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Abstract: Gas and power networks are tightly coupled and interact with each other due to physically
interconnected facilities. In an integrated gas and power network, a contingency observed in one
system may cause iterative cascading failures, resulting in network wide disruptions. Therefore,
understanding the impacts of the interactions in both systems is crucial for governments, system
operators, regulators and operational planners, particularly, to ensure security of supply for the
overall energy system. Although simulation has been widely used in the assessment of gas systems
as well as power systems, there is a significant gap in simulation models that are able to address
the coupling of both systems. In this paper, a simulation framework that models and simulates the
gas and power network in an integrated manner is proposed. The framework consists of a transient
model for the gas system and a steady state model for the power system based on AC-Optimal
Power Flow. The gas and power system model are coupled through an interface which uses the
coupling equations to establish the data exchange and coordination between the individual models.
The bidirectional interlink between both systems considered in this studies are the fuel gas offtake of
gas fired power plants for power generation and the power supply to liquefied natural gas (LNG)
terminals and electric drivers installed in gas compressor stations and underground gas storage
facilities. The simulation framework is implemented into an innovative simulation tool named SAInt
(Scenario Analysis Interface for Energy Systems) and the capabilities of the tool are demonstrated
by performing a contingency analysis for a real world example. Results indicate how a disruption
triggered in one system propagates to the other system and affects the operation of critical facilities.
In addition, the studies show the importance of using transient gas models for security of supply
studies instead of successions of steady state models, where the time evolution of the line pack is not
captured correctly.

Keywords: combined simulation; power and gas interdependence; security of supply; transient gas
simulation; scenario analysis; power system contingency

1. Introduction

Large scale energy infrastructures for natural gas and power play a crucial role for any
well-functioning society. These infrastructures are systematically analyzed and controlled in order
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to understand their operational characteristics and to provide an energy efficient operation and
a sufficient level of security of supply. However, ensuring the required level of security of supply is
becoming more challenging, especially because of the increasing interconnections among the facilities
in both systems.

The dependence of power generation on natural gas has increased the vulnerability of electric
power systems to interruptions in gas supply, transmission, and distribution. Since the storage of
gas on-site is not an option, as it is for coal and fuel oil, the direct gas delivery through pipelines
becomes more critical during unexpected events in electricity systems like peak periods or disruptions.
Particularly, short term problems caused by pipeline constraints that cause an inability of a generator
to receive fuel gas can seriously affect security of power supply [1].

Another issue is the lack of predictability of renewable generation, which might increase the
magnitude of imbalances in the gas system. Although the increasing share of renewables will cause
a reduction of the power system dependency on natural gas, forecasting the amount of gas needed
to serve Gas Fired Power Plants (GFPPs) will become more challenging due to growing penetration
of variable resources. Additionally, shale gas production already had a significant impact on the
deployment of new infrastructures, especially in the USA, where the installed capacity of GFPPs has
increased enormously during the last years and is expected to continue increasing in the coming
years [2]. This increase has obviously tightened the dependency of the electricity system on the gas
system. This could also be the case in other regions of the world, including Europe, especially under
scenarios of abundant shale gas and low carbon policies.

Not only is the power system dependent on gas, but also the gas system is dependent on power.
A gas network consists of different facilities that depend on electrical power in order to maintain
normal operation (e.g., electric driven compressors, liquefied natural gas (LNG) facilities, underground
gas storage facilities, valves, regulators, gas meters). The usage of electric drivers in gas facilities
is increasing due to advantages regarding environmental impacts and flexibility compared to gas
turbines [3]. Moreover, increased availability, better control, improved energy efficiency, and shorter
delivery times are other important and attractive advantages of electric drivers. Since the proper
functioning of electric drivers requires a reliable power supply, gas system dependency on the power
system can be considered critical. Additionally, the present advancement in the Power-to-Gas (P2G)
technology, where excess power generation from renewable sources is used to produce hydrogen or
synthetic natural gas (SNG) will significantly contribute to the coupling of both systems [4], since the
power system will depend on the gas system as an energy storage provider.

Summarizing these aspects, it appears that interconnections between gas and electricity
systems make the entire energy system vulnerable, since a disruption occurring in one system
(e.g., an unexpected failure) may propagate to the other system and may possibly feed back to the
system, where the disruption started. Tight relations are increasing the potential risk for catastrophic
events, triggered by either intentional or unintentional disruptions of gas or electricity supply and
possibly magnified by cascading effects. Analyzing both systems in an integrated manner and
developing a combined assessment methodology is needed in order to know whether and how
such interdependencies may contribute to the occurrence of large outages and to ensure the proper
functioning of the energy supply system.

In this paper, we propose a simulation framework for assessing the interdependency of integrated
gas and power systems in terms of security of supply. The framework combines a steady state AC-flow
model with a transient hydraulic gas model and captures the physics of both systems. The data
exchange between both models is established through a developed software application named SAInt
(Scenario Analysis Interface for Energy Systems), which contains a graphical user interface for creating
the network models and scenarios and for evaluating the simulation results. The proposed framework
implemented in SAInt, is intended to be used by system operators, researchers, operational planners
interested in analyzing the operation and interdependency of gas and electricity systems in terms of
security of energy supply; i.e., to analyze the cascading impacts of contingencies on the operation
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of integrated gas and power systems and to assess system flexibilities by providing information on
system abilities to react to changes.

To achieve these goals, the paper follows the following pattern. In Section 2, we give an overview
of available models in the scientific literature addressing the analysis of combined gas and power
systems and highlight the gaps in the literature we intend to fill. Section 3 discusses the different
modeling aspects to be considered in a combined gas and power system model for assessing security
of supply, while Section 4 elaborates the developed simulation framework and its implementation into
a software application. In Section 5, we apply the proposed model to perform a contingency analysis
on a real life sized test network. Finally, the conclusions are given in Section 6.

2. State of the Art

The area of analyzing interdependencies between gas and power systems is relatively new. It is
encouraging that the number of publications on integrated gas and electricity systems found in the
literature is increasing, although still limited. Comprehensive reviews of past publications can be found
in [5–8]. The different types of analysis undertaken in integrated gas and power systems literature
can be categorized as; economic and market perspective analysis, operation planning and control
(e.g., optimization, demand response), design and expansion planning, and security analysis.

Studies on the medium and long-term economic evaluations aiming at exploring the interactions
between the mechanisms of pricing of each carrier are reported in [7–17], where the influence of
technical constraints is often ignored or taken into account in a simplified way. Additionally in [18],
the authors proposed a dynamic model representation of coupled natural gas and electricity network
markets to test the potential interaction with respect to investments while considering network
constraints of both markets. In [19], two methodologies for coupling interdependent gas and power
market models are proposed in a medium-term scope, where the two systems are formulated separately
as optimization problems and the obtained primal dual information is utilized.

From the operational viewpoint, unit commitment models relating to short term security
constrained operation of combined gas and power systems are developed in [20–22]. In [21], the authors
considered the natural gas network constraints in the optimal solution of security constrained unit
commitment (SCUC). Additionally dual fuel units are modelled for analyzing different fuel availability
scenarios. In [22], the model proposed in [21] is extended using a quadratic function of pressure for
describing the gas flow in pipelines and also including the gas consumption of the compressors. In [23],
an economic dispatch model (ED) is developed for integrated gas and power systems. The security
constraints for both systems are integrated in the ED which aims to minimize power system operating
costs. The optimal power flow (OPF) of the coupled gas and power systems are investigated in [24–29].
A method for OPF and scheduling of combined electricity and natural gas systems with a transient
model for natural gas flow is investigated in [27] and the solutions for steady-state and transient
models of the gas system are compared. A multi-time period OPF model was developed for the
combined GB electricity and gas networks in [28,29].

The impact of uncertainties on integrated gas and power system operation caused by variable
wind energy is discussed in [30–33]. In [30] the impacts of abrupt changes of power output from
GFPPS, to compensate variable power output from wind farms, on the Great Britain (GB) gas network
is analyzed. In [32], the authors developed partial differential equation (PDE) model of gas pipelines
to analyze the effects of intermittent wind generation on the fluctuations of pressure in GFPPs and
pipelines. The coordination between the gas and power systems based on an integrated stochastic
model for firming the variability of wind energy is presented in [33]. Gas transmission system
constraints and the variability of wind energy is considered in the optimal short-term operation of
stochastic power systems with a scenario based approach.

