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Abstract: In the context of grid connected photovoitaic (PV) generation systems, there are
two paramount aspects regarding the Maximum Power Point Tracking (MPPT) of the photovoltaic
units and the continuity of the service. The most diffused MPPT algorithms are based on either
perturb and observe, or on an incremental conductance approach and need both PV current and
voltage measurements. Several topology reconfigurable converters are also associated with the
PV plants, guaranteeing fault-tolerant features. The generation continuity can also be assured by
interleaved inverters, which keep the system operating at reduced maximum power in case of
failure. In this paper, an evolution of a hysteresis based MPPT algorithm is presented, based on
the measurement of only one voltage, together with a novel space vector modulation suitable for a
two-channel three-phase grid connected interleaved inverter. The proposed MMPT algorithm and
modulation technique are tested by means of several numerical analyses on a PV generation system
of about 200 kW maximum power. The results testify the validity of the proposed strategies, showing
good performance, even during a fault occurrence and in the presence of deep shading conditions.
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1. Introduction

The photovoltaic electrical energy generation has received a great deal of attention in the last
decade, thanks to its zero emission impact, government financed incentives and the zero cost of its
primary energy. Indeed, the solar irradiance availability in the planet allows us to get free power
once the initial plant investment has been faced [1]. The scientific community has pointed out several
improvable aspects, the efficiency of the photovoitaic (PV) cells being of paramount importance [2—4].
As no cost is associated with solar energy availability, the proximity of the PV operating point to its
maximum power produces the same results as the PV cells with improved efficiency. In other words, a
solar power plant should always be working as close as possible to its maximum potential in terms of
power, in order to really exploit any possible improvement in the efficiency of the PV cells. In order
to track the PV maximum power point, several strategies have been proposed. The most diffused
applications use the Perturb and Observe technique [5], where the setting of perturbation step can also be
adaptive [6], and Incremental Conductance [7]. Several low level control algorithms have been proposed
in tandem with such control strategies [8,9]. The overall system efficiency may also depend on whether
the Maximum Power Point Tracking (MPPT) is applied with a centralized or distributed approach on
the various PV panels [10]. The last solution is mostly suitable for low power application [11]. Most of
the MPPT techniques require the panel parameter values [12] and are based on both measurements of
PV current and voltage.
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Another important aspect is regarding the priority consumption of the green energy production
versus traditional production from fossil energy sources, which is also pursued by means of
fault-tolerant converters [13]. This goal can be achieved by means of topology changeable
converters [14,15], capable of reconfiguring themselves via static switches. A different solution is based
on interleaved converter topologies [16,17], where the total power is distributed among two or more
identical modules. In the case of a fault occurrence on one of the modules, this solution guarantees the
continuity of the operation, even if at reduced maximum power.

In this paper, a two-channel, three-phase grid connected, interleaved inverter is coupled with a
PV array via a LC filter. The proposed tracking algorithm of the PV array is an evolution of the one
introduced in [18,19] and is applied with a centralized approach in the context of a medium power
system (around 200 kW). This strategy requires only one voltage measurement and, as it is based
on a hysteresis approach, it ensures a very low power ripple around the PV MPP. The MPPT output
is then processed by the inverter control algorithm for which a space vector modulation technique
is proposed.

2. Description of the System

The topology of the grid connected PV generation system is proposed in Figure 1. As it can be
noted, a centralized approach is used, as a single inverter serves the equivalent PV generator, composed
of several PV modules connected in series and in parallel. The PV generator is interfaced with an
interleaved inverter via an LC filter and the capacitance voltage is measured. The filter presence is
necessary to the proposed MPPT algorithm, which has been further discussed.
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Figure 1. Topology of the grid connected photovoltaic generation system via an interleaved inverter.

The inverter is obtained by two interleaved 3-phase H-bridge IGBT. Each of the two bridges is
an inverter itself, capable of generating AC active power with low THD and unitary power factor.
The interleaved choice allows distribution of the current among the two bridges, decreasing the rated
current of each IGBT. Another advantage of the interleaved structure is regarding the fault-tolerance.
The inverter is capable of working with reduced power in case of a failure of one bridge, guaranteeing
the continuity of the service. On the other hand, interleaved converters need a proper control strategy,
along with a specific modulation technique in order to actively balance the distribution of voltages
and currents.

