
applied
sciences

Article

A Lookahead Behavior Model for Multi-Agent
Hybrid Simulation

Mei Yang *, Yong Peng, Ru-Sheng Ju, Xiao Xu, Quan-Jun Yin and Ke-Di Huang

College of Information System and Management, National University of Defense Technology,
Changsha 410073, Hunan, China; yongpeng@nudt.edu.cn (Y.P.); jrscy@sina.com (R.-S.J.);
xuxiao0825@gmail.com (X.X.); yin_quanjun@163.com (Q.-J.Y.); hkd1940@139.com (K.-D.H.)
* Correspondence: yangmei@nudt.edu.cn; Tel.: +86-731-8457-6272

Received: 28 August 2017; Accepted: 18 October 2017; Published: 24 October 2017

Abstract: In the military field, multi-agent simulation (MAS) plays an important role in studying
wars statistically. For a military simulation system, which involves large-scale entities and generates
a very large number of interactions during the runtime, the issue of how to improve the running
efficiency is of great concern for researchers. Current solutions mainly use hybrid simulation to
gain fewer updates and synchronizations, where some important continuous models are maintained
implicitly to keep the system dynamics, and partial resynchronization (PR) is chosen as the preferable
state update mechanism. However, problems, such as resynchronization interval selection and cyclic
dependency, remain unsolved in PR, which easily lead to low update efficiency and infinite looping
of the state update process. To address these problems, this paper proposes a lookahead behavior
model (LBM) to implement a PR-based hybrid simulation. In LBM, a minimal safe time window is
used to predict the interactions between implicit models, upon which the resynchronization interval
can be efficiently determined. Moreover, the LBM gives an estimated state value in the lookahead
process so as to break the state-dependent cycle. The simulation results show that, compared with
traditional mechanisms, LBM requires fewer updates and synchronizations.

Keywords: discrete event simulation; agent-based modeling; time advance mechanism; state update
mechanism; time window

1. Introduction

Agent-based modeling and simulation has become the primary means of studying complex
adaptive systems (CAS). It constructs the basic elements in the system as agents. Through the agents
and interactions among them, it generates system changes and, therefore, forms a bottom-up perspective
for people to simulate and research the emergent behavior of the system, where the nature of the system
can be understood much better. The behavior model of a typical agent can be built using a generic
“sense-think-act” paradigm [1–4] in multi-agent simulation (MAS). The steps in this paradigm include
the agent’s process of perceiving the environment, making decisions, and acting, which correspond to
the sense-think-act cycle, respectively.

MAS can be applied not only to predict the behaviors of simple systems under specific conditions,
but also to research the statistical trends in complex systems [5–11]. A number of typical applications
in this work include disaster emergency management [12], traffic management [13,14], military online
decision-making [15,16], and so on. These applications adjust the uncertain parameters by a set of
stochastic numbers to obtain a large sample space for iterative calculations [17], so as to evaluate
various plans and finally obtain several near-optimal solutions for decision-makers.

However, in the simulation of complex systems, the typical time-stepped sense-think-act cycle
takes a great deal more time when agents—and thus their interactions—are enormous. For example,
the computing efficiency of MANA (map-aware non-uniform automata) system [18] for combat

Appl. Sci. 2017, 7, 1095; doi:10.3390/app7101095 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app7101095
http://www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 1095 2 of 24

operations, when the number of agents reaches 600, will be greatly reduced [19]. In military applications,
the system usually consists of a large number of autonomous or semi-autonomous combat units, which
require large-scale agents. This large-scale simulation, even in one iteration, would consume a great deal
of time, rendering the time needed for optimal planning selection unable to be reasonably controlled.
Therefore, the efficiency of the MAS becomes the vital aspect to be considered in a large-scale complex
simulation system, especially in simulation-based optimization applications.

A common approach proposed to improve the computational efficiency is hybrid agent-based
simulation, which introduces discrete event simulation (DES) into agent-based models [20–23]. As the
discrete event-based approach does not need to scan the simulation model continuously when
the system state stays unchanged, it is generally believed that the efficiency of the scheduling strategy
based on discrete events is higher than that of the time-stepped method of periodic scanning [24].