Studies considering the implementation of demand side response in order to mitigate the pressure
of peak demand can be found in [34–37]. An operating strategy for short-term scheduling of integrated
gas and power system is proposed in [36] while considering demand response and wind uncertainty.
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In [37], the impact of demand side response on integrated gas and power supply systems in GB is
analyzed for the time horizon from 2010 to 2050.

The problem of the design and expansion planning is addressed in [38,39] for the integrated gas
and power systems at the distribution level and the transmission level, respectively.

Recently P2G has gained significant interest. A number of studies [4,40] have investigated the
interdependencies introduced by P2G units on the integrated gas and power system operation in GB.
The application of P2G for seasonal storage in gas networks was investigated in [41].

The security perspective including the reliability and the adequacy of integrated gas and power
systems has gained significant interest due to increasing dependencies among the systems. Such studies
may include the cascading effects of contingencies where the performance of the networks is
reduced [8,42–45]. In [8], an integrated simulation model that aims at reflecting the dynamics of
the systems in case of disruptions is proposed. While developing the integrated model, first gas and
power systems are modeled separately and then linked with an interface.

Despite the growing interest in analyzing the integrated gas and power system in reliability aspects
most of the studies on that area have used steady-state or successions of steady state formulations
(i.e., supply and demand are assumed balanced at all time) to define each system in order to reduce
the complexity of the problem [21,46,47]. However, these formulations could not reflect the different
behavior of the two systems appropriately, since gas and power system dynamics evolve on very
different timescales. Gas systems react slower to changes in the system, because of the larger
system inertia, due to the quantity of gas accumulated in the pipelines, also referred to as linepack.
Since steady state gas models do not account for the changes in linepack, these models are inadequate
for describing the dynamic behavior of gas systems, when boundary conditions change over time
(demand, supply, etc.) [48,49]. Capturing the dynamic behavior of gas systems correctly requires
the use of transient models. Nevertheless, few references can be found in literature considering the
integration of gas dynamics with electricity systems [27,49]. In [27], gas and electricity systems have
been modeled in a coupled manner to assess the coordinated daily scheduling of interdependent gas
and electricity transmission systems that are based on slow transient process of gas flow. However,
the authors did not take into account the ability of GFPPs to change their output within the day.
Moreover, the flexibility of the gas system to adapt itself to changing demands of GFPPs is not
analyzed in the study. In [49] an integrated gas and electric flexibility model has been developed where
a relevant flexibility metric is introduced to assess the ability of the gas transmission networks to react
to changes in the power system, particularly, due to intermittent renewables. The proposed model
uses both steady-state and transient gas analysis and electrical DC optimal power flow, where the
bus voltages and reactive power balance are neglected. The simplification used in DC power model
may provide too optimistic results, mainly because voltage profile of buses and reactive power has
significant impacts on the system conditions when perturbed by failure events [8].

This study extends previous work in the area in several ways. First, to the best of our knowledge it
is the first scenario-based integrated simulation tool to analyze the cascading effects of the contingencies
for integrated gas and power systems in such detail. The proposed framework (referred to as SAInt)
couples a transient gas hydraulic model, which considers sub-models of the most important facilities,
such as compressor stations, LNG terminals and UGS facilities, with a steady state power model based
on AC flow, where the transmission capacity, active-reactive generation and upper-lower limits on
voltage magnitude are considered. The gas model is designed with a dynamic time step adaptation
method which adapts the simulation time step in relation to the control mode changes in order to
capture these changes with a higher time resolution. Moreover bidirectional interdependencies are
modeled by considering the gas dependency of GFPPs and the power dependency of electric driven
compressor stations, LNG terminals and UGS facilities. The proposed model focuses on integrated
analysis of gas and electricity systems to achieve a sustainable energy system and to improve energy
security, as well as aiming at developing a methodology to identify and assess the impact of interactions
between gas and electric systems in terms of energy security.
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3. Security of Supply in Integrated Gas and Power Systems

The interactions between gas and electric systems make it increasingly difficult to separate security
of gas supply from security of electricity supply. The changes in the overall system due to all type
of incidents affect the dynamic behavior and vulnerability of the integrated gas/electricity system.
The degree of integrated power and gas system vulnerability depends on some external conditions
like the level of power system dependency on GFPPs, power generation mixture of the region, weather
conditions, natural disaster probabilities of the region, and failure probability of facilities in either of
the systems, among other factors.

Generally speaking, large disruptions in gas systems affecting both power and non-power
consumers are not so common. The gas system is well known as reliable and safe. However, there
could be incidents resulting in curtailment of gas in some conditions which can immediately cause
problems in the power system such as, unexpected increase in demand, freezing of wellheads and
disruption of pipelines among others. In such cases, the delivery pressure needed by the facilities has
to be taken into account. This is particularly important in recently deployed GFPPs using modern
combustion turbines, which need higher gas pressure to operate compared to conventional combustion
turbines. It should be noted that, even if the gas system had enough capacity to deliver gas to GFPPs
at peak demand, the coincidence of peak demand for GFPPs and for conventional use (household,
commercial, industrial) may result in a significant diminished pressure in pipelines, which eventually
may produce interruptions in the electricity generation because of insufficient pressure.

In case of lack of gas supply in a GFPP, the possible solutions that may help bridge the gap of
gas availability could be dual fuel capabilities or/and a variety of storage options (line-pack and UGS
facilities close to consumption areas). However, the costs and feasibility of storage and fuel switching
has to be analyzed in detail since sometimes they cannot be used as a solution in practice. In fact,
quite frequently because of the cost of fuel-oil storage a dual fuel GFPP cannot switch to the alternative
fuel due to lack of fuel stored on-site.

When the consequences and cascading effects of a disruption originating in one system and
propagating to the other system are compared, the gas system is more resilient to local and short-term
disruptions compared to the electricity system. The main reason for this is that, in addition to
the existence of the linepack as short-term storage, the majority of compressor stations are still
powered by gas turbines, which keeps the pressure profile within limits, allowing continued operation.
Furthermore, in case electric driven compressors are installed, a back-up power system (typically
diesel) is usually available to protect the system from power outages. A massive power failure would
generally have no serious effect on the physical pipeline facilities, provided that it does not last too
long. Compressor stations that utilize electric drivers would be the most affected and have to be
analyzed carefully.

When analyzing and modelling integrated gas and electricity systems, there are several issues
that have to be addressed mainly due to the differences in the structure of the systems. For instance,
the failure response of the power and gas system infrastructures is significantly different. A technical
failure in the power system infrastructure can result in an immediate loss of service from a generating
unit or a transmission line, that can, under some extreme conditions, propagate loss of service to the
electric customers due to cascading effects. On the contrary, most technical failures in gas systems
(e.g., pipeline rupture, failure in compressor station or storage facility etc.) result in a locally or
regionally reduced network capacity rather than an entire loss of service to the gas consumers [1].
This capacity reduction might result in curtailments of gas delivery to customers according to their
priority level of service. Another important distinction is the different dynamic behavior of the
two systems. Electricity travels almost instantaneously and cannot be stored economically in large
quantities in current power systems, with the only exception of hydraulic pumping power stations,
whose availability is very much limited in a significant number of countries. In case of disruptions,
the response time of the power system is quite small and basically the transmission line flows satisfy
the steady-state algebraic equations. On the contrary, the gas flow in pipelines is a much slower
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process, with gas velocities below 15 m/s, resulting in a longer response time in case of disruptions.
In particular, high-pressure transmission pipelines have much slower dynamics due to the large
volumes of gas stored in the pipelines. This quantity of gas cannot be neglected when simulating the
dynamics in a gas transmission system; in fact the line pack in the pipeline increases the flexibility of
the gas system to react to short term fluctuations in demand and supply. This information is important
especially in the modeling stage, since different timing of the systems needs to be considered during
the simulation process.

Based on the information above, a simulation framework is proposed that allows simulating
integrated gas and power systems in a realistic way, emphasizing the integration and communication
between the networks. The architecture of the simulator is explained in detail in the next section.