3. The Proposed MPPT Algorithm

The power Pg,i; injected by the interlaced converter in the electric grid can be linked easily to the
power absorbed from the PV array plus LC filter Ppc by neglecting the Joule or switching the losses of
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the converters and by imposing that the currents are uniformly distributed between the channels of
the interleaved converter:

1. &, digy & . 1, & digr L&,
Ppc = Pgrig + sLR Y isp—2 = Y Uskisk + =Lr Y ik =Y v ks g, (1)
2 ;A = 2E; A =

where the magnetizing power of the circulating inductors has been neglected with respect to the grid
power, because, by choosing proper values for the inductance and by taking into account that the
current gradients are strongly limited by the considered application, it results in Lrdi;/dt << vg.
From (1), it is clear that the Ppc can be imposed by properly controlling the line currents. Therefore,
the system, composed of the controlled interleaved converter plus the electric grid, can be replaced by
a controlled current generator for which the current value is linked to Pg;,i4:

- _ Poria
e = ——, 2
=2 @
Indeed, in order to discuss the proposed MPPT algorithm in detail, in Figure 2a, the topology
of the system is proposed in a simplified manner. The inverter is substituted by an ideal current
generator and the PV array is represented by an ideal voltage generator connected in series with an
internal resistance.

a)

Inverter

Figure 2. Simplified grid connected PV system: (a) linear circuit; (b) linearized PV characteristic.

The values of E and R depend on the actual PV operating point following the characteristic
of Figure 2b. In other words, the real PV characteristic is approximated by a linearization process
identifying three different linear laws. The quantities vy, and iy refer to the PV maximum power
point, while v, and is. are the PV open circuit voltage and the short circuit current respectively.

The MPPT algorithm is based on the capacitance voltage measurements and, in particular, on its
time derivative do./dt. Starting from zero, the power requested by the inverter increases linearly with
time with a prefixed slope. The power slope can be fixed such that the system reaches its rated value
in a prefixed time (tsyrtup):

Pumpp
ts tartUp ’

®)

Pslope =

As it is seen further, the LC filter is sized such that the inductor voltage drop and the capacitance
current absorption are negligible with respect to their rated values and, as a consequence, the PV
current and voltage time derivatives only depend on the inverter power slope via the PV characteristic.
This ensures that the time derivative of the capacitance voltage is limited to the PV characteristics
(see Figure 2b).

During the time when the requested power linearly increases, the PV operating point of Figure 2b
moves from left toward right. Before the MPP is reached, dv./dt is negative and its absolute value is
limited by the zone 2 of the PV characteristic. When the power requested by the inverter gets higher
than the MPP, the PV power does not increase any further. Indeed, the inductor keeps the PV current
stable to a value very close to the MPP and the PV operating point moves slightly at the right side of
MPP. The inverter requested power keeps increasing and the extra power absorption is taken from
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the capacitor, whose voltage time derivative keeps decreasing as the difference between the inverter
current and the PV current keeps increasing.

This phenomenon testifies that the MPP has been reached and is being overcome. Following a
symmetrical hysteresis approach, when dv./dt gets lower than a prefixed negative threshold, the slope
of the requested power is inverted so that the time derivative of capacitance voltage starts increasing
and the PV operating point moves toward left again, thus, toward the MPP. The slope of the requested
power is kept at negative until dv./dt overcomes the positive threshold and, after that, the requested
power slope is inverted again by repeating the process.

In order to facilitate the comprehension of the proposed algorithm, a numerical analysis based on
the ideal case of Figure 2. has been carried out and some results have been proposed in Figure 3.
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Figure 3. Ideal case numerical analysis: (a) PV current and power; (b) capacitance voltage variation
time derivative; (c) PV and inverter current and power variation in steady state; (d) capacitance voltage
variation time derivative in steady state.

Figure 3a shows the PV current and power during the startup of the system. The power increases
linearly with time, according to the power requested by the inverter, and, as the v, variation is
small, the current also has an almost linear behavior. In a time span of about 20 s, they reach their
respective rated values and the system can then be considered in steady state conditions. In Figure 3b,
two quantities are reported: the time derivative of the capacitor voltage, and its variation with respect
to the rated value. As it can be noted, while in the startup interval, the quantity dv./dt is well within
the hysteresis threshold; in the steady state condition, the hysteresis controller is activated and thus, v,
is constrained to its rated value.