It has been found that MAS and DES become a pair of contradictions for continuous models in
the ways of state updating and the predictability of the agent behavior [25–27]. Complex systems in
the real world are mixtures of continuous and discrete systems [28,29]. There is often a need to retain
the continuity of the object characteristics so as to capture the system dynamics. Thus, the time-stepped
simulation is much more applicable in most typical MAS.

Therefore, the matter of how to update the agent state is the main focus in building a hybrid
simulation. According to its ways of implementation, the state update mechanism can be divided into
fixed time synchronization (FS), variable time synchronization (VS), optimistic synchronization (OS),
complete resynchronization (CR), and partial resynchronization (PR), which will be discussed in detail
in Section 2. Among them, PR is an outstanding method in hybrid simulation with fewer updates and
sync numbers. As shown in Reference [20], the PR method can greatly improve the computational
efficiency in the National Airspace System when the agent requires frequent interaction and the state
update time changes considerably.

However, there are still problems that need to be addressed when developing PR-based
simulations, two of which are the resynchronization interval (RI) and cyclic dependency (CD). Smaller
RI brings more re-sync times, while larger RI may result in missing important interactions. CD causes
an infinite loop in the synchronization of states.

Aiming at tackling these two problems, this paper proposes a lookahead behavior model (LBM)
for hybrid simulation. LBM uses a time window-based lookahead process to implement hybrid
simulations under the PR mechanism. The goal of the method is to create a nearest next “safe” time
window when advancing simulation time. On one hand, the interaction events that will happen in
relation to two agents can be predicted in the time window, to determine when a resynchronization
is needed between them. On the other hand, estimated values are introduced in a time window
for an agent in the cyclic dependency so as to break the loop occurring in the state synchronization.
This paper describes the lookahead modeling process in a simple military test case and compares
the efficiency of the PR mechanism with those of other state update mechanisms. The results show
that, compared to traditional agent behavior models (TBMs) with fixed time synchronization or
variable time synchronization, LBM allows simultaneous behaviors of sense, think, and act, and skips
unnecessary cycles and updates, which can lead to a performance improvement.

The rest of this paper is organized as follows. Section 2 introduces related works in traditional
“sense-think-act” paradigm, state update mechanism, and the general pattern of hybrid simulation.
Further in Section 3, we present the RI and CD problems in the military context. In Section 4, the time
window-based LBM is introduced. Section 5 demonstrates the realization of the lookahead process,
and presents the experimental results of the proposed LBM-PR along with the comparison analysis
with the existing state update mechanisms. Additionally, the paper presents a comparison between
traditional behavior models and several issues for discussion in Section 6. Finally, Section 7 concludes
the paper.

Appl. Sci. 2017, 7, 1095 3 of 24

2. Related Works

The main idea of hybrid simulation is to introduce DES to improve the computational efficiency of
the simulation. This can make hybrid simulations more applicable in military operations. Influenced
by the implementation mechanism, the introduction of DES can bring about great changes to the agent
behavior model itself as well as the state update mechanism of agent model.

This part presents the relevant work of hybrid simulations from the perspectives of the traditional
agent behavior model, state update mechanism of agent model, and general patterns to combine DES
and agent-based modeling, respectively, in addition to analyzing their advantages and disadvantages.

2.1. Traditional Agent Behavior Model

From the structure, an agent consists of the sensor, the actuator, and decision components.
The agent uses the sensor to perceive the environment and performs the act determined by the decision
components through the actuator, which then affects the environment or other agents. Thus, the agent
usually conducts the behavior modeling with the “sense-think-act” cycle, as shown in Figure 1 [4].
Here, the agent first obtains senses from the environment, then processes these senses and thinks about
what to do, and finally acts to affect the environment.

Appl. Sci. 2017, 7, 1095 3 of 25

2. Related Works

The main idea of hybrid simulation is to introduce DES to improve the computational efficiency
of the simulation. This can make hybrid simulations more applicable in military operations.
Influenced by the implementation mechanism, the introduction of DES can bring about great changes
to the agent behavior model itself as well as the state update mechanism of agent model.

This part presents the relevant work of hybrid simulations from the perspectives of the
traditional agent behavior model, state update mechanism of agent model, and general patterns to
combine DES and agent-based modeling, respectively, in addition to analyzing their advantages and
disadvantages.

