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Abstract: Lithium-ion batteries are the primary power source in electric vehicles, and the prognosis of
their remaining useful life is vital for ensuring the safety, stability, and long lifetime of electric vehicles.
Accurately establishing a mechanism model of a vehicle lithium-ion battery involves a complex
electrochemical process. Remaining useful life (RUL) prognostics based on data-driven methods
has become a focus of research. Current research on data-driven methodologies is summarized in
this paper. By analyzing the problems of vehicle lithium-ion batteries in practical applications, the
problems that need to be solved in the future are identified.

Keywords: data-driven; vehicle lithium-ion batteries; degradation modeling; remaining useful
life (RUL)

1. Introduction

Electric vehicles have become a focus of global research owing to their energy savings and
environmental friendliness [1]. However, power batteries restrict the development of electric vehicles
(i.e., the battery can cost as much as 30% of the total cost of the vehicle) [2]. Lithium-ion batteries
are the ideal choice for electric vehicles due to their better performance, small volume, light weight,
and low pollution [3]. However, the safety and reliability of lithium batteries are concerns for electric
vehicle developers. When electric vehicles are used outdoors, poor pavement conditions, temperature,
and load changes can cause performance degradation in lithium-ion batteries. Battery degradation
may lead to leakage, insulation damage, and partial short-circuit. If the degradation is not detected
timely, using the battery further will cause serious situations, such as a spontaneous combustion and
explosions, especially if the current state of health has not been assessed in a timely fashion or the
future state of health has not been estimated.

Three examples of serious degradation-related incidents are as follows. (1) A Zotye pure electric
car made in China spontaneously combusted on 11 April 2011 [4]. (2) The U.S. National Highway
Traffic Safety Administration (NHTSA) subjected a GM Volt to a side-impact crash test on 12 May 2011,
during which the batteries suffered a great impact and degraded [5]. Three weeks later, the temperature
of the Volt’s lithium-ion battery pack increased sharply, causing spontaneous combustion. (3) A Tesla
Model S made in Norway suddenly caught fire in 2014 when it was charging in the fast charging
station [6].
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To avoid such catastrophic incidents caused by the degradation of lithium-ion batteries and to
predictively maintain the safety of vehicles, it is of great significance to carry out research on the RUL
prognostics of lithium-ion batteries. With the rapid proliferation of lithium-ion battery applications,
research based on data-driven methods (such as degradation model establishment, RUL prediction,
and health states assessment) is summarized in this paper.

The remainder of this paper is organized as follows. Section 2 analyzes three methods based on
data-driven RUL prediction, which are based on the artificial intelligence, filtering techniques and
the stochastic degradation process, respectively. Section 3 describes the widespread challenges that
lithium-ion batteries face in operation, such as the influence of time-varying environments, random
variable currents, self-recharge characteristics, and different system configurations. Section 4 concludes
this paper and provides future research directions.

2. Remaining Useful Life (RUL) Prognostics Methodologies

Remaining useful life (RUL) is defined as the time when equipment performance degrades to the
failure threshold for the first time, or the first arrival time [7]. If the RUL can be predicted accurately,
predictive maintenance of the equipment can be implemented. Preventive maintenance before
degradation is helpful in reducing failure rates and maintenance costs. Therefore, RUL prognostics
has become a focus of researchers globally. RUL prognostics methodologies can be divided into the
mechanism analysis method and the data-driven method [8]. The degradation of lithium-ion batteries
is a nonlinear and time-varying dynamic electrochemical process. Though mechanism analysis is clear
in physical significance and concepts, it involves a lot of parameters and complex calculations for
accurate modeling. In consequence, it is not suitable for real-time monitoring, which severely limits
general applicability of the mechanism model. Instead, mechanism analysis is used more in theoretical
research and battery designation than in practical engineering [9].

The data-driven method of modeling batteries does not require an accurate mechanism of the
system. Data-driven methods use the battery state of health data, which can be measured through
advanced sensor technology. These methods extract effective feature information and construct
the degradation model to predict RUL. These methods are able to describe degradation-inherent
relationships and trends based on data [10]. Therefore, data-driven methods have become the focus
of RUL prediction in the world [11]. Data-driven RUL prediction methods can be divided into three
groups based on the artificial intelligence filtering techniques and stochastic process degradation,
respectively. Figure 1 shows the main RUL prognostics methodologies of vehicle lithium-ion batteries.