In Figure 3¢, the PV power and current variation with respect to their rated values are reported
and compared to the same quantities as the inverter. The variable requested by the inverter is denoted
with the subscript », while p refers to PV quantities. As it can be noted, after the MPP is reached
and during the positive slope of the requested power, the i, current and the P, power remain almost
constant and their values correspond to the PV MPP. The same can be said during the negative slope
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of the requested power. When the v, derivative touches its negative threshold, the requested power
slope gets positive again and the PV quantities slightly vary until the MPP is reached again. The total
variation of Py and iy is very low in comparison to the rated values.

In Figure 3d, dv./dt and Av, waveform are consistent with the behavior of the controlled system
and they testify the low ripple of the capacitor voltage.

3.1. Voltage Derivative Threshold

The symmetrical hysteresis control threshold for the capacitance time derivative has to be chosen
such that before the MPP (left side of MPP on Figure 2b); the chosen positive slope of the power
requested by the inverter causes a value of dv./dt within the band, while after the MPP (right side of
MPP on Figure 2b), dv./dt overcomes the band. The expected value of dv./dt at the left side of MPP
can be easily calculated assuming a low ripple on the capacitance voltage. In this case, indeed, the
slope of the inverter current is proportional to the slope of power (via the reciprocal of vyp). As the
filter is sized such that the PV follows the request of the inverter, the time derivative of the PV current
corresponds to the one of the inverter, and the time derivative of the capacitance voltage corresponds
to that of the PV array. Thus, the expected time derivative of the capacitance voltage can be written

as follows:
% Psiope

- R, (4)

dt Vmpp

with Ry = —dv,/diy belonging to the second zone of the PV characteristic of Figure 2b.
Using a safety coefficient of 2, a reasonable value for the hysteresis band can be chosen as follows:

Hhgoe = 2 Ry, 5)

Umpp

3.2. Filter Sizing

In order to ensure that inductor voltage drop and the capacitance current absorption are negligible
with respect to their rated values, the maximum values of L and C can be found by Equation (6):

dp ; i
di dp di . Pl ; Umpp —imppR2 ) impp
CT;— (U-si,@) Cdii 7Cﬁ<5i.1mpp C<(51M
HE) o max mﬂ; mppR2 = (i Pstope G) (6)
w__E dv — [ Pope 5 .4 . Qmpp\tmpp ~Ompp©r2)
¥ (o) dF | pnax (inpp—OmppGa ) v * Umpp L <y Pslope

In the series R, L, C of Figure 2a, it is easy to verify that the PV current is characterized by a

damping factor whose expression is:
RC

2VLC’

In order to ensure that the variation of the PV current is low, the damping factor must assume a
high value (¢ >> 1). On the other hand, it has to be remembered that, in contrast to the ideal examined
case, the real converter will introduce a high harmonic content linked to the chosen switching frequency.
This harmonic content will reflect on the PV current via a reduction factor ¢, depending on the chosen
L and C values.
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In order to ensure that the PV operating point is kept very close to the MPP, the reduction factor

must be fixed at a high value. Setting minimum values for the damping factor and the reduction factor,
the following conditions have to be satisfied:

2
(= % > Cmin - % > Cmin (9)
& = LCw? > &r min
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3.3. Negative Power Slope

The value of the negative requested power slope must be chosen in order to ensure the rapid
recovery of the MPP, after it has been overcome during the positive slope, and keeping the capacitor
voltage variation within a reasonable value. The circuit of Figure 2a can be considered for the
calculation of the capacitor voltage, assuming that the PV current is held to the MPP value by the
inductor presence. As the v, variation is expected to be very low, the following law can be assumed for
the i, current:

Nslope

ir = f(t) = (impp + AI) — -t (10)

Umpp

Solving the first-order differential equation, the v, variation results as follows:

Al Mslope 2
Ave (t) = v, — =——"t -t 11
Uc ( ) Oc UC,O C + vappc ’ ( )
Therefore: )
Ompp (A)

A =t 12
| Z]C|max Znslopec ( )

By limiting the maximum v, variation, it results as follows:
1 (AD? (13)

|Avc|max < dppc - Umpp = Nsiope > Spoe 2C 7

3.4. Chosen Values

The chosen values for the startup time and for the limits of Equations (6), (9), and (13) are
summarized in Table 1, together with the chosen values of the filter inductance and capacitance and
the requested positive and negative power slope.

