for patients when intervention is necessary. The system is implemented to randomly selected adults
nationwide and willingly participating middle school and high school adolescents.
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3.2. General Specifications

3.2.1. Baseline Settlement Session

We conducted a general survey to assess the psychological status of smartphone overdependence.
In the case of adolescents, adolescents who accepted the terms to provide information and had their
parents’ approval were provided services by the SOMS.

In all surveys, various survey tools, such as the SAPS [27], a behavioral activation system/behavioral
inhibition system (BAS/BIS) [28], a short version of the smartphone addiction scale (SAS-SV) [29],
depression symptom checklist-90-revision (SCL-90-R) [30], Dickman Functional and Dysfunctional
Impulsivity Inventory (DFDII) [31], and belief self-control scale (BSCS) [32], were employed.

The participants were divided into two groups: the smartphone usage control (SUC) group, which
included healthy and productive smartphone users, and the smartphone usage disorder (SUD) group,
which included negative users with smartphone overdependence.

3.2.2. Assessment Session

The obtained information was input to the developed algorithm based on the CHAID. In our
previous study [33], an optimized algorithm to determine the Internet overdependence condition was
derived from the CHAID decision tree and applied to the proposed analysis system, as shown in
Figure 2.
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When the monitored data are input in the analysis algorithm, the following six indicators are
scored and aggregated according to each weight percentage by importance: whether the user has spent
more than $4.5–45.02 on gaming (50%); whether the user’s average weekday gaming time exceeds
2.9 h (23%); whether the user attends occasional events of the offline gaming community and spends
his/her time and money (13%); whether the user’s average holiday or weekend gaming time exceeds
4.19 h (7%); the marital status of the user (4%); and the user’s self-perception of addictive Internet
gaming use (3%). Weight differences were derived from our previous study and were applied in this
algorithm. Each of the six indicators’ scores is weighted and scored. The aggregated score of the six
indicators is the total smartphone over-dependency score of the individual.

3.2.3. Sensing & Monitoring Session

Via the mobile app of the SOMS, the mobile device usage data of the patients are collected and
sent to the main server. General phone usage contains all general status information about a phone,



Appl. Sci. 2016, 6, 440 5 of 12

even data regarding whether the phone is turned on or off, whether the phone is in an idle state,
and whether an Internet connection exists. The most important feature is Internet, SNS, and game
usage monitoring. The general application data, exact usage time and period logs are monitored via
the background application. The proposed application supports only Android phones. The system
architecture is shown in Figure 3.
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The installed app collects the application usage information (amount of usage and frequency of
usage) and sends it to the usage collection server. The Google app store application information is
sent to the app classification server. Only the “application classification” information provided by
Google is obtained. However, when the application classification information is omitted, the researcher
manually types in the classification information. If data errors occur in the app classification server,
the researcher manually corrects the errors. Then, the non-errors and data that are adjusted by the
researcher are integrated as classified app data and sent to the usage storage. The application usage
and classification information are integrated and sent to the usage storage.

These usage data are useful for analyzing individual application usage information but are not
useful for data analysis. In data analysis, the data must be refined. This task is performed by the refine
server, which optimizes the refined data for visualization or analysis. The refine server contains a
computational algorithm to classify data into meaningful fields, as shown in Table 1. Note that one
measurement occurs, for example, when the user begins a game application one time.

In the general measurement information field, classification by day, hour, or ten minutes was
conducted to adjust the periods when the smartphone was off or not in use. If the non-usage period is
included, the overuse level of the patient is underestimated. The usage data can be analyzed without
a smartphone non-usage period bias to manage the data quality. The management fields that are
classified and defined based on the binge/chronic status enable researchers to categorize binge overuse
and chronic overuse. Binge overuse accounts for people who play games in a certain short period
(for example, weekends) but play a lot, whereas chronic overuse accounts for people who play a lot
throughout an entire week or period.

With the survey data obtained in the baseline settlement phase, the refined data are sent to a
web management system, which is specifically shown in Section 4.5. Using the data from the web
management server, researchers can conduct the analysis.
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Table 1. Data quality management.