RUL prognostics methodologies based on data-driven
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Figure 1. The main remaining useful life (RUL) prognostics methodologies of vehicle
lithium-ion batteries.

Moreover, the advantages and disadvantages of these three kinds methods shows in Table 1.
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Table 1. Comparison of RUL prognostics of vehicle lithium-ion Dbatteries using
data-driven methodologies.

Main Relevant

Methodology Advantages Disadvantages References
(a) Does not need a data model
Artificial (b) The algorithms are simple (a) The point estimated value of RUL
intellicence and feasible (b) Does not describe the uncertainty [12-33]
& (c) The algorithms are the best of measurement results
solution for non-linear systems
o (a) Can be used in any form of (a) Needs data mode
Filtering state-space model
. . . (state-space model) [34-45]
techniques (b) best solution for non-linear, . .
. . (b) The point estimated value of RUL
Gaussian, and non-Gaussian systems
(a) Considers the time-dependence of
Stochastic the degradation process (a) Higher calculation complexity [46-49]
process (b) Describes the uncertainty of (b) Considers uncertain factors

predictable results

2.1. RUL Prognostics Methodologies Based on Artificial Intelligence

Methodologies based on artificial intelligence usually use the monitoring data to fit the variable
degradation model and calculate the RUL by extrapolating the variables to the failure threshold.
Methods such as the AutoRegressive (AR) model [12], neural network [13-18], support vector machine
(SVM) [19-22], and relevance vector machine (RVM) [23-33] are used.