Table 1. Chosen values of the Maximum Power Point Tracking sizing procedure.

5; 5y Cmin gr,min Save tStartUp pslope Nslope L C
01% 01% 50 5000 0.002% 20s 10kW/s  200kW/s 400 uH 14 mF

Finally, it has to be noted that the sizing procedure has been illustrated with reference to the
standard irradiation (1 kW/m?) and by fixing strong constraints. If referred to partial shading
conditions; the same procedure would have led to different values of chosen parameters. Thus,
in the real case of variable irradiation, the fixed limits may not be fulfilled by the chosen parameters.
Nevertheless, as it will be seen in §6, the chosen values will continue to assure satisfying results,
even for a deep shading condition.

Indeed, the only parameter that should be fine-tuned across the whole range of the operating
conditions is the positive reference power slope. In fact, in contrast to the ideal case of Figure 3—carried
in the standard condition—the value of the hysteresis threshold is linked to the positive power slope
and the PV voltage derivative in correspondence to the MPP:

Psiope dvp
dip |y op
Umpp  Alp | ppp

thyye =2 (14)

From Equation (14), it can be seen that th;,. should be changed as a function of radiation on
which doy, /diy ‘ mpp depends. However, a variation of th;,. would lead to variable behavior of the PV
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power ripple across different operating conditions. Instead of fixing the thy,. constant, an adaptive
law of pgjgpe is proposed, which is as follows:

Vmpp th gpe

_ 15
2 dUP/diP‘MPP 1)

Pslope =

In Equation (15), the voltage derivative depends on the actual PV developable maximum power.
If any instantaneous assigned reference power value P is considered to be equal to the PV developable
maximum power, pgopWill depend on the actual assigned power via the PV characteristic. Thus,
the power slope is a time-dependent function:

Ompp thiye

Pstope (1) = 2 F (P (1) (16)

The power slope will be assigned depending on the actual power value in the further numerical
analysis (§6), where the ideal generator is replaced by the real inverter and shading conditions are
investigated. This will result in an increase in the startup time. However, the system will reach its
rated power in a reasonable time value of about 110 s.

4. Interleaved Inverter

4.1. Mathematical Model

With reference to Figure 1, as already pointed out, the inverter is composed of two identical
three-phase half bridges. Each of the two modules is a converter itself, and the superscripts p and n are
used respectively for the upper and lower ones. For clarity, in Figure 1, only the first phase voltages
and currents are indicated. For the generic k" phase, the following voltage balance can be written
as follows:

k
LR FHULTONO i ke (1,2,3), (17)

Uk = LR k+vrk+UNO

where vy is the voltage of the point, N referred to the grid neutral point O.
Referring to the same index k, the semi-sum of the first and second of Equation (17) gives
the following:

+
Vs = LZR diop | M +ono with: k€ {1,2,3}, (18)

The space vectors y can now be introduced, together with the homopolar components 1, by means
of the following transformation:

3 7T
y= %Z yrel 3 (1)
Y1, Y2, Y3 = 1:31 , 19)
3L
3k:1 Tk

The Equation (18) can then be written as follows:

v, = LTR (vf+v?)

s:.“l

/\w—

+
f +o rO) g (20)
2

ONO = —

The first of Equation (18) gives the grid current space vector behavior as a function of the
two converters’ space vector voltages, while the second establishes that the neutral point displacement
voltage vyo instantaneously coincides with the semi-sum of the two converter homopolar voltages

p n
Ur,()’ vr,O‘
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Referring to the same index k, the difference of the first and second of Equation (17) gives
the following:

0= LRd(lf'kdijgfk) + (vﬁk —vgk) with: k € {1,2,3}, (21)

The two converters’ phase currents can be expressed as follows:

P e lg k
ls,k - ls,k + 2 (22)
o= ¢ 4 sk 7
sk — s,k 2

with i, as the common mode current on the k" phase of the interleaved inverter, Equation (21) can be

rewritten as follows:
P

0=Lgles + 7(”""‘;”’*) with: k € {1,2,3}, (23)

Applying the transformation of Equation (19):
| (v

di¢ of —o
O — LR dst,O _|_ ( r,02 r,O)

, (24)

Finally, the interleaved inverter mathematical model is given as follows:

; VP vy
VS:LTR%—FVr Vr:( 5 )
iC P_on
0=Le% +Ave  with: | Ay, = (P %) (25)

(vf,o —Up )

di
0= LR dst/o + Avrro AU}’O — 5

It is now clear that the inductors L are necessary to filter the harmonic content, which is
introduced by the modulation of v;, limiting the oscillation on the grid currents. Moreover, their
presence makes the common mode currents controllable, keeping their rising/falling time at values
that are suitable to the control algorithm sampling time.