4. Methodology

In this section, we elaborate the different models and methods used in the proposed simulation
framework for analyzing the interdependence between gas and power systems. In the first
part, we derive the physical equations describing the behavior of both systems independently.
Next, we elaborate the coupling equations describing the most relevant interconnections between the
two energy systems. Finally, we integrate the individual models together with the coupling equations
into a single integrated simulation framework and describe the algorithm and the communication
and synchronization between the simulators in the course of the solution process of the combined
energy system.

4.1. Power System Model

A power transmission system is described by a directed graph G = (V, E) consisting of a set of
nodes V and a set of branches E, where each branch e ∈ E represent a transmission line or a transformer
and each node i ∈ V a connection point between two or more electrical components, also referred to as
bus. At some of the buses power is injected into the network, while at others power is consumed by
system loads.

Transmission lines and transformers, can be described by a generic per-phase equivalent π-circuit
model depicted in Figure 1, which reflects the basic properties of both components, such as resistance
R f t, reactance X f t, line charging susceptance b f t, transformer tap ratio t f t and phase shift angle φ f t.

Vf = |Vf | ejδ f

I f Vp

j
b f t

2

R f t jX f t

j
b f t

2

It

Vt = |Vt| ejδt

1 : t f t

Figure 1. Generic branch model (π-circuit) for modeling transmission lines (t f t = 1 & φ f t = 0),
in-phase transformers (φ f t = 0) and phase-shifting transformers (φ f t 6= 0). The transformer tap ratio is
modeled only on the from-Bus side of the branch model.

From the π-circuit model, we can derive for each branch e ∈ E a branch admittance matrix Ybr,
which relates the complex from-bus and to-bus current injections I f & It, respectively, to the complex
from-bus and to-bus voltages Vf & Vt, respectively, as follows:
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I f

It

 =

a2
f t(y f t +

b f t
2 ) −t∗f t · y f t

−t f t · y f t a2
t f (y f t +

b f t
2 )


Vf

Vt

 (1)

with

t f t =
Vp

Vf
= a f t ejφ f t , a f t =

|Vp|
|Vf |

, y f t =
1

R f t + jX f t
=

1
Z f t

(2)

The elements of the branch admittance matrices can be used to assemble the bus admittance
matrix Ybus which describes the relation between the vector of complex bus current injections I to the
vector of complex bus voltages V for the entire power network.

I = Ybus ·V, Ybus =
[
Yij
]Nb×Nb (3)

The steady state power balance in the power system is derived from Kirchhoff’s Current Law
(KCL, i.e., all incoming and outgoing currents at a bus must sum up to zero) applied to each bus in the
network, which yields the following complex power balance matrix equation for the entire network:

S = V · I∗ ⇒ (PG − PD) + j(QG −QD) = V · Y∗bus ·V∗ (4)

where the left hand side describes the active P and reactive Q power injections/extractions at
generation/load buses, respectively, and the right hand side the incoming and outgoing apparent
power flows from transmission lines and transformers.

The operation of a power system is restricted by a number of constraints imposed by technical
components and stakeholders (producers, consumers, regulators etc.) involved in the power supply
chain. Transmission lines, for instance, can only transport a limited amount of power due to
thermal restrictions, while the operation of power plants is limited by the capability curves of the
installed generators. The power transmission system operator (TSO) is responsible for respecting
these constraints, while operating the system in an economic and secure manner. The real time
power dispatch in an electric power system can be described by a steady state AC-optimal power
flow model (AC-OPF) [50], which is expressed by the following non-linear inequality constrained
optimization model:

min
X

f (X) =
Ng

∑
i=1

c0,i + c1,i PG,i + c2,i P2
G,i (5)

s. t. GP,i(X) = Pi(V)− PG,i + PD,i = 0, i = 1 . . . Nb (6)

GQ,i(X) = Qi(V)−QG,i + QD,i = 0, i = 1 . . . Nb (7)

Pi(V) =
Nb

∑
j=1
|Vi||Vj||Yij|cos(δi − δj − θij), i = 1 . . . Nb (8)

Qi(V) =
Nb

∑
j=1
|Vi||Vj||Yij|sin(δi − δj − θij), i = 1 . . . Nb (9)

H f
k (X) = S f

k
∗
· S f

k − Smax
k

2 ≤ 0, k = 1 . . . Nl (10)

Ht
k(X) = St

k
∗ · St

k − Smax
k

2 ≤ 0, k = 1 . . . Nl (11)

δi = δ
re f
i , i = ire f (12)

|Vmin
i | ≤ |Vi| ≤ |Vmax

i |, i = 1 . . . Nb (13)

Pmin
G,i ≤ PG,i ≤ Pmax

G,i , i = 1 . . . Ng (14)
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Qmin
G,i ≤ QG,i ≤ Qmax

G,i , i = 1 . . . Ng (15)

where the decision variables expressed by vector X

X =
[
∆ Vm PG QG

]T
(16)

are the set of bus voltage angles ∆, bus voltage magnitudes Vm and active and reactive
power generation PG and QG, respectively. Equation (5) is a scalar quadratic objective function,
which describes the total operating costs for each committed generation unit in terms of its active power
generation, while the non-linear equality constraints expressed by Equations (6)–(9) describe the set of
active and reactive power balance equations derived from matrix Equation (4). Equations (10) and (11)
are non-linear inequality constraints, which describe the transmission capacity limits Smax

k for each
line, while the upper and lower limits of the decision variables are described by Equations (13)–(15).
For each isolated sub network one bus is chosen as the voltage angle reference (see Equation (12)),
i.e., the voltage angle of the reference bus is set to zero.

The described AC-OPF model is implemented into the open source power flow library
MATPOWER [51], which we utilize as the power system simulator in the context of the proposed
simulation framework.

4.2. Gas System Model

Similar to the power system network, the gas network is described by a directed graph G = (V, E)
composed of nodes V and branches E. Facilities with an inlet, outlet and flow direction are modeled
as branches, while connection points between these branches as well as entry and exit stations
are represented by nodes. Branches, in turn, can be distinguished between active and passive
branches. Active branches represent controlled facilities, which can change their state or control
during simulation, such as compressor stations, regulator stations and valves, while passive branches,
such as pipelines and resistors represent facilities or components whose state is fully described by the
physical equations, derived from the conservation laws. A description of the different branch types is
given in Table 1. Nodes can also be differentiated according to their function into supply, demand,
storage and junctions. A description of the different node types and their corresponding node facilities
is given in Table 2.

The gas model proposed in this study includes sub-models of all important facilities comprising
a gas transport system, such as pipelines, compressor stations (CS), production fields (PRO),
cross-border import (CBI) and export stations (CBE), city gate stations (CGS), stations of direct served
customers (GFPPs, IND), liquefied natural gas (LNG) regasification terminals and underground gas
storage (UGS) facilities. The model is able to capture appropiately [52,53] the reaction of gas transport
systems to load variations (i.e., daily and seasonal changes of gas demands at offtake points) and
disruption events (e.g., loss of supply from an entry point, failure in a compressor station, etc.) with
moderate computational cost, taking into account the physical laws governing the dynamic behavior of
gas transport systems. The accuracy of the proposed gas model has been confirmed in [52,53], where it
is benchmarked against a commercial software package. In the following we give a brief description of
the physical equations used fro describing the gas system. We refer to previous publications, for more
details on the gas model implemented in SAInt [52–54].
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Table 1. Basic elements comprising gas transport networks.

Element Types Description
Passive Elements

pipe models a section of a pipeline, basic properties are length, diameter, roughness and
pipe efficiency

resistor models passive devices that cause a local pressure drop (e.g., meters, inlet piping,
coolers, heaters, scrubbers etc.)

Active Elements
compressor

models a compressor station with generic constraints, allows the specification of a
control mode of the station (e.g., outlet pressure control, inlet pressure control, flow rate
control etc.)

regulator models a pressure reduction and metering station located at the interface of two
neighboring networks with different maximum operating pressures, allows the
specification of a control mode of the station (e.g., outlet pressure control, inlet pressure
control, flow rate control etc.)

valve
models a valve station, which is is either opened or closed

Table 2. Classification and characteristics of nodes in the network.