Prediction models based on AR only need battery degradation data and can predict the RUL of
the battery. The method is simple and easy to be realized. However, vehicle lithium-ion batteries are
influenced by many factors, including temperature, discharge current, and so on, which has led to a
decline in accuracy. The neural network is often adopted to estimate the nonlinear degradation process
due to its superior nonlinear approximation ability. The lithium battery degradation process is a
strongly nonlinear process, so neural networks can be a good fit in this process. Min [16] used a neural
network to fit the relationship between open voltage, resistance, and discharge capacity at different
depths of discharge (DOD). Min [16] also proposed a fast battery capacity prediction method to assess
the feasibility application of an artificial neural network in the lithium-ion battery discharge mass
rapid prediction. However, the degradation process of lithium batteries is dynamic. In order to reflect
the dynamic characteristics of the system, the dynamic recurrent neural network (El-man network)
is optimal for describing the system. Wu [17] proposed a method based on a modified Elman neural
network to predict the lithium-ion battery remaining capacity and analyzed the relationship among
the varying characteristics, internal resistance, and open-circuit voltage. It can be concluded that the
network is not only a local generalization but also equipped with better dynamic performance and
approximation capability. The network can effectively reduce the total prediction error. Given that the
working state of the battery might change with the change course, Liu ef al. [18] adopted an adaptive
recurrent neural network aimed at using lithium battery impedance spectroscopy data to predict the
RUL of lithium batteries. The method can be satisfied with the forecast results. However, compared
with the SVM, the neural network requires a large amount of training data and is prone to fall into
a local minimum. Therefore, many scholars use the SVM to estimate the RUL. Wang [19] devised
an iterative multi-step linear prognostics model based on the SVM. It used the energy efficiency and
working temperature as input parameters and estimated the RUL of lithium-ion batteries at room
temperature. Dong et al. [20] mathematically modeled the relationship among the battery cycle times,
the capacity, and the internal resistance. They combined the SVM with the particle filter (PF) to achieve
a parameter estimation and predict the RUL. Klass et al. [21] used several groups of battery degradation
data at constant temperature to construct the vehicle battery degradation model based on the SVM
and estimate the battery state of health (SOH). Nuhic et al. [22] used the SVM to study the battery
capacity degradation to estimate the RUL. The SVM is a linear learning machine in high dimensional
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feature space. Compared with the linear model, it not only increases the complexity of computation,
but also avoids the curse of dimensionality to a certain extent. However, the SVM has to choose the
appropriate kernel function and only provides the point estimate values of the RUL. It is hard to reflect
the uncertainty of estimation. RVM based on the Bayesian framework reduces the computation of the
kernel function [23]. The number of the association vectors of RVM is less than SVM, which has better
generalization performance and can acquire point estimation and interval estimation. Zhang et al. [24]
introduced the advantages of RVM and regarded it as one of the main potential methods for lithium-ion
battery RUL estimation. Hu et al. [25] presented a sparse Bayesian learning method for Li-ion battery
capacity estimation and trained an RVM regression model. The performance of the method is verified
by 10 years of data. Xing et al. [26] proposed a naive Bayes (NB) model for the RUL prediction of
batteries under different operating conditions. The results show that prediction performance surpasses
that of SVM. Wang et al. [27] obtained the relevance vectors from the degradation of battery capacity
and the number of cycles. The method is based on the RVM and uses the experiment data of multiple
constant current discharge under constant temperature and constant load. They constructed an
empirical degradation model using three parameters to estimate RUL, but their models lack the ability
of dynamic updating. Therefore, Liu et al. [28] proposed an enhanced optimized RVM algorithm,
which improved the ability of dynamic model updating and improved the prognostics accuracy of the
lithium-ion battery RUL with the same data. Widodo et al. [29] predicted the RUL of the battery using
the RVM algorithm and found that the long-term prediction performance is poor and not suitable for
direct RUL prediction. In order to solve this problem, Zhou et al. [30] presented a novel dynamic gray
RVM algorithm to achieve a lithium-ion battery RUL prediction. The result indicates that the multi-step
prediction precision with fewer sample sizes could be improved. At the same time, in order to reduce
the influence of noise on the prediction, Miao et al. [31] put forward a fault detection system based
on a wavelet transform and hidden Markov model (HMM) modulus maximum distribution. This
algorithm was validated by experimental data sets that achieved the classification of the two device
statuses (normal and failure). However, the model cannot be directly used to predict the RUL and
has certain limitations. Thus, Yuan et al. [32] proposed a training algorithm (Baum-Welch algorithm)
based on an improved particle swarm optimization (MPSO)-amended hidden semi-Markov model
(HSMM) to produce the RUL reliability function and the system failure rate, and finally acquire the
RUL distribution of the equipment. Given that RUL prediction accuracy of the training algorithm
is not high and applicability is not perfect, Zhang et al. [33] reduced noises in characteristic signals
using wavelet decomposition and estimated the battery RUL, which was based on NASA’s lithium-ion
battery data and used the RVM degradation model. The prediction methods based on RVM are the
main methods for lithium-ion battery RUL estimation. However, the training time increases rapidly
with the increase of the training sample. Other methods are also used in the parameter identification
of the model. Tseng et al. [34] constructed three kinds of regression models based on the statistical
data (N order polynomial regression model [35], bivariate polynomial regression model, and the index
regression model), and introduced the particle swarm optimization (PSO) algorithm to optimize the
model parameters. Simulations indicate that the regression models using discharged voltage and
internal resistance as aging parameters can more accurately build a state of health profile than those
using cycle numbers. He et al. [36] proposed a double-index lithium battery degradation model and
used the Dempster-Shafer theory (DST) to initialize the model parameters and the Bayesian Monte
Carlo (BMC) method to update the model parameters, which are used to predict the battery RUL.
Hu et al. [37] put forward a nonlinear kernel regression model of lithium battery degradation, obtained
degradation parameters through the K-nearest neighbor, and used PSO to optimize the weight of
the K-nearest neighbor regression model. Chen ef al. [38] developed a quantitative approach for the
battery RUL prediction based on an adaptive bathtub-shaped function and used the artificial fish
swarm algorithm method to optimize the parameter model. This prognostic model can capture the
dynamic behaviors of the battery capacity.
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2.2. RUL Prognostics Methodologies Based on Filtering Technigues