4.2. Control Strategy

Once the reference power Py is available by means of the already discussed MPPT algorithm,
the control strategy of the inverter is responsible for assuring that this power is drained only by the
fundamental direct component of the grid voltages.

Decomposing the grid voltage space vector into its harmonics is shown as follows:

h=+0c0 ) h=+0c0 .
Vg = Z V?e]hWt = Z ‘/she]lp , (26)
h=—c0 h=—0c0

The reference space vector current has to satisfy the following:

2Py
i* = SRy
s = 3 ‘/51 e] ’ (27)
The quantities V! and ¢! are estimated by means of a Phase-Locked Loop algorithm (PLL).
From the grid’s current reference i}, it is possible to determine the converter space vector reference
voltage v; by means of a minimum delay deadbeat control algorithm. Denoting the sampling time interval
with Ts and the generic sampling time instant with t,,, the algorithm is based on the following equation:

Vi () = g i b)) Sl R ) sl e, ), oy
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As the grid voltages are repetitive, in a steady state condition the prediction of the voltage
grid space vector v (t,,11) can be estimated by memorizing the vs values into a circular buffer;
the minimum buffer size must be one period of vs. Sudden perturbations of the grid voltage can be
easily identified by comparing the sampled value with the expected one. In this case, the prediction
can only be based on the most recent sample, i.e., Vs (f,y4+1) = Vs (tm).

The total interleaved inverter space vector reference voltage value can be derived from
Equation (28), which, according to Equation (25), is the semi-sum of the p and n converters’ space
vector reference voltages. In order to separately calculate the references for the upper and lower half
bridges’ converters, an optimum condition has to be added. In an ideal case, the common mode
currents would be null in all the three phases:

The differential voltage components can again be calculated by means of a deadbeat control:

Pric , (30)

AVE (b)) = ER8C (b)) — AVE (1)
AU:,O (tm) = Tsls,o (tm) - AU;F,O (tmfl)

Based on the position in Equation (25), the reference space vector voltages for the two converters
can be evaluated:

(31)

VP (tm) = Vi (tm) + AV} (tn)
Vit (tm) = vy (tm) — Ay (tm) ’

4.3. Modulation

In each sampling time (t;,+1, ty42) the voltages vP" and vi* can be obtained by a synchronous space
vector modulation using a triangular carrier of a proper frequency value. The switching frequency
can be fixed either equal to the sampling frequency or half of the sampling frequency. Denoting with
Ty, the modulation period and T the sampling time, it will be T, = Ts or Tj, = 2 Ts. Furthermore, it is
advantageous to fix a phase shift between the upper and lower converter triangular carrier. Indeed,
by choosing this phase shift correspondent to the half of T}, the main voltage harmonic, due to the
modulation, will be null on the total interleaved inverter voltage space vector.

In each modulation period, the space vector modulation pattern applies four vectors, as follows:

{ v, (bnn) = Ve (1) = VG (1) = VE, (bn)
— Vg

y (32)
Ve, (tmv1) = Vo (Enr1) (tm+1) = Vg, (tms1)

The vectors vg, (ty11), Vs, (tm+1) correspond to null vectors 1-1-1 and 0-0-0, applied with duty
cycle &1 (t;41) and 8, (t,,+1) respectively, while v (t,,41) and vg (t,1) are active vectors, applied
with duty cycle « (f,,41) and B (t,,+1) respectively. The duty cycles of active vectors are fixed by
the space vector reference values and their sum is related to the null vectors’ duty cycles by the
following condition:

Y (tm+1) =0 (tm-i-l) +d2 (tm+1) =1- [0‘ (tm+1) +P (tm-s-l)}/ (33)

Thus, one degree of freedom remains in order to establish the value of all duty cycles. It can be
exploited to control the homopolar component Av, o. For each of the two converters, the null vectors
duty cycles 81 (t;41), 02 (£41) can be expressed as a function of a correction factor ¢ (¢,,+1):