Fields Definition Calculation

General Measurement
Information

Measurement Ratio
(Standard: Day)

Number o f Measurements
Total Measurement Period

Measurement Ratio
(Standard: Hour)

Number o f Measured Hours
Number o f Measurements×24

Measurement Ratio
(Standard: Ten Minutes)

Number o f Measured 10 minutes
Number o f Measured Hours×6

Total Number of
Measurements Ratio

Number o f Measured Hours
Number o f Measurements×24×6

Measurement Period Ratio Number o f Measured Hours
Total Measurement Period×24×6

Measurement Fields
Classified by

Binge/Chronic Status

- Binge Chronic

Average Usage by Day 1 Day Usage Amount
Measured Days Not Able

Average Usage Total App Usage Time
App Usage Days

Total App Usage Time
Total Measured Days

Aggregate Average Usage
by Category

k
∑

n=1

Total App Usage Time
App Usage Days

k
∑

n=1

Total App Usage Time
Total Measured Days

(n indicates the number of
all apps in the category)

(n indicates the number of
all apps in the category)

Average Usage by Certain
Period (e.g., 2:00 p.m.

to 3:00 p.m.)

Total App Usage Time
at Certain Period
App Usage Days
at Certain Period

Total App Usage Time
at Certain Period
Total Certain Period

3.2.4. Analysis Session

The individually targeted diagnosis that considers six indicators of a patient is provided based on
an analysis. The total score of smartphone overdependence is provided (as mentioned in the assessment
session), and brief specific comments are simultaneously provided. With the total smartphone
overdependence score (e.g., 83.3% or 81%), comments such as “Costs for games are pretty high . . . ”
or “You tend to have many activities related to games . . . ” are provided to account for the specific
indicator(s) with which the user has a problem.

This simplified recommendation is envisioned to help patients and their physicians understand
the nature of their overdependence on the smartphone, monitor the overuse, assess risk and help
construct the future mental treatment.

4. Implementation

4.1. Target Population

A baseline settlement survey was conducted with 139 randomly selected participants, who
agreed to install the smartphone application of the proposed system. The system was consecutively
implemented using these participants. However, 43 participants were excluded due to dropout within
seven days or data collection errors. As a result, 96 participants remained (69.06%). The research
procedures were performed in accordance with the Declaration of Helsinki. The Institutional Review
Board of the Catholic University of South Korea, ST. Mary’s Hospital (IRB number: KC15EISI0103).

All 96 participants were classified into two groups: the SUD group and the SUC group. The SUD
and SUC groups were distinguished based on the SAPS standards. As a result, the SUD groups
had 29 participants, and the SUC groups had 67 participants. The socio-demographic status for the
participants in the SUD and SUC groups is listed in Table 2.
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Table 2. Socio-demographic status of participants in the smartphone usage disorder (SUD) and
smartphone usage control (SUC) groups.

Characteristics
SUD (n = 29) SUC (n = 67) Total (n = 96)

n % n % n %

Gender
Male 22 75.9 65 97.0 87 90.6

Female 7 31.8 2 3.4 9 9.4

Age
10–19 15 51.7 57 85.1 72 75.0
20–29 7 24.1 4 6.0 11 11.5
30–39 7 24.1 6 9.0 13 13.5

Education
Undergraduate 20 69.0 59 88.1 79 82.3

Graduate 8 27.6 7 10.4 15 15.6
Postgraduate 1 3.4 1 1.5 2 2.1

Job
Employed 9 31.0 6 9.0 15 15.6

Unemployed 20 69.0 61 91.0 81 84.4

Marital Status
Married 5 17.2 5 7.5 10 10.4

Unmarried 24 82.8 62 92.5 86 89.6

SES

High 3 10.3 15 22.4 18 18.8
Middle 16 55.2 32 47.8 48 50.0

Low 8 27.6 18 26.9 26 27.1
Unknown 2 6.9 2 3.0 4 4.2

Unemployed: Student, Housewife; Abbreviation: SES, Socio-economic Status.