The methods of RUL prediction based on filtering techniques have also been studied.
Wang et al. [39] proposed a state estimation method of lithium-ion batteries based on Kalman filtering
(KF), but the method did not consider the influence of actual road conditions. Besides, the KF algorithm
aims at linear Gauss, and its accuracy is not high when it comes to the strong nonlinear degradation
process of the lithium-ion battery. Given that the extended Kalman filter (EKF) can better deal with
the nonlinear Gauss problem, Sepasi et al. [40] presented an inline SOH and SOC estimation method
for Li-ion battery packs, which used the coulomb counting method to calculate SOC and an extended
Kalman filter (EKF) technique to estimate SOH. The advantages of algorithm are less estimation error
and fast response time. However, the EKF is a nonlinear part for the first-order Taylor expansion, which
ignores the high order, so the errors become larger. Unscented Kalman filter (UKF) is similar to the
EKF, which uses Gauss distribution to approximate state distribution to only a few data points called
Sigma. Through the nonlinear model, the mean and variance can be accurate to the nonlinear term of
second-order Taylor expansion, so the accuracy of nonlinear filtering is higher. Thus, He et al. [41] not
only built a joint coulomb counting method and battery voltage model but also introduced the UKF
to adjust model parameters, estimated the battery status, and predicted the RUL, which was better
than the EKFE. Zheng et al. [42] built a nonlinear time series prediction model to predict the battery life
and adopted the UKEF to predict residual. The accuracy of estimation was obviously higher than the
EKF. In order to improve prediction accuracy, PF based on the Bayesian filter and the Monte Carlo
method has also been used in RUL prediction in recent years and achieves the prediction values of
posterior probability density through the update of time and measurement. Yu ef al. [43] constructed a
state-space model based on logistic regression and PF to predict RUL with NASA's lithium battery
degradation experiment data. Miao et al. [44] used a PF algorithm to calculate RUL based on the
statistical data of lithium-ion battery life and compared it with the calculation method in the EKF.
The results show that the PF shows more accuracy and can predict the actual failure time better than
the EKF. Xing et al. [45] proposed a model fused with an empirical exponential and a polynomial
regression model to describe the battery’s degradation trend. Model parameters are adjusted by
the PF method. Dalal ef al. [50] proposed a methodology for the prediction of RUL using the PF
framework. Walker et al.’s [51] research has found that PF is more accurate than the method (nonlinear
least squares and an unscented Kalman filter (UKF)) for predicting RUL. Daniel et al. [52] presented
the implementation of a PF prognostic framework that uses statistical characterization to estimate
the state of charge of a battery. The results show that the proposed framework can prognosticate the
discharge time in terms of conditional expectations. Wang et al. [53] proposed a spherical cubature
particle filter (SCPF) to solve the degradation state-space model of lithium-ion batteries. The analytical
results show that it is more effective compared to the existing PF-based prognostic method. At the
same time, Miao et al. [54] proposed a battery RUL prediction algorithm based on the UKF, and the
result shows that it is better than the PF. These algorithms based on artificial intelligence or filtering
techniques contribute to the improvement of prediction accuracy. The experimental result shows
that these approaches can efficiently estimate the RUL of lithium batteries. However, in the actual
operation process, this is not the case. Temperature and currents are time-varying. The methods
mentioned above mainly consider discharging at a constant temperature and current. A time-varying
temperature and a random variable current have only partly been considered in the actual process of
lithium battery operation, and the predicted results are inconsistent with the actual results. At the same
time, the prediction result is the RUL point estimation or the average estimate, which cannot provide
the prediction probability density analytic function form and does not easily guide later maintenance.

2.3. RUL Prognostics Methodologies Based on the Stochastic Degradation Process

RUL prediction based on stochastic process degradation is degraded by a stochastic model on
the performance degradation data modeling, and then infers and predicts the distribution of the
RUL, making it easy to quantify the uncertainty of prediction results. Given that the lithium battery
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degradation process is essentially an uncertain stochastic process, many scholars have proposed
stochastic process models (such as Gaussian process, Wiener process, efc.) to predict the RUL of
lithium-ion batteries. The Gaussian process is based on the statistical learning theory and adapts well
to high dimensions, small samples, and nonlinear and other complex problems. Its generalization
ability is also strong. Goebel et al. [55] put forward a Gaussian process model to assess battery capacity
degradation. Liu et al. [46] constructed a battery data Gaussian process. They not only adopted the
Gaussian process regression (GPR) method to give the uncertain interval of the RUL prediction and
build the method system of lithium-ion battery online RUL prediction, but also set a RUL prediction
verification and assessment experiment through NASA lithium battery validation data. However,
none of the above experiments has fully explored the degradation model. Therefore, Li et al. [47]
built a mixed Gaussian battery degradation model through the data of charging and discharging at
room temperature and a constant current, and used PF for model parameter identification, rather
than assuming a particular state-space capacity degradation model, which can better predict battery
SOH. The experiments and comparative analysis of the method can be obtained with high efficiency.
He et al. [48] put forward the multi-scale Gaussian process modeling method in wavelet analysis,
which was based on the degradation data of lithium batteries in constant-current discharge to predict
the RUL. Tang et al. [49] proposed a RUL prediction method based on measure errors of the Wiener
process, which can better predict the battery RUL.