B (1) = (1€ (ns)] 8 (bs)/2 85 (bs) = (1= (ba)] 87 (bsn) /2
1 () = [1+ " ()] 8" (bs) /25 83 (bg1) = [1— € (bs1)] 8" (1) /2
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Setting c? (t;4+1) = —¢" (ty41) = ¢ (t+1), the homopolar components of vectors v (t,11) and
vg (ty+1) will be expressed as follows:

p
{ O (tm1) = Vheg (bmt1) o (bm1) + 0 (burs1) BY (bursa) + [1+ ¢ ()] Cnet) o, (1) (35)
0 (bns1) = 0lg (bs) & (1) g 0 (1) B () + (1= € ()] =5 0c ()
The semi-difference of the two equations in Equation (35) gives:
— v (¢t
Avyg (Ent1) = Ao (Fnr1) + c () [87 (tm41) + 8" (tmr1)] € (tms1), (36)

where, AT, (t,41) is the component of Av,  (t,,+1), which is invariant with ¢ (t,,11). In particular,
AB,o (ty1) = 0 when vE* (t,) = v (). By imposing Av,g (t11) = Avy (tm), € (tm+1) is then
computed as follows:

4Av;‘/0 (tm)

¢ (tmy1) = Ve (tm) [67 (tyugt) + " (tpgr)]

(37)

5. Control Algorithm and Numerical Analysis

In Figure 4, the total system control diagram is reported consistently with the technique discussed
in the previous paragraphs.

— |

LY *| MPPT algorithm |
| i o
o 1 P,
1

£ Vi i R Vs, . 2P i (t ) deadbeat control algorithm
| ' pLL| 1 i ==ReW s m
Ly | yr s 1 NN Vg
' 3 ! > 3 Vs v, (, )‘T(ls(’m) LY (’m))‘ vp*
] | s
i ! " Ve (o) RAGHIEASTEACH NP S I o BEER
| i > 2 n* | W |1 pulses *>
i ji V2,0, 2¢, e Vo [ > Y, (t,,,) av: (r,.>z%i;(z,..)w:(r,,,,> Ve M
| 1 b _3}_I (3 B ” . .
{ | ] V3 — () v, (tm_l ) A, (z,.,)=LT—ff:.u ()-a70(-)

Space vecior . . .
% i v Paffor { ()=, )+ &)
Lop )=V ) &)
R I space vector
b | Z S .l .
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e 2 3 5,3 :
)
i S’z,p i » A lfl space vector
) [ - : > e
I 5,3 —T < 1\
b 1 1 5 P
A z 2 52,1, nghﬁuq s (m)
} i : A lg &=l
: | ™ -
: | 5
1 » o
L,,,,,,,,: A N Z ls,O (tm)

h 1= J 3
homopolar
2 po

Figure 4. Control diagram of a grid connected PV generation system via an interleaved inverter.

As the measurement of the capacitor voltage is influenced by the modulation and contains
oscillations linked to the switching frequency, a low pass filter is implemented for the processing
of v.. This additional signal processing is needed in order to avoid false detections of hysteresis
thresholds crossing.

The control strategy of the proposed system has been tested by performing an extensive numerical
analysis in the Matlab Simulink ™ environment. The parameters’ values used in the simulation are
reported in Table 2.
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Table 2. Main parameters of the system.

Description Symbol Value Description Symbol  Value

Inverter rated power P.r 200 kW PV filter capacitance C 14 mH
Phase to phase rated grid voltage VsR 400V PV filter inductance L 400 pH
Rated grid frequency f 50 Hz Modulation period T 400 ps
Interlaced converter inductance Lr 1 mH Sampling time Ts 200 us

In this context, the ideal voltage/current characteristic of the PV array has been replaced by a real
one based on the commercial multicrystal modules: KIOCERA KC175GHT-2 (see Figure 5). Moreover,
a detailed dynamic model of the chosen IGBTs has been implemented (SEMIKRON SKM400GB176D).

CELL TEMP. 25°C

1000W/m* ‘\\
7

B00W/m*

Cument (A)

400W/m?*

\

\

| oW \
\

N\

_.-—""‘-
e

200W/m*

L

Voltage (V)

Figure 5. Characteristic of the chosen PV module.