Most participants were male (n = 86, 90.6%), and the age of most participants ranged from 10–19
(n = 72, 75.0%). Most participants had an undergraduate degree or lower level of education (n = 79,
82.3%), were unemployed (n = 81, 84.4%), and were not married (n = 86, 89.6%), which is also noted by
the age demographics. Half of the participants replied that their socio-economic status (SES) was in
the middle (n = 48, 50%).

4.2. Smartphone Usage Monitoring Implementation

The smartphone application of the SOMS was installed on the mobile phones of the informed
participants for additional monitoring. The app monitored the smartphone usage patterns of the
participants to obtain objective and specific data to provide evidence of smartphone overdependence.

The SOMS smartphone-usage-monitoring application can be downloaded and installed from app
stores. It is not loaded with a user interface (UI); after it is installed and initially executed, it runs as a
background app to monitor general usage events. Note that users must approve the app usage access
by tapping “on” on the app usage access screen. Then, the data are sent to the personal computer (PC)
application of the management servers for the analysis (Section 4.3).

4.3. Management Server: MindsCare PC Application

The aggregated patient data were sent to the server for monitoring. The received data were
integrated and mined through the MindsCare PC application and shown as a visual UI, as illustrated
in Figures 4 and 5.

On the Dashboard page (Figure 4a), the SUD, SAPS, BAS/BIS, DFDII, and BSCS information is
shown in each visual circular chart. The users can view the number of samples when they place the
mouse cursor over the circular chart (Figure 4b). The group distribution by age and sex is shown in
the bar graphs, and the managers can view the number of samples when they place the mouse cursor
over the bar graphs (Figure 4c).

The user smartphone application monitoring information that is obtained via the background-
running app Internet Detox is observed on the Smartphone Usage (SMU) page (Figure 5a). The top
five smartphone application lists are shown in a circular chart (e.g., Kakao Talk, Chrome, and Google
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apps). A manager can view the aggregate usage time of each application when they place the mouse
cursor over the circular chart (Figure 5b).Appl. Sci. 2016, 6, 440 8 of 13 
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4.4. Smartphone Usage Results

The smartphone usage monitoring results are listed in Table 3. The results were calculated based
on the daily average usage. The Google Play store provides 35 category standards, and registered
apps to the store are categorized. However, we identified some categories that can be integrated and
reorganized. Thus, the 35 categories were reorganized into the following 16 items: finance, system, web,
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SNS, shopping, business, tool/productivity, entertainment, weather, transportation, photo, lifestyle,
health/exercise, game, and education, as shown in Table 3.

Table 3. Daily average usage by category.

Category SUD SUC Usage Gap
User Usage User Usage

Finance 24 32.5 30 4.5 28.0
System 27 39.7 61 13.8 25.9

Web 27 61.8 57 42.8 19.0
SNS 27 63.7 55 45.0 18.7

Shopping 16 21.5 15 11.6 9.9
Business 21 8.2 28 3.2 5.0

Tool/Productivity 26 14.4 55 10.6 3.8
Entertainment 27 35.0 57 31.2 3.8

Weather 19 4.5 11 1.6 2.9
Transportation 22 5.2 15 3.1 2.1

Photo 23 7.5 38 6.9 0.6
Lifestyle 26 8.8 49 9.3 -0.5

Health/exercise 6 4.1 8 6.4 -2.3
Game 24 20.5 53 23.6 -3.2

Education 14 1.1 14 7.8 -6.7
Decoration 15 92.0 55 102.7 -10.7

Usage: minutes; Usage Gap: SUD − SUC.

“User” refers to the number of users who have used the app of a certain category, and “usage
minutes” refers to the time that the user has spent on the app of this category. The usage gap
was calculated by subtracting the usage minutes of the SUC from the usage minutes of the SUD.
With the exception of five categories (lifestyle, health/exercise, game, education, and decoration),
the monitoring results indicate that the SUD usage minutes in all 11 categories were higher than the
SUC usage minutes. The most noticeable categories were finance- and system-related apps with usage
gaps of 28.0 and 25.9, respectively.

4.5. Discussion

This study attempts to design, develop, and implement a smartphone overdependence
management system for self-control of smart devices. Based on the results of this study, we present the
discussions below.