Based on the above studies, stochastic process modeling can better characterize the lithium
battery degradation processes, and the results illustrate that these methods can predict the RUL of
lithium-ion batteries. However, none of these studies has considered the self-recharge characteristics
of lithium-ion batteries, which mainly aimed at the prediction of lithium battery RUL in situations
where the temperature is fixed and the discharge current is constant. These studies have not involved
the widespread problems of lithium-ion batteries in operation, such as the influence of a time-varying
environment, a random varying current, self-recharge characteristics, and system configuration.

3. Problem Analysis

Through the above review, it is not difficult to find that lithium battery RUL prediction based
on data-driven methods has made great progress in recent years. However, there is still a lack of
theoretical research and need for further study. Accordingly, several problems with RUL prediction for
lithium-ion batteries used in electric cars will be specifically analyzed as follows:

(1) Degradation modeling and RUL prediction methods for vehicle lithium-ion batteries with
time-varying ambient temperature

Among all the environmental factors, the temperature has a great influence on the performance
of the lithium battery. The lithium battery degradation rate is greatly influenced by the ambient
environmental temperature [56-59]. The lithium battery may burn as the car starts in a below-freezing
environment and as battery capacity rapidly fades under high-temperature conditions [60]. However,
electric vehicles work outdoors, and its lithium-ion batteries were often influenced by time-varying
ambient temperature. Firstly, the temperature is different between day and night, or among four
seasons. Secondly, the lithium battery in the charging and discharging process generated a lot of heat,
which causes the lithium battery environment temperature to change, and the difference is very big.
The existing methods of degradation modeling and the prediction of RUL are mostly based on the
laboratory temperature, and the ambient temperature stress level is constant. These studies [58,61]
considered the ambient temperature changes. However, they only aimed at several groups of constant
temperature and assumed that a working environment temperature will remain constant. These studies
ignored the variability of subsequent working environment temperature. All of these factors resulted
in limitations of the RUL algorithm. Therefore, degradation modeling research and RUL prediction
methods for lithium-ion batteries with time-varying ambient temperature problem are of important
theoretical significance and practical value. Taking into account that the time-varying temperature, we
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can adopt a multi-state continuous-time Markov model process to describe a transition temperature.
Considering time-varying temperature affects the rate of degradation, we can construct a class of
degradation models influenced by varying random ambient temperature.

(2) Degradation modeling and RUL prediction methods for vehicle lithium-ion batteries with a
random variable current

According to the vehicle behavior, the vehicle acceleration and deceleration process has
randomness [4], which produces the lithium battery output current corresponding random changes.
The degradation rate is different when the battery discharges at a different current [5]. For example,
Li et al. [62] tested a capacity fade of 18,650-type lithium-ion batteries cycled with different discharges
and found that at 2C discharge rate, the capacity decays were 18.8% of the initial capacity after
300 cycles. And at 1C and 0.5 discharge rate, the capacity decays were only 14.2% and 10.5%,
respectively. The reason is that the surface thickness of anode particles and the number of lithium-ions
changes with different discharge. Now, existing research on lithium battery degradation modeling
and RUL is aimed at fixed loads that build a relationship model of cycles and degradation through
the constant current discharge to predict the RUL. Although studies [38,48,49,51] have considered
several groups of lithium battery RUL prediction problems under different constant discharge
currents, they did not consider the random variation of the current under actual operation process.
Random-variable current affects battery degradation rate, which results in the fact that lithium battery
degradation function is a nonlinear time-varying function influenced by random effects. Therefore,
random-variable current RUL prediction is an enormous challenge [59]. Searching for current rules and
the RUL influence becomes the key to this problem. According to a survey, research on random-variable
current realistic effects of degradation on the lithium battery has not yet been a concern. To address this
problem, we consider the corresponding laws between random-variable current and speed changes,
and we can also use the vehicle speed variation to characterize the random-variable current process.
Thus, a class of degradation models can be established that are affected by a random-variable current.