The Simulink model of the whole controlled system is reported in Figure 6, where it is possible
to distinguish between four main sections: the PV array, the interleaved converter, the electric grid,
and the control algorithm. Except for the electric grid, for which a standard Simulink block has been
used, the other subsystems have been implemented by means of C-language S-Functions. In particular,
for the models of the PV cells and forthe IGBTs, continuous states of S-Functions have been used,
while the control algorithm has been implemented as a discrete S-Function, which is computed at the
sampling rate of 200 ps.

The whole time window simulation results are reported in Figure 7. The simulation interval
(225 s) can be split into four sub-intervals, which are as follows:

e  With a solar radiance kept constant at 1000 W/ m2, the control of the converter is activated at t = 0.

e Att=110s, the solar radiance starts decreasing linearly with a slope of 50 W/m?s !, until it
reaches 250 W/m?.

e Att=150s, a fault occurs in the lower module of the two channel interleaved converter.

e Att=170s, the solar radiance starts increasing linearly with a slope of 50 W/m?s~!, until it
reaches 1000 W/m?

Figure 7a shows the PV power Py, the grid power Ps and the solar radiation Ps in the whole
time range of the numerical analysis. It can be seen that the PV power follows the MPP with good
transient behavior, either in correspondence of the standard condition (1000 W/m?) or during the
fast varying shading conditions. After the fault event, the grid power Ps remains practically constant,
except for a really quick transient induced by the dynamic of the operating converter, whose currents
have to compensate for the faulted one. Finally, when the solar radiation starts to increase, the steady
state condition is reached at a value of power that is lower than the MPP, as the power limit has been
activated on the remaining converter.
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Figure 7. Main electrical quantities during the whole time window: (a) grid and PV Powers and solar
irradiation; (b) capacitor voltage and time derivative; (c) space vectors modules of grid current and
converter common mode current with homopolar component.

In Figure 7b, the capacitor voltage variation with respect to 700 V is shown (Av, = v, — 700),
together with the capacitor voltage time derivatives. It can be noted that the capacitor voltage,
kept practically constant in the steady states conditions, indeed increases during the first transient.
This is due to the time response of the PV MPPT algorithm, which induces an average positive voltage
derivative in the DC-Link capacitor when the solar radiance rapidly decreases.

Finally, in Figure 7c, the space vector module of grid current and common mode converter current
is reported, together with the common mode homopolar component. It can be noted that, before the
fault occurring event, the common mode currents are kept at very small values (<0.1%). As expected,
after the fault event, the module of the space vector associated with the common mode current
simply coincides with half of the remaining converter one (see Equation (22)), while the correspondent
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homopolar component is null. The module of the line currents space vector is practically constant in the
steady state condition, i.e., a low ripple is induced in the line currents by the proposed MPPT algorithm.
With reference to the steady state condition at 1000 W /m?, Figure 8a shows the PV and the grid
instantaneous active power together with the grid power, averaged across one modulation period (Ps).
The power ripple induced by the MPPT algorithm on the PV power is very small (around 1.1 kW),
while the grid power ripple due to the modulation is practically completely filtered out by the LC.

210“)Ps*ﬂPj 'b)”%"”i”"i””i”*” ) :isl isz, 7[2(‘)0A/div]
TRTR R ph? Gy g AV - - -2 V/div] | \
— _> B | - \7 I
g e N S Ml
F= =7~ =dve/dt —m [50 V/s/div]
+ R i e e o
R ﬂ g hSA ARG
1()0 1 L 1 L 1 L L 1

t[s]

Figure 8. Main electrical quantities during steady state condition at 1000 W/m? radiation value: (a) grid
and PV power; (b) capacitor voltage and time derivative; (c) line currents.

The capacitor voltage variation with respect to vp;pp (Ave = v. — vppp) is shown in Figure 8b,
together with the time derivative of the capacitor voltage. While the voltage ripple is kept really low
(<0.3 %), the time derivative is not kept within the upper hysteresis band. This is due to the delay
introduced by the digital low pass filter on the capacitor voltage measurement. The overall effect is an
asymmetrical hysteresis equivalent controller, which produces a voltage ripple higher than the one
obtained in the ideal case. Finally, two line currents are depicted in Figure 8c. As expected, the line
currents are sinusoidal and symmetrical; in particular, there is no appreciable oscillation caused by
the MPPT.