In the baseline settlement session, we adapt diverse psychological tools, such as SAPS, BAS/BIS,
SAS-SV, SCL-90-R, DFDII, and BSCS, to assess the psychological status of smartphone overdependence.
These tools support the system to correctly analyze smartphone usage. Future research may identify
other psychological tools to address missing areas.

In the assessment session, we employ the CHAID Algorithm and six indicators to assess the
smartphone overdependence. However, the shortcoming is that the six indicators were developed
only for Internet dependence. Thus, future research may involve the development of new indicators
that are more applicable in other fields.

In the sensing and monitoring session, the background smartphone app monitors specific overuse
stats. In the MindsCare PC app, the data are successfully stored and integrated, which enables the
monitoring of general application data, exact usage time and period logs. The limitation is that the
proposed app only supports Android phones due to security issues at the stage of development, and
because more than 85% of smartphone users in South Korea use Android phones. Considering
worldwide users, future research should develop the usage collection app for other operating
systems (OSs).
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In the analysis and feedback session, medical treatment recommendations are provided based
on six indicators. If the user has an impediment in two of the six indicators, recommendations are
provided based on these two impediments.

Implementation results of the participants of the system indicate that the usage minutes of SUD
were higher than the usage minutes of SUC in 11 categories. With the exception of five categories
(lifestyle, health/exercise, game, education, and decoration), the daily-average comparison between
the SUD group and the SUC group in the 16 categories that were defined from this study indicate
that the usage minutes of SUD were higher than the usage minutes of SUC in all 11 categories.
In the “game” category, the SUD and SUC groups did not significantly differ (SUD − SUC = −3.2).
The smartphone usage time for the SUC group was higher than the smartphone usage for the SUD
group. Although games can be easily associated with addiction, and this linkage is sometimes
viable [34,35], the proposed results suggest the larger effect of web usage or SNS usage in the case
of smartphones. The results also correspond with recent studies that emphasized the importance of
considering SNS as a main factor for smartphone overuse [36,37].

A brief comparison with the SAMS is discussed because it is almost the first reference of
the smartphone overuse monitoring system. Other related solutions were simple apps that were
non-systematic or were not studies. The main difference is that the SAMS simply shows raw
smartphone usage, whereas we developed an algorithm to filter raw information and consider the
key risks or variables regarding smartphone overuse. The proposed system shows better monitored
results based on weekday or weekend usage, which is an important risk factor that was discussed in
previous research [38].

Another important point is that we developed 16 new categories to classify the collected app
data: finance, system, web, SNS, shopping, business, tool/productivity, entertainment, weather,
transportation, photo, lifestyle, health/exercise, game, and education. The previous 35 categories
established by Google are overspecified, which render them inappropriate for analysis or research
applications. A representative example is that Google separates “Cartoons” and “Entertainment”
(based on the most recent Google category in November 2016); however, combining these two terms
in the research analysis is more appropriate. It is also a shortcoming of SAMS because they do not
address this part. Future related studies are recommended to follow the proposed categories in this
study instead of relying on the default category settings of Google.

In the case of “Finance,” “System,” and “Decoration,” the daily average usage minutes were
overmeasured because they included usage events such as background security applications and any
type of application launchers. These categories may cause bias when monitoring. Thus, future research
on monitoring algorithms that filter these events is necessary. A future study should include new
categories depending on the app data or research topic.

5. Conclusions

This study developed and implemented the SOMS, which is an original MIS that is based
on integrated personalized data for evidence-based smartphone overuse intervention. The SOMS
primarily consists of four sessions of mental monitoring: (1) Baseline settlement session; (2) Assessment
session; (3) Sensing & monitoring session; and (4) Analysis session. By obtaining integrated data
of smartphone overdependent patients, the personalized mental service in the management server
can be diagnosed. The uniqueness of the SOMS is that its services are based on specific scientific
grounds, which are inferred from specific psychological data. In addition, the proposed system can
provide a scientific footwork for personalized smartphone overuse management systems. Additional
years of implementation of this study may provide integrated big data in the area of smartphone
overdependence, which will cause the abstract mental status, such as smartphone overdependence,
to be diagnosed based on specific scientific indicators instead of a dependence on verbal consultation.
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