(8) Degradation modeling and RUL prediction methods for vehicle lithium-ion batteries considering
self-recharge characteristics

The work principle of lithium battery refers to the theory of charge and discharge. As the battery
are charged, the battery cathode generates lithium ions. Then, lithium ions will pass through the
electrolyte to the cathode carbon microporous layer. The more the lithium-ion is embedded, the higher
the capacity. When the battery discharges, lithium ions in the cathode carbon layer prolapse will go
back to the cathode.

The status of lithium batteries used in vehicles can be divided into charge, discharge, and standing.
The battery circulates between discharge and standing after every charging. When standing, due to the
diffusion effect, the ion concentration tends to balance and the voltage rises, which will improve the
battery life. We called it the restoration phenomenon self-recharge. The vehicle lithium-ion batteries
are generally an intermittent discharge, as shown in Figure 2. Obviously, the intermittent discharge can
improve battery life. For an intermittent discharge, when passing a pulse current, the battery relaxes
for a period of time; thereby, the active material recovery in the diffusion process and the consumption
increases, which improves battery performance. Because the car is in motion and standing most of
the time, lithium battery self-recharge is a common phenomenon. Moreover, self-recharge strength
will affect the RUL of lithium-ion batteries with the change of battery charge and discharge time [63].
These studies [13-55] about RUL of lithium battery are carried out in a continuous discharge mode,
without considering the phenomenon of actual intermittent discharge process. Therefore, it is difficult
to describe the dynamic performance of lithium batteries in actual operation. The gap between the
theoretical predictions and the actual results is larger. Therefore, RUL prediction methods for vehicle
lithium-ion batteries considering self-recharge characteristics are a problem worthy of theoretical
research. Furthermore, it is urgent that the automotive lithium battery RUL prediction in practice is
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solved. Self-recharge is the inherent electrochemical characteristics of a lithium battery. The degree
of self-recharge is different, and its independent distribution is a random variable. The degree of
self-recharge caused by the accumulation of the effect, that is, the self-healing, can be superimposed.
Therefore, the change rule of lithium battery self-healing can be described by a non-homogeneous
Poisson process, and the influence on the degradation for lithium battery life can be considered a
compound Poisson process description. We may use the compound Poisson process to describe the
self-recharge generation based on real-time monitoring battery degradation data, and construct an
automotive lithium battery degradation model that is influenced by the self-recharge phenomenon.

lithium
battery
capacity

(@)
|: (b)

Figure 2. Lithium battery capacity changing with discharge process. (a) Continuous discharge;

;J/‘

(b) intermittent discharge.

(4) Denoising of random signals for vehicle lithium-ion batteries considering the system
configuration of the cars

Under different system configuration environments, vibration signals from the device contain
different information, which contains a lot of harmful component features (i.e., noise). These features
influence the research results of lithium-ion battery degradation [31]. Therefore, in order to reduce
vehicle production losses and to reduce fatal faults, we should conduct in-depth research on the
issue of noise cancellation random signal from different devices, which can improve the purity of the
extracted lithium-ion battery vibration signal. This is now one of the most important areas of concern
and research.

The key issues for the analysis of RUL prediction for lithium batteries is time-varying ambient
temperature, random-variable current, self-healing features, different system configurations, and
denoising of random signals. All of these issues involve many uncertain factors, such as the changes
of environment temperature, the current random variation, vehicle status, the car's own system
configuration features, denoising of random signals, and so on. The uncertainty factors are bound to
make a significant impact on the car with the battery RUL prediction accuracy, and these uncertainties
have become a top priority for automotive lithium battery RUL prediction research [64].

4. Conclusions

The growing use of electric cars makes the RUL prediction of lithium-ion batteries more imminent,
but the greatest challenge is the uncertainties. Safe and reliable operation of the vehicle battery is
directly related to the reliable operation of the car. In this paper, RUL prediction methods based on
data-driven methodologies for lithium-ion batteries were reviewed. First, the existing RUL prediction
methods were introduced by category; then, the four critical issues were analyzed, which included a
time-varying environment temperature effect, a random-variable current, self-healing characteristics,
and a different system configuration. With the RUL prediction of lithium batteries, the above problems
can affect the automotive lithium-ion performance, the life, and thereby the entire vehicle system.
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In addition, these four problems are mainly aimed at the RUL prediction of the battery under the
condition of uncertainty. Therefore, in view of these issues mentioned in this paper, further exploration
in these aspects is still needed.
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