Node Type Description Facilities

demand

L > 0

point, where gas is extracted from the network, connected
facilities are typically flow or pressure controlled

CGS, CBE, GFPP,
IND

supply

L < 0

point, where gas is injected into the network; connected facilities
are typically flow or pressure controlled; for LNG regasification
terminals the working gas inventory is monitored and the flow
rate is reduced in case of low inventory

PRO, CBI, LNG

storage

L ≥ 0 or L ≤ 0

point, where gas is injected or extracted from the network and
where the maximum supply/loads depend on the working gas
inventory, which is monitored along the transient simulation;
connected facilities are typically flow or pressure controlled

UGS

junction

L = 0

point, where a topological change or a change in pipe properties
occurs (e.g., diameter, inclination); no specific control -

The dynamic behavior of a gas transport system is predominantly determined by the gas flow in
pipelines. The set of non-linear hyperbolic partial differential equations (PDE) describing the transient
flow of natural gas in pipelines are derived from the law of conservation of mass, momentum and
energy and the real gas law.

Applying these laws on an infinitesimal control volume (CV) of a general pipeline with a constant
cross-sectional area A and an infinitesimal length dx (see Figure 2) and assuming the parameters
describing the gas flow dynamics along the pipe coordinate x are averaged over A, yields the following
set of fundamental Partial Differential Equations (PDEs) describing the gas flow through pipelines
(the assumption of averaging the flow parameters over the cross-sectional area can be justified as
long as the pipe length L is much greater than the pipe diameter D which is the case in transmission
networks where D

L is of order O(10−5) or lower):
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Law of Conservation of Mass—Continuity Equation:

∂ρ

∂t
+

∂(ρv)
∂x

= 0 (17)

Newton’s Second Law of Motion—Momentum Equation:

∂(ρv)
∂t︸ ︷︷ ︸

inertia

+
∂(ρv2)

∂x︸ ︷︷ ︸
convective term

+
∂p
∂x︸︷︷︸

pressure force

+
λρv|v|

2D︸ ︷︷ ︸
shear force

+ ρgsinα︸ ︷︷ ︸
force of gravity

= 0 (18)

First Law of Thermodynamics - Energy Equation:

∂

∂t

[(
cvT +

1
2

v2
)

ρA
]
+

∂

∂x

[(
cvT +

p
ρ
+

1
2

v2
)

ρuA
]
+ ρuAgsinα = Ω̇ (19)

Real Gas Law - State Equation:
p
ρ
= Z R T (20)
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Figure 2. Forces acting on a control volume in a general gas pipeline.

The fundamental equations are typically simplified by adapting them to the prevailing conditions
in transport pipelines. The most common assumptions are isothermal flow (i.e., constant temperature
in time and space, thus, energy equation is redundant and can be neglected) and small flow velocities
(i.e., relatively small Mach numbers, thus, convective term in momentum equation is negligible
compared to the other terms), which applied to the above equations yields the following set of
non-linear hyperbolic PDEs:

∂p
∂t

= −ρnc2

A
∂Qn

∂x
(21)

∂p
∂x

= −ρn

A
∂Qn

∂t
− λρ2

nc2

2DA2 p
|Qn|Qn −

g sinα

c2 p (22)

with

c2 =
p
ρ
= ZRT, M = ρvA = ρnQn

The above PDEs express the physical behavior of the gas flow in each pipe section in the gas
model. We can integrate the set of PDEs for the entire network into one coupled equation system by
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applying the following integral form of the continuity equation to a nodal control volume Vi in the
network, assuming all pipelines in the network are divided into a finite number of pipe segments:

Vi
ρnc2

dpi
dt

=
k

∑
j=1

aijQij − Li, i = 1 . . . Nn (23)

with

Vi =
π

8

k

∑
j=1

D2
ij ∆xij

Equation (23) can be expressed for each nodal control volume Vi in the network, resulting in Nn

set of equations with 2Nn + Mb unknown state variables, where Nn and Mb denote the number of
nodes and branches, respectively. Thus, Nn + Mb additional independent equations are required in
order to close the entire problem. These equations are provided by the pressure drop equation for
each pipe segment derived in Equation (22) and the equations describing the control modes and active
constraints of non-pipe facilities [52]. The differential equations can be discretized using the following
fully implicit finite difference approximations for the state variables p, Q and L and their time and
space derivatives:

∂U
∂t

=
Un+1

i −Un
i

∆t
,

∂U
∂x

=
Un+1

i+1 −Un+1
i

∆x
, U =

Un+1
i+1 + Un+1

i
2

(24)

The resulting (non-)linear finite difference equations and control equations of non-pipe facilities
are solved iteratively by a sequential linearisation method [55]. For more details on the equations
describing the control and active constraints of non-pipe facilities and the algorithm for solving the
gas model we refer to [52–54].

Furthermore, we use the following expression for computing the quantity of gas stored in each
pipe section (line pack):

LP(t) =
A

ρn · c2

∫ x=∆x

x=0
p(x, t) dx =

∆x pm(t) A
ρn · c2 (25)

with

pm(t) =
2
3

p1(t)2 + p1(t) · p2(t) + p2(t)2

p1(t) + p2(t)
(26)

where pm is the mean pressure in the pipe section and, p1 and p2 are the inlet and outlet gas pressure,
respectively. The ramping of a GFPP depends on the availability of line pack in the hydraulic area
(sub network bounded by controlled facilities) the GFPP is connected to. We consider the availability
of line pack by setting a minimum nodal gas pressure threshold for the corresponding GFPP node.
Since line pack is linearly correlated to the mean gas pipeline pressure, GFPPs operate only if a specific
line pack level equivalent to the specified minimum pressure is available.

The presented gas model is implemented into the simulation tool SAInt, which we use as
a simulator for the gas model in the proposed simulation framework.

4.3. Interconnection between Gas and Power Systems

As discussed in the previous sections, gas and electric power systems are physically interconnected
at different facilities. In this paper, we consider the most important connections between both systems
as follows:

1. Power supply to electric drivers installed in gas compressor stations:
The electric power consumed by the compressor station can be described by the following
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expression (derived from the first and second law of thermodynamics for an isentropic
compression process) describing the required driver power PCS

D,i for compressing the gas flow Q
from inlet pressure p1 to outlet pressure p2 [56,57]:

PCS
D,i = f

κ

κ − 1
Z1T1RρnQ

ηadηm

 p2

p1

κ − 1
κ − 1

 , i = 1 . . . NCS (27)

where f is a factor describing the fraction of total driver power provided by electric drivers,
ηad the average adiabatic efficiency of the compressors, ηm the average mechanical efficiency of
the installed drivers, p2 the outlet pressure, p1, Z1, T1 the inlet pressure, compressibility factor,
temperature, respectively, R the gas constant, κ the isentropic exponent.
The power supply of the gas network is added to the active power demand in the electric model.

2. Electric power supply to LNG terminals and UGS facilities:
We capture this interaction by assuming a generic linear function in terms of the regasification or
withdrawal rate Lrw, respectively:

Prw
D,i = ki,0 + ki,1 · Lrw,i (28)

3. Fuel gas offtake from gas pipelines for power generation in GFPPs:
The required fuel gas LGFPP,i for active power generation PG,i at plant i can be expressed in
terms of the thermal efficiency ηT of the GFPP and the gross calorific value GCV of the fuel gas,
as follows:

LGFPP,i =
PG,i

ηT · GCV
, i = 1 . . . NGFPP (29)

4.4. Integrated Simulation Framework for Security of Supply Analysis

The modeling framework carried out within SAInt considers the integrated gas and electricity
transmission network under cascading outage contingency analysis. The cascading outages are
investigated when the gas or electricity system has just experienced a disruption, like a shortage in
supply or transmission capacity. The framework comprises of

(i) a simulator (MATPOWER) for solving an AC-OPF for the power system,
(ii) a transient hydraulic gas simulator (SAInt) for the gas system which includes sub-models of all

relevant pipe and non-pipe facilities
(iii) and an interface (SAInt) which handles the communication and data exchange between the

two isolated simulators.