2.1. Traditional Agent Behavior Model

From the structure, an agent consists of the sensor, the actuator, and decision components. The
agent uses the sensor to perceive the environment and performs the act determined by the decision
components through the actuator, which then affects the environment or other agents. Thus, the
agent usually conducts the behavior modeling with the “sense-think-act” cycle, as shown in Figure 1
[4]. Here, the agent first obtains senses from the environment, then processes these senses and thinks
about what to do, and finally acts to affect the environment.

Figure 1. The “sense-think-act” behavior model.

The Scalable Agents Simulation System (SASSY) [4] and Parallel Discrete Event Simulation for
Multi-Agent System (PDES-MAS) [30] are the main hybrid simulation platforms using this original
Traditional agent Behavior Model (original TBM). The System for Parallel Agent Discrete Event
Simulator (SPADES) [31] framework improves this model by establishing a “sense-think-act” delay
model (which can be shorted as delayed TBM). In this model, an agent cycle consists of the following
three steps: sense, think and act, each with a corresponding delay. These delays can be arbitrary,
except for the “think” steps, which are not allowed to overlap in two cycles, and different steps of
different cycles that can overlap within the delay time, as shown in Figure 2 [31]. The “think” steps
are not allowed to overlap because of the assumption that a typical agent only has one Central
Processing Unit (CPU) and cannot think at the same time; this model can perceive the external
environment while simulating the thinking of the agent.

Figure 2. The agent delay model.

Figure 1. The “sense-think-act” behavior model.

The Scalable Agents Simulation System (SASSY) [4] and Parallel Discrete Event Simulation for
Multi-Agent System (PDES-MAS) [30] are the main hybrid simulation platforms using this original
Traditional agent Behavior Model (original TBM). The System for Parallel Agent Discrete Event
Simulator (SPADES) [31] framework improves this model by establishing a “sense-think-act” delay
model (which can be shorted as delayed TBM). In this model, an agent cycle consists of the following
three steps: sense, think and act, each with a corresponding delay. These delays can be arbitrary, except
for the “think” steps, which are not allowed to overlap in two cycles, and different steps of different
cycles that can overlap within the delay time, as shown in Figure 2 [31]. The “think” steps are not
allowed to overlap because of the assumption that a typical agent only has one Central Processing
Unit (CPU) and cannot think at the same time; this model can perceive the external environment while
simulating the thinking of the agent.

Appl. Sci. 2017, 7, 1095 3 of 25

2. Related Works

The main idea of hybrid simulation is to introduce DES to improve the computational efficiency
of the simulation. This can make hybrid simulations more applicable in military operations.
Influenced by the implementation mechanism, the introduction of DES can bring about great changes
to the agent behavior model itself as well as the state update mechanism of agent model.

This part presents the relevant work of hybrid simulations from the perspectives of the
traditional agent behavior model, state update mechanism of agent model, and general patterns to
combine DES and agent-based modeling, respectively, in addition to analyzing their advantages and
disadvantages.

2.1. Traditional Agent Behavior Model

From the structure, an agent consists of the sensor, the actuator, and decision components. The
agent uses the sensor to perceive the environment and performs the act determined by the decision
components through the actuator, which then affects the environment or other agents. Thus, the
agent usually conducts the behavior modeling with the “sense-think-act” cycle, as shown in Figure 1
[4]. Here, the agent first obtains senses from the environment, then processes these senses and thinks
about what to do, and finally acts to affect the environment.

Figure 1. The “sense-think-act” behavior model.

The Scalable Agents Simulation System (SASSY) [4] and Parallel Discrete Event Simulation for
Multi-Agent System (PDES-MAS) [30] are the main hybrid simulation platforms using this original
Traditional agent Behavior Model (original TBM). The System for Parallel Agent Discrete Event
Simulator (SPADES) [31] framework improves this model by establishing a “sense-think-act” delay
model (which can be shorted as delayed TBM). In this model, an agent cycle consists of the following
three steps: sense, think and act, each with a corresponding delay. These delays can be arbitrary,
except for the “think” steps, which are not allowed to overlap in two cycles, and different steps of
different cycles that can overlap within the delay time, as shown in Figure 2 [31]. The “think” steps
are not allowed to overlap because of the assumption that a typical agent only has one Central
Processing Unit (CPU) and cannot think at the same time; this model can perceive the external
environment while simulating the thinking of the agent.