The same quantities of Figure 8 are reported in Figure 9 with reference to the shading condition
(250 W/m?). The behaviors are time centered on the fault event instant. The PV power ripple in
steady state conditions is practically equal to the previous case (around 1.1 kW); this testifies the
effectiveness of the proposed power slope adaptive control. As expected, the capacitor voltage ripple is
instead increased. Indeed, the reduction of the power slope widens the PV power period of repetition
and the capacitor filtering behavior becomes less effective. The line currents appear sinusoidal and
symmetrical, even after the fault event. At the time instant of the converter failure, the remaining
operating converter is able to quickly compensate for the missing channel. Indeed, the line currents are
a little affected (see Figure 9c). Nevertheless, an evident power grid spike is present at the fault instant.
In the presence of this perturbation, the MPPT is able to quickly recover the previous operating point
(Figure 9a,b).
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Figure 9. Main electrical quantities during steady state condition at 250 W/m? radiation value around
the fault instant: (a) grid and PV Powers; (b) capacitor voltage and time derivative; (c) line currents.
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6. Conclusions

In this work, a control strategy for a two-channel three-phase grid connected inverter, fed by a
PV array, has been presented. This topology has been chosen for its intrinsic fault-tolerant features,
a paramount aspect in the context of a centralized PV generation system.

The work focuses on two central issues; the first is regarding the MPPT algorithm, and the
second is regarding the control of the interleaved converter. In contrast to the most diffused MPPTs,
the one proposed needs only one voltage measurement and is based on a hysteresis approach, which
guarantees a continuous tracking of the MPP. This MPPT has been coupled with a converter control
strategy based on a specific space vector modulation with homopolar component control.

The numerical results, carried out for a 200 kW case study, highlighted the favorable aspects of the
proposed techniques. In particular, the MPPT guarantees a very low power ripple in the steady state
conditions, while it shows good transient performance even in the presence of strong perturbations,
i.e,, fast varying shading conditions and converter failure events. The converter is able to follow the
reference power generated by the MPPT with negligible errors, ensuring symmetrical and sinusoidal
line currents in steady state conditions. The good dynamic performance of the proposed control is
further validated by an induced failure of one channel, from which the system is able to quickly recover.

Author Contributions: All the authors contributed equally to the work. Andrea Del Pizzo studied the state of art
and gave the main directions of abstract, introduction and conclusions. Gianluca Brando conceived the MPPT
algorithm and the relative numerical analysis. Adolfo Dannier developed the interleaved converter control and
modulation. Ivan Spina conceived the sizing procedure, performed the simulations and created most of the

figures. All the authors participated together to the writing phase of the article.

Conflicts of Interest: The authors declare no conflict of interest.

Symbols
c correction factor for the converter homopolar voltage;
E;, R;, G; voltage, resistance and conductance of the linearized PV characteristic in i zone;
f rated value of grid frequency;
iy current value of the ideal current generator;
if, Kbk k' phase current of p and 1 3-phase half bridges;
ig/k Kt phase common mode inverter current;
LC filter inductance and capacitance;
Lgr inverter inductance;
P.r inverter rated power;
P, P, grid power and its mean value over one modulation period;
Pslopes Mslope positive and negative reference power time-slope;
P, solar radiation;
thgpe hysteresis threshold value;
tm generic sampling time instant;
T modulation period;
Ts sampling time;
tsmrtup system startup time;
UNO voltage of point N with respect to the grid neutral point O;
Up,ip, Pp voltage, current and Power of PV array;
vf,k, vk k™ phase voltage of p and n 3-phase half bridges;
vl ! magnitude and angle of fundamental direct component of the grid voltages;
Vs,R phase to phase rated grid voltage value;
Vs ko Ls kth phase grid voltage and current;
Ympp generic y quantity referred to the PV MPP;
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Y, Yo generic y quantity space vector and homopolar component;
y* reference value for generic y quantity;
) active vectors duty cycles;
81,87,0 null vectors duty cycles and their sum;
Onve limit coefficient for the capacitor voltage variation;
5,8y limit coefficients for capacitor current absorption and inductor voltage drop;
Al current ripple value of the ideal current generator;
Ave capacitor voltage variation;
Avy semi-sum of p and n 3-phase half bridges space voltage vector;
Av,g semi-sum of p and n 3-phase half bridges homopolar voltage component;
&rr Ermin reduction factor and its minimum value;
¢, Cmin damping factor and its minimum value.
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