SAInt is composed of two separate modules, namely, SAInt-API (Application Programming
Interface) and SAInt-GUI (Graphical User Interface). The API, is the main library of the software and
contains the solvers, routines and classes for instantiating the different objects included in gas and
electric systems. In order to perform power flow calculations and to extend the functionality of the
software, the API has been linked to MATLAB using the Matlab COM Automation Server. This link
has been used to establish a communication between the Matlab-based open source power flow
library MATPOWER [51] and SAInt-API. This allows the execution of AC-Power Flow and AC-OPF
with MATPOWER and the evaluation and visualization of the obtained results using SAInt-GUI [52].
For more information on SAInt we refer to previous publications [52,54].

The proposed simulation framework is illustrated in the flow diagram depicted in Figure 3,
which is explained further below.

The power model proposed in this paper is designed to provide a realistic representation of the
behavior of an actual power system when subjected to contingencies. Cascading effects of contingencies
in the power grid are very complex phenomenona, and identifying the typical mechanisms of
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cascading failures and understanding how these mechanisms interact during blackouts is an important
research area [58–63]. Potential mechanisms that might be modeled include overloaded line tripping
by impedance relays due to the low voltage and high current operating conditions, line tripping
due to loss of synchronism, the undesirable generator tripping events by overexcitation protection,
generator tripping due to abnormal voltage and frequency system condition, and under-frequency
or under-voltage load shedding. For each additional mechanism of cascading failure included
in a model, assumptions must be made about how the system will react to these rarely observed
operating conditions.

Simulation Framework - SAInt

Power System Simulator

Gas & Power
System Coupling,
Data Exchange &
Communication

Gas System Simulator

Start

Solve AC-OPF
with

MATPOWER

Inputs:
Power system model
Hourly loads
Cost function
Power demand gas
grid
Contingencies

Bus voltage
violations?

Overloaded
lines ?

Load shedding
at affected

buses

Disconnect
overloaded
lines and
perform
topology
checking

Compute
hourly gas

burns at GFPPs
and map with

gas nodes

Initial gas
state

available?

Solve Initial
Steady

State Gas
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Gas with SAInt

Pressure
violations at

GFPPs?

Pressure
violations at

GFPPs?

End

Compute
Power demand
of gas facilities
and map with
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Shut down
GFPPs with

insufficient fuel
gas pressure

and map with
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no
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no

no

yes
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yes
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Figure 3. Flow chart of the proposed Simulation Framework SAInt, showing the implemented algorithm.
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This paper introduces a steady state AC-flow model which is adapted to reflect a set of corrective
actions performed by TSOs when trying to return the system to a stable operating condition after
a contingency.

While the initial contingency can usually be considered as being a random event, an interaction
of cascading failure mechanisms exists in the subsequent events. For example, the loss of critical
components such as tripping of transmission lines creates load redistribution to other components,
which might become overloaded. The overall network is then weakened due to the stress on remaining
elements, possibly leading to an instability. If corrective action plans are not applied quickly further
failures might be created as a consequence leading to a blackout. In this paper, this cascading failure
phase, starting with the initiating event is modeled, where the cascading contingencies occurrence are
affected by operator actions and the times between subsequent events are considered in a range of
tens of seconds to 1 h. Various system adjustments that are considered include the post-contingency
redispatch of active and reactive resources, cascade tripping of an overloaded transmission line,
tripping or re-dispatching of generators due to load/generation imbalance, and load shedding at load
buses to prevent a complete system blackout when insufficient voltage magnitudes are observed.

The initial state of the model is obtained by solving the standard AC optimal power-flow problem
as described in Equations (5)–(15), which yields the optimum hourly generator dispatch for given
hourly loads, cost functions for each generator and bus voltage and line loading constraints. To execute
this task MATPOWER 6.01b AC-OPF algorithm is applied [51].

Any change from the initial state caused by a contingency event, such as a (simultaneous) failure
of one or more transmission lines, failure of a generation unit or decreased amount of generation
capacity due to lack of gas supply, can be introduced in the model by defining a scenario event
for the corresponding facility, which is composed of an event time, an event parameter and its
corresponding value.

Whenever a contingency is observed in the system, an imbalance between total generation
and total load may occur. In order to re-balance the system, the model redistributes the missing or
excess power to the remaining facilities in the power grid. The power re-dispatch is obtained by
running the AC-OPF model, while considering the new topology triggered by a previous disruption
(e.g., lines and generation units may be disconnected). However, since the system is under a stressed
state, the AC-OPF algorithm may deliver an infeasible solution, that does not satisfy the convergence
criteria, since system constraints such as line overloading or voltage limits cannot sustain the desired
system loads. In order to allow the system to find a converged solution, the bus voltage (|V| ≥ |Vmin|)
and line capacity constraints (S f · S∗f ≤ Smax2 & St · S∗t ≤ Smax2) in the standard AC-OPF formulation
are relaxed for the re-dispatching process. The re-dispatching process is followed by a two step
feasibility checking procedure. In step one, bus voltage violations are mitigated by performing load
shedding at the affected buses and recomputing the relaxed AC-OPF until no voltage violations are
detected, so called under-voltage load shedding. The model assumes that there is enough time for
the operator to implement under voltage load shedding to prevent a voltage collapse which is the
root cause of most of the major power system disturbances [64–66]. The model sheds load in blocks of
2% for the corresponding bus until the relaxed bus voltage constraint is satisfied. If a violation is not
eliminated although the load sheds more than 50% of its original load, we assume complete failure of
the affected bus and set the load value to zero [8]. The second step of the feasibility checking procedure
follows after all bus voltage violations have been remedied in the first step. During the re-dispatching
process new failures may occur at certain components as they become overloaded. In this paper
the overloads are aimed to be strictly avoided for all component contingencies. This means that it
is assumed that the probability for line trip is 1 when line flow exceeds its thermal capacity with
a tolerance parameter. The second step involves disconnecting overloaded transmission lines from the
power grid and recomputing the relaxed AC-OPF until a feasible solution is obtained. It should be
noted that, the connectivity of the network is checked in every simulation step prior to the AC-OPF
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computation in order to detect isolated facilities. The algorithm used for checking the connectivity is
based on the well-known minimum spanning tree algorithm and is described in detail in [8].

After obtaining a feasible solution for the power system, the resulting hourly power generation of
GFPPs is converted into a hourly gas demand profiles and provided as input to the gas model. The gas
model needs an initial state for running the transient simulation. This state can either be a solution of
a steady state simulation or the terminal state of a transient simulation. If an initial state is not available
the algorithm uses the initial loads of the generated gas demand profiles for GFPPs to compute a steady
state solution. This solution is then used as an initial state for the transient simulation. After each
transient or steady state simulation the algorithm checks if the fuel gas pressures at GFPP nodes are
sufficient to operate the facilities. If an insufficient fuel gas pressure is detected, the affected GFPP is
shut-down and the power system model is recomputed. The algorithm is terminated if no pressure
violations are detected after the transient gas simulation. Finally, the amount of energy not supplied is
calculated as an indicator of the impact of the disruption event.

The gas and electric model described above are connected through an interface which enables the
communication and data exchange between the two simulators (i.e., MATPOWER as power system
simulator and SAInt as transient gas simulator, see Figure 3). The time integration of the combined
model is performed separately for both systems and the interconnection between both systems is
established through data exchange at discrete time and space points.

The timing of the power model is based on the discrete event simulation concept. It is assumed
that the configuration of the power system (e.g., the state of generation units and lines) remains
unchanged between events and changes only at the time of the specific event. If no events are
scheduled or triggered in the course of the simulation the time step of the power system corresponds
to a reference time step of 1 hour.

In contrast to the power system, the time integration of the transient gas model, is based on
a dynamic time step adaptation method (DTA), which adapts the time resolution with respect to the
control changes of controlled gas facilities during the solution process. The DTA allows capturing
rapid changes in the gas system (shut-down of a power plant or compressor station etc.) with a higher
time resolution. In this context, the gas model can be viewed as a quasi-continuous system, where
the values of the state variables (i.e., nodal pressure p, element flows Q and nodal loads L) between
two discrete time points are approximated by linear interpolation. If no events are scheduled or
triggered in the course of the simulation the time step of the gas system corresponds to a reference
time step of 15 min.

The gas and power system simulator used in the simulation framework have both been tested
and verified. The gas simulator SAInt was benchmarked against a commercial software in previous
publications [52,53] and the power system simulator MATPOWER [51] is well known and accepted by
the scientific community.