Figure 2. The agent delay model. Figure 2. The agent delay model.

Appl. Sci. 2017, 7, 1095 4 of 24

These two typical TBMs describe the physical agent model intuitively using the cycle formed
by the three steps of sense, think, and act. In the war system, the decision cycle based on perception
can also be described using this “sense-think-act” paradigm. Among them, sense corresponds to
the sensor processing, think corresponds to the process of Command and Control (C2), and act contains
the implementation process of behaviors including maneuver, attack/defense, logistics management,
and communication.

However, these traditional “sense-think-act” models have some shortcomings in simulating
the behavior of agents in a continuous process. From the perspective of information processing,
the original TBM regards the agent and its behavior as information processing conducted by a device
with an input and output (e.g., the agent’s perception would be the input and its act would be
the output). This type of input/output model is mainly for autonomous agents with intelligent acts.
Even with the delayed TBM, the assumption that the “think” steps cannot overlap is mainly applicable
to agents of the machine type and presents an inability to describe all agent types in a complex system.

For example, some semi-autonomous entities in military simulation can not only determine
and carry out an act required to accomplish a goal by sensing the external environment, but also
perform actions by strictly following the order of the superior while under the superior’s command
and control. In this case, the agent can perform the act without needing to undergo the steps of sensing
and thinking.

2.2. State Update Mechanism in Agent-Based Modeling

The state update mechanism is the first problem to be solved before introducing DES in
the agent-based model. In each of the “sense-think-act” cycles in the agent model, the agent needs to
update its state and complete the synchronization with other agents. Minimizing the number of state
updates becomes the key to the efficiency improvement of the hybrid simulation.

According to the ways different simulation models change their states, simulation can be divided
into synchronous simulation and asynchronous simulation. In synchronous simulation, all state
variables of all entities are updated synchronously. Asynchronous simulation allows an entity to
individually update its own state at one specific simulation moment regardless of other entities,
while in asynchronous simulation, the asynchronous update for attributes can also be applied; that is,
at the state update point, the entity only needs to update variables that have state changes, rather than
update all of the state variables.

With the simulation time mechanism and the state synchronization mechanism combined,
the updating of the agent’s attributes in the hybrid simulation can be carried out using the following
methods [20,32,33]:

(1) Fixed time synchronization (FS): All agents update their respective states at fixed intervals.
The smaller the time step, the fewer the interactions missed by the simulation and the more accurate
the simulation results. This method is easy to be realized, which is an advantage of fixed time
synchronization. However, a drawback is that there may be redundant updates. The small steps
used to guarantee the correctness of the simulation results often tremendously increase the number
of updates of the agent’s state. Even when there is no event, the agent’s state change still needs to
be checked. Moreover, the fixed time step requires the shortest possible interval that might occur for
all interactions. As interactions occurring in the battlefield are random, and there are many entities,
the computational burden increased by this fixed-step method is too much to meet the requirement of
computation efficiency proposed in analytic simulations.

(2) Variable time synchronization (VS): All agents update their states simultaneously, and
the update requirements can be proposed by any agent in the simulation. The step size for the agent to
update its state is not fixed during the simulation. This method still faces the problem of redundant
updates, and has many unnecessary computation processes.

(3) Optimistic synchronization (OS): Each agent updates its state separately without considering
other agents, and only if it finds that there has been a causal error caused by the interaction with other

Appl. Sci. 2017, 7, 1095 5 of 24

agents will it use the rollback mechanism to roll the agent back to its state before the interaction occurs.
This method can give full play to the agent’s parallelism, but when too many causal errors occur,
the frequent rollback has a great influence on the system’s overall operating efficiency.

(5) Complete resynchronization (CR): At each resynchronization moment, all agents update
their states.

(6) Partial resynchronization (PR): At each resynchronization moment, only the required agents
update their states.

In these state update mechanisms, FS, VS, and OS are synchronous simulation, and CR and PR
belong to asynchronous simulation. All states of all agents in the synchronization simulation need to be
updated synchronously. In asynchronous simulation, the agent can update the state variables according
to its own state change and conservatively estimate when the interaction will occur, requesting that
relevant agents update the states once the interaction occurs; that is, to carry out resynchronization.