In the following section, the proposed framework is applied to perform a contingency analysis
for an integrated gas and power system network.

5. Model Application

In this section, an integrated gas and power network is constructed to demonstrate the
previously discussed simulation framework implemented in SAInt. Three supply side scenarios
(one non-disrupted scenario (base case) and two supply disruption scenarios) are presented in order
to demonstrate the value of the proposed framework and to stress the importance of modeling the
interdependence between gas and power systems with respect to security of supply.

The proposed scenarios are performed on the test network depicted in Figure 4. (The test network
applied in this paper is a model of a real gas and electric power network of an European region. Due to
confidentiality reasons and the sensitivity of the presented results, the topology and facility names of
the real network have been disguised. The network topology and properties used for the computations,
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however, are realistic data for the combined network). The scenarios are composed of a number of
extreme events causing more than two network facilities to be deactivated or to cascade out of service.

Figure 4. Integrated gas and power network applied in the case study. Map shows a real network of
an European region, which has been disguised due to confidentiality reasons. The network data and
properties used for the case studies, however, are original input data for the actual network. The solid
black lines (lines 1–3, 7–12, 14–18) represent interconnections between Gas Fired Power Plants (GFPPs)
in the power grid (left) and their fuel gas offtake points in the gas grid (right), while the dashed black
lines (4–6, 13) represent interconnections between electric buses in the power grid (left) supplying
electric power to connected facilities in the gas grid.

The sample network includes a power grid with 158 buses, 62 generating units with 22,076 ( MW)
installed capacity based on different generation mix that mainly consists of lignite (33%), natural gas
(28%), coal (20%), wind power (7%) and others (12%). The transmission system consists of 194 high
voltage transmission lines with total line length of approx. 8000 (km). The base voltage levels for the
transmission lines are distinguished between 200 (kV) and 400 (kV).

The solution of the AC-OPF equations requires the knowledge of the voltage levels, admittances
as well as the maximum thermal capacities of the transmission lines. The reactance of a line depends
mainly on its physical properties. It increases proportionally to the geometric length of the line.
Therefore, in the scope of this work, we assume equal physical properties for all lines and use the
length to determine the reactance. A typical value for the reactance of a transmission line per unit length
is 0.2 (Ω/km). Regarding the thermal capacities of the transmission lines, we assume a transmission
capacity of 800 (MW) for 400 (kV) lines and 530 (MW) for 200 (kV) lines. In AC-OPF analysis the
reactive power has strong influence on voltage drop thresholds. Thus, during AC OPF analysis,
the maximum and minimum voltage levels for buses are considered and a value between 1.12 and
0.96 (p.u.) is assigned, respectively.

The gas network, comprises of 345 pipe segments with a total pipe length of roughly 4000 (km),
10 compressor stations and 352 nodes (54 exit stations to the local distribution system (CGS), 15 stations
to direct served customers (14 GFPPs and one large industrial customer (IND)), two cross border
export stations (CBE_1 & CBE_2), one cross border import station (CBI), one LNG terminal (LNG), one
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production field (PRO) and one underground gas storage facility (UGS). The CBI, PRO, LNG terminal
and UGS facility are pressure controlled, while each compressor station is pressure ratio controlled
with a pressure ratio set point ranging between 1.02 and 1.2. The input data for the compressor stations
are listed in Table 3. The data used for the facilities supplying gas to the gas system are given in Table 4,
while the data for the GFPPs are listed in Table 5. The minimum delivery pressure for the 14 GFPPs is
set to 30 (bar-g) while the time needed to reach complete shut-down of a GFPP is set to 45 (min).

Table 3. Compressor station control (PRSET—Pressure Ratio Set Point) and constraints (PRMAX—
Maximum Pressure Ratio, PWMAX—Maximum Available Driver Power, POMAX—Maximum
Discharge Pressure, PIMIN—Minimum Suction Pressure).

Compressor PRSET PRMAX PWMAX POMAX PIMIN
Station (-) (-) (MW) (barg-g) (barg-g)

CS_1 1.05 1.6 10 54 34
CS_2 1.02 1.45 44 54 25
CS_3 1.01 1.6 60 54 25
CS_4 1.2 1.45 25 54 25
CS_5 1.2 1.45 80 54 25
CS_6 1.2 1.3 35 54 25
CS_7 1.2 1.45 50 54 25
CS_8 1.2 1.7 20 54 25
CS_9 1.2 1.7 20 54 25

CS_10 1.05 2 10 65 25

Table 4. Input data for facilities supplying the gas system with gas.

Gas Supply k0 (MW) k1

(
MW

sm3/s

)
PSET (Barg)

CBI - - 50
PRO - - 52.6
UGS 3.5 0.01 56
LNG 5 0.03 50

Table 5. Input data for GFPPs connected to the gas and electric power system. Numbering of GFPPs
corresponds to the numbering of the solid interconnection lines in Figure 4.

Name
c0 c1 c2 ηT Pmax

G Pmin
G Qmax

G Qmin
G pmin

(AC)
(
AC

MW

) (
AC

MW2

)
(%) (MW) (MW) (MVAr) (MVAr) (Barg)

GFPP_1 0 220.86 0 60 475 0 332.5 −285 30
GFPP_2 0 220.86 0 41 130 0 91 −78 30
GFPP_3 0 220.86 0 57 101 0 70.7 −61 30
GFPP_7 0 220.86 0 45 180 0 126 −108 30
GFPP_8 0 220.86 0 44.5 105 0 73.5 −63 30
GFPP_9 0 220.86 0 51 420 0 294 −252 30
GFPP_10 0 220.86 0 30 1127 0 788.9 −676 30
GFPP_11 0 220.86 0 40 360 0 252 −216 30
GFPP_12 0 220.86 0 48 420 0 294 −252 30
GFPP_14 0 220.86 0 30 766.7 0 536.7 −460 30
GFPP_15 0 220.86 0 45 147.8 0 103.5 −89 30
GFPP_16 0 220.86 0 61 435 0 304.5 −261 30
GFPP_17 0 220.86 0 67 390 0 273 −234 30
GFPP_18 0 220.86 0 55 410 0 287 −246 30

The transient scenarios for the integrated gas and power network are simulated by assigning the
relative load profile depicted in Figure 5 to the relevant exit stations (left plot represents the gas load
profile and right plot the power load profile). It should be noted that, the relative load profile for the
gas system is only assigned to CGSs, which are the connection points between the gas transmission
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and local distribution system. For all other exit stations (CBE_1, CBE_2, IND) a constant load profile
corresponding to the steady state load is assumed. The absolute values of the load profile for CGS
nodes are obtained by multiplying the steady state load with the relative values in Figure 5 (left plot).
The load profiles of the 14 GFPPs in the gas model are provided by the power model based on allocating
the results obtained from the AC-OPF analysis to the corresponding nodes in the gas model. For the
power network, the resulting loads for a time window of 24 h are obtained by multiplying the initial
loads by the relative profile depicted in Figure 5 (right plot).
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Figure 5. Load profiles gas (left side) and power (right side) networks.

All 14 GFPPs in the power grid are physically interconnected to the gas network. Furthermore,
we assume additional interconnections between the gas and power network at two compressor stations,
at the LNG terminal and at the UGS facility, which are supplied with power from the electric grid.
The integrated gas and power network with 18 physically interconnected facilities is illustrated in
Figure 4. Additional input parameters for the gas simulator are given in Table 6.

Table 6. Input data for the gas simulator.

Parameter Symbol Value Unit
time step ∆t 900 (s)
total simulation time tmax 24 (h)
gas temperature T 288.15 (K)
dynamic viscosity η 1.1× 10−5 (kg/m·s)
pipe roughness k 0.012 (mm)
reference pressure pn 1.01325 (bar)
reference temperature Tn 273.15 (K)
relative density d 0.6 (-)
gross calorific value GCV 41.215 (MJ/sm3)

Applying the simulation tool SAInt on the presented sample network, some preliminary
observations on cascading outage contingency analysis can be made. Initially, a base case scenario
(scenario 0) with no supply disruption in any of the two interlinked networks is introduced. In the base
case scenario, we capture the behavior of the networks at normal operation. Then, we compare the
base case scenario with two scenarios, where we introduce a number of disruption events and simulate
the reaction of the system to these events. The simulated grid is generated with a time resolution of
900 (s) and all scenarios are simulated for one gas day from 06:00 to 06:00 (For the case study, we
chose a simulation time of one operating day (24 h) with a time resolution of 15 min for the gas model
and a time resolution of one hour for the power model, in order to keep the size of input data and
information at a moderate level for the results discussion. However, the framework is designed to
allow an extension and adaptation of the time window and resolution depending on if a short or long
term study of a contingency scenario is of interest.) It should be noted that although it is possible
to change the status of the failed components (repairing and restoration can be modeled) within the
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simulation, the scenarios that are presented in this study do not take into account the repairing activity
in order to analyze system capabilities in worst-cases.

While the first scenario involves a disruption of several supply points in the gas network,
the second scenario includes supply disruptions triggered by the power network. In scenario 1,
we assume a reduced regasification rate for the LNG terminal from maximum via a ramp-down
between 06:00 and 07:00 (see Figure 6), which corresponds to an expected 7-day delay in cargo.
In addition, we assume a supply disruption at the production field causing a ramp down of the supply
between 08:00 and 9:00 (see Figure 6). Furthermore, a 30% supply reduction at CBI station at time 14:00
is implemented via a ramp-down between 14:00 and 15:00 (see Figure 6). Scenario 2 is related to power
network contingencies and initial contingency set consist of the loss of major lignite power plant with
1157 (MW) operational capacity at 07:00 and 70% lack of power generation from wind turbines at 06:00
(see Figure 6).

In the following, we discuss the simulation results for the three scenarios (The simulation results
and conclusions are based on the input data chosen for the sample network. While some data
were provided by the TSOs, others were not available (e.g., pipe roughness, gas temperature, line
properties etc.) and were therefore estimated using typical values. Thus, these input data are connected
with uncertainties).

The sequence of initial events (shown in black) and their consequences (shown in orange and red)
are summarized in Figures 6 and 7 for scenario 1 and scenario 2, respectively. It can be seen from the
figures, that when a minimum pressure violation for a GFPP is detected in the gas model, the failure
of the corresponding power plant is applied after 45 (min) due to the required shut-down time.
Figures 8–10 show the difference in gas supply to the system through the CBI station, the production
field and the LNG terminal. There is a big difference in inflows to the system through these supply
points in scenario 0 and scenario 1, where the difference is more than 20 (Msm3/d) (Million standard
cubic meter per day, where the reference pressure is 1.0135 (bar) and the reference temperature is
0 (◦C)). The impact of this observation can be seen in Figures 8–12. Figure 11 shows that the disruptions
introduced in scenario 1 have the highest impact on the gas network, since the flow balance, which
is the sum of inflow minus sum of outflow, is always negative; the system is not able to supply
enough gas to balance the demand. In fact, the flow balance is quite negative throughout the time,
peaking down to equivalent daily flows of −32 (Msm3/d). As a result, the quantity of gas stored in
the pipeline (i.e., the line pack) reduces significantly as time passes. The flow balance can be viewed
as the time derivative of the line pack, thus, if the flow balance is negative the line pack decreases
and if positive the line pack increases. A zero flow balance corresponds to no change in line pack.
Latter is the assumption made in steady state gas models, which cannot capture the changes in line
pack, and therefore, the real behavior of the gas system appropriately. Moreover, Figure 11 shows
a decrease in line pack from ca. 85 to 67 (Msm3/d) for scenario 1 (approx. 18 (Msm3/d) lost along the
day in the pipelines). In contrast, in scenario 0 only approx. 1.5 (Msm3/d) of line pack is extracted.

This produces a steady decrease of pressure in the CBI station, the production field and the LNG
facility causing the pressure to reduce to approx. 39, 42 and 31 (bar-g), respectively (see Figures 8–10).

An important observation is the pressure drop to approximately 31 (bar-g) at the LNG terminal,
which is the main gas supplier for some of the GFPPs in the hydraulic region. This value is slightly
above the 30 (bar-g) minimum delivery pressure threshold required by the GFPPs. When gas supplies
are scarce, the only way to keep maintain sufficient pressure and to allow the network to continue
operating is to reduce consumption, either through curtailment or fuel switching, if there is the chance
to do this with some power plants. In scenario 1, gas curtailment at GFPPs is implemented, presuming
that replacement fuel is not available in any of the investigated GFPPs.

Figure 12 shows the behavior of the UGS facility, the only supply node able to increase gas supply
to satisfy the increased demand in scenario 1. The UGS facility is able to maintain its pressure set point
till the end of the simulation (see Figure 12). The disconnection of four GFPPs from the gas network at
14:15, 15:45 and 16:30, respectively, allows the gas system to continue running (see Figures 6 and 13).
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The pressure and load profiles for failed GFPPs are given in Figures 13 and 14. This curtailment
was sufficient to cope with the pressure drop in the network. Therefore, there was no need of gas
curtailment at CGSs, where protected customers (e.g., households, public services) are supplied
with gas.
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Figure 6. Timing of initial (black) and cascading (orange, red) events for Scenario 1. Abbreviation PNS
stands for power not supplied, while GNS stands for gas not supplied, value in brackets refers to the
fraction of not supplied power/gas with respect to total power/gas loads.
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Figures 15 and 16 depicts the voltage profiles for a selected number of buses, where minimum
voltage violation is detected for scenario 1 and 2, respectively. In order to keep the bus voltage above
the minimum voltage level, load shedding is implemented at the affected buses. The left plots in
Figures 15 and 16 show the voltage profiles of the affected buses for the computation where voltage
violations were detected and no countermeasures were employed to avoid this violation, while the
right plots show the voltage profiles after implementing load shedding at the affected buses. As can be
seen in the right plots of Figures 15 and 16, the bus voltages recover to a value above the minimum
voltage threshold after load shedding is implemented. However, due to load shedding some customers
connected to the affected buses are not supplied with enough electricity (see Figures 6 and 7).

Time [hh : mm]

6:00

6:00

9:00

9:00

12:00

12:00

15:00

15:00

18:00

18:00

21:00

21:00

00:00

00:00

3:00

3:00

6:00

6:00

20:00
Load

Shedding
15 Buses
PNS =

626[MW]
(3.35%)

19:00
Load

Shedding
15 Buses
PNS =

981[MW]
(5.26%)

19:00
Outage

LINE_13
LINE_108

18:15
Shut-Down
GFPP_10

17:30
Insufficient

Pressure
GFPP_10

11:00
Shut-Down

GFPP_9

10:15
Insufficient

Pressure
GFPP_9

07:15
Outage

LINE_109

07:00
Shut-Down
Lignite PP

06:00
Lack of
Wind
Power

Figure 7. Timing of initial (black) and cascading (orange, red) events for Scenario 2. Abbreviation
PNS stands for power not supplied, value in brackets refers to the fraction of not supplied power with
respect to total loads.
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Figure 8. Time evolution of gas supply and pressure at the cross border import (CBI) node for the
computed scenarios
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Figure 9. Time evolution of gas supply and pressure at the production field for the computed scenarios.
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Figure 10. Time evolution of regasification rate and pressure at the liquefied natural gas (LNG) terminal for the
computed scenarios.
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Figure 11. Time evolution of flow balance (sum of inflow minus sum of outflow) and line pack for the
computed scenarios.
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Figure 12. Time evolution of withdrawal rate and pressure at underground gas storage (UGS) facility
for the computed scenarios.
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Figure 13. Time evolution of load and pressure of failed GFPPs in scenario 1.
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Figure 14. Time evolution of load and pressure of failed GFPPs in scenario 2.
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Figure 15. Time evolution of bus voltage before load shedding (left) and after (right) for scenario 1.
All four buses where load shedding was applied are shown in this figure.
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Figure 16. Time evolution of bus voltages before load shedding (left) and after (right) for scenario 2.
Load shedding was applied at 15 buses. Among these buses are the 4 buses from scenario 1, which are
shown in this figure.

Regarding the CBE_1 station, due to the pressure drop at the station (see Figure 17), the flow is
restricted around 21:00 because the threshold pressure of 30 (bar-g) is reached. This is the only way to
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keep minimum delivery pressure at that exit point; otherwise problems would arise downstream due
to too low pressure. Figure 17, shows the drop in flow (around 8 (Msm3/d) ) at CBE_1 station due to
the pressure restriction.
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Figure 17. Load and pressure profile of CBE_1 for scenario 1.

Moreover, the difference between scenario 0 and scenario 2 shows the gas system reaction to
the electric side disruption. In Figure 11, it can be seen that the flow balance of the gas network in
scenario 2 is more negative (the gas system loses more gas) than in scenario 0 until 18:00. This is caused
by the increase in gas demand of GFPPs due to the disruption of the lignite power plant and the loss of
power generation from wind turbines. The increase in gas demand of GFPPs leads to a pressure drop in
two GFPPs, followed by the disconnection of the power plants from the network (see Figures 7 and 14).
The pressure and load profiles for failed GFPPs are given in Figure 14. The disconnection of the
generators affects the loading of the gas system in a positive way. Moreover, the line pack starts to
recover after 18:00 (see Figure 11).

The scenario results indicate clearly that the disruptions taking place in the gas network that affect
GFPPs also affected the operability of the power network. After failure of each GFPP, the power model
calculates the new generating profiles for all power plants and sends these profiles to the gas model. In
scenario 1, the closure of 4 GFPPs due to low pressure levels in the gas system caused voltage violations
in the electricity network at peak demand hour (19:00–20:00) because of the high amount of power
transmission from relatively distant generators in order to compensate the missing generating capacity.
This violation in voltage levels caused 954 (MW) of load shedding during 2 h (see Figures 6 and 15).
In scenario 2, the cascading effects are more severe including three line overloads and load shedding
of 1607 (MW) at the peak demand hours (19:00–20:00, see Figures 7 and 16). The initial failure of
large capacity lignite power plant together with lack of power generation from wind power caused
an increase in power generation from GFPPs. This increase results in pressure drops at two GFPPs
followed by the closure of both facilities. The system has to implement these cascading effects in order
to avoid a complete blackout in the overall network.

Furthermore, the results show that the impact of disruptions introduced in both scenarios is much
higher for the power system than for the gas system Section 3.

6. Conclusions

In this paper, we developed an integrated simulation framework for cascading outage contingency
analysis in combined gas and power system networks and demonstrated the capabilities of the
implemented framework by applying it to a realistic, combined electricity and gas transmissions
network of an European region.

The simulation framework is composed of a transient hydraulic model for the gas system and
a steady state AC-OPF model for the power system. Both models, are derived from the physical laws
governing the flow of gas and electrical power, respectively. Moreover, the most important facilities
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and their technical constraints are considered. The gas and power system models a coupled through
coupling equations describing the fuel gas offtake of GFPPs for power generation and the power
supply to LNG terminals, UGS facilities and electric driven compressor stations.

The model application was divided into three scenarios, namely, scenario 0 with no disruption,
scenario 1 with gas side disruptions and scenario 2 with power side disruptions. The results of
these scenarios show how disruption events triggered in one system propagate to the other system.
In scenario 1, for instance, three major gas supply stations are disrupted and as a result a number
of GFPPs are shut-down due to insufficient fuel gas pressure. This contingency propagates further
to other buses in the power system, where load shedding is implemented in order to maintain the
voltage levels above the minimum voltage threshold. Similar observations are made in scenario 2,
where a drastic reduction in renewable energy generation together with a shutdown of a large power
plant triggered a large increase in gas demand of GFPPs, leading to a rapid pressure drop in the gas
network and the subsequent shut-down of GFPPs. Eventually, this circumstance increased the stress on
the power system leading to minimum bus voltage violations in a couple of buses, which is remedied
by applying load shedding at the affected buses.

Based on these key findings, it can be concluded that there is a need for close collaboration and
coordination between gas and power TSOs. Data concerning pressures, flows, voltages etc., efficiently
handled and communicated may introduce resilience on the integrated network. This has to be done
via well-structured protocols that inform the other TSO about the grace periods and support that each
network may grant the other. The use of models like the one proposed in this study may be of much
help for getting part of this information to share with the other operator.

We believe it is fair to state that the integrated model allows for detailed fingerprinting and
exploration of the effects of disruption in gas and/or power, to a level of detail that is not possible by
qualitative, expert analysis. Once the data characterizing a gas and electricity grid have been loaded,
experts can perform in-silico experiments at will to investigate the system, determine weak elements,
and propose mitigation strategies. In both two scenarios, GFPP_9 and GFPP_10 fail, which merits
an investigation into their position in the system. If in more scenarios it is these two plants that
fail first, it could be decided to equip these with alternative backup fuel options. In the future,
we intend to further develop the simulation framework to implement more simulation options and
functionalities into the simulation tool SAInt in order to investigate the effectiveness of different
demand and supply side measures to mitigate the consequences of supply disruptions in coupled gas
and electric power systems.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviations

AC Alternating current
API Application Programming Interface
EU European Union
ED Economic dispatch
CBE Cross Border Export
CBI Cross Border Import
CBP Cross Border Point
CEI Critical Energy Infrastructures
CGS City Gate Station
DC Direct current
DTA Dynamic Time Step Adaptation
GB Great Britain
GFPP Gas Fired Power Plant
GNS Gas not supplied
GUI Graphical User Interface
IND Large Industrial Customer
KCL Kirchoff’s Current Law
LNG Liquefied Natural Gas
NGTS National Gas Transport System
P2G Power to Gas
PF Power Flow
PDE Partial Differential
PNS Power not supplied
PRO Production Fields
OPF Optimal Power Flow
SAInt Scenario Analysis Interface
SCUC Security Constraint Unit commitment
SNG Synthetic Natural Gas
TSO Transmission System Operator
UC Unit commitment
UGS Underground Gas Storage

Mathematical Symbols

A cross-sectional area
a transformer tap ratio
ai,j elements of the node-branch incidence matrix
b line charging susceptance
c0, c1, c2 coefficients of cost function
c speed of sound
CV control volume
D inner pipe diameter
e Euler’s number
E set of branches
f electric driver factor
g gravitational acceleration
G directed graph
GCV gross calorific value
I f electric curent injection at from bus
It electric curent injection at to bus
j imaginary number
k0, k1 coefficients of coupling equation
L nodal load
LGFPP fuel gas offtake for power generation at GFPPs
l pipe length
LP line pack
M number of pipe section
n simulation time point
Nn number of gas nodes
Nb number of buses, number of branches
NCS number of compressor stations
Ng number of power generation units
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NGFPP number of GFPPs
Niq number of inequality constraints
Nl number of transmission lines and transformers
PD active power demand
PCS

D power demand of compressor stations
Prw

D power demand of LNG terminals and UGS facilities
PG active power generation
PG vector of active power generation
p gas pressure (vector)
p1 inlet pressure
p2 outlet pressure
pm mean pipe pressure
Q gas flow rate, reactive power
QG vector of reactive power generation
R gas constant, line resistance
S f

k apparent power injection at from bus of branch k
Smax

k maximum transmission capacity of branch k
St

k apparent power injection at to bus of branch k
S vector of apparent power flow
t time, complex transformer tap
tn time point
∆t time step
T temperature
Tn reference temperature
v gas velocity
V complex bus voltage, set of nodes
V vector of complex bus voltage
Vm vector of complex bus voltage magnitudes
|V| bus voltage magnitude
Vi nodal volume
X line reactance
x pipeline coordinate
X vector of decision variables
∆x pipe segment length
Y line admittance
Ybr branch admittance matrix
Ybus bus admittance matrix
Z compressibility factor, impedance

Greek Symbols

α inclination
α, β, γ coefficients of heat rate curve
δ voltage angle
∆ vector of bus voltage angles
ε residual tolerance
ηad compressor adiabatic efficiency
ηm driver efficiency
ηT thermal efficiency
κ isentropic exponent
λ friction factor
φ transformer phase shift angle
ρ gas density
ρn gas density at reference conditions

Physical Units

(bar-g) bar gauge (absolute pressure minus atmospheric pressure)
(p.u.) per unit
(Msm3) millions of standard cubic meters (line pack, inventory)
(Msm3/d) millions of standard cubic meters per day (gas flow rate)
(sm3) standard cubic meters (line pack, inventory)
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