The efficiencies of the five state update mechanisms are compared qualitatively in several aspects,
including whether they need to update all states, whether or not states of all agents need to be updated,
and how to update states, as shown in Table 1. It is worth noting that the measurement of the execution
time is not contained because it is not easy to be compared directly without any other influence,
especially when a large number of statistical elements are included in the simulation. Comparatively,
the indicators in the table can still be used to evaluate efficiency as they reflect the number of operations
the agent takes during the simulation.

Table 1. The qualitative comparison of efficiency for the five state update mechanisms (FS: fixed time
synchronization, VS: variable time synchronization, OS: optimistic synchronization, CR: complete
resynchronization, PR: partial resynchronization).

Mechanism All States Need
to Be Updated?

All Agents Need
to Be Updated? Update Synchronizationly or Not?

FS Yes Yes Synchronizationly
VS Yes Yes Synchronizationly
OS Yes Yes Synchronizationly + Asynchronously rollback
CR No Yes Asynchronously
PR No No Asynchronously

This shows that the PR method does not require all agents to update all states simultaneously,
and the timing of updating the status is at some specific time compared to other state synchronization
mechanisms. When the entities are dispersed in military simulation, the number of interactions among
entities will be correspondingly small, and the number of required resynchronizations will be small,
as well. Therefore, for the large number of entities deployed in the large defense space in a military
simulation, the use of the PR mechanism can reduce a large amount of unnecessary state updates.

2.3. Approaches of Combining DES and Agent-Based Modeling

In general, the combination of DES and agent-based modeling can obtain better efficiency than
pure MAS. In the existing hybrid simulation, agent-based modeling and DES play different roles.
According to the different ways of discretization of a continuous model in MAS, the model pattern of
the hybrid simulation can be classified into four categories: strict discrete, complete time-stepped and
discrete, partial time-stepped and discrete, and implicit modeling-based discrete.

(1) Strict discrete (SD). The method converts a continuous model strictly to a discrete model [34].
Since the models in the system are all discrete models, this method mainly adopts an asynchronous
simulation mechanism such as CR or PR to update the state. Although strict discreteness can improve
efficiency, it cannot fully express the dynamics of a continuous model, which should be involved when
there is a need for the study of the continuous model in depth.

Appl. Sci. 2017, 7, 1095 6 of 24

(2) Complete time-stepped and discrete (CTD). This approach applies a discrete event simulator
to an agent-based model. When the behaviors of agents cannot be predicted, discrete events are
created based on the time steps. This is a compromise approach. It is based on the similarity of
time-driven simulation and event-driven simulation, where discrete events can be used to realize
the time-advancing mechanism of time-stepped simulations. This method is consistent with the timed
simulation in the realization of continuous model. The state update mechanism can be a synchronous
simulation such as FS, VS, and OS. It should be noted that sometimes it is even less efficient than
the time-stepped simulation because of the overhead in the operation of events, such as creating,
sorting, and deleting.

(3) Partial time-stepped and discrete (PTD). This method allows hybrid discrete-continuous
simulation models to coexist explicitly in the simulation. Some continuous models are used to describe
unpredictable agent behavior. For example, in the research on human travel simulation [35], where
a human is abstracted as an agent, the time steps are used to schedule the course of reaching destinations
for pedestrians, and discrete events are adopted to simulate the queuing system of agents when
the pedestrians are waiting for a bus. In a SPADES system, the model to interact with the world model
is scheduled by a continuous simulator, which advances the simulation time by a small number of time
quanta, and the interaction between agents (e.g., sensations and actions) is scheduled by a discrete
events simulator [31]. Due to the existence of an explicit continuous model, the state update mechanism
of this method is a hybrid mechanism of a synchronous simulation plus an asynchronous simulation,
which can improve the efficiency to a certain extent.

(4) Implicit modeling-based discrete (IMD). The continuous models in this method are realized
as internally-implicit models, and discrete events are used for explicit updates and interactions [36].
CR and PR can be applied in this pattern to retain dynamics while taking full advantage of DES
in efficiency. However, the implementation of this method depends on the purpose of the study
and the characteristics of the system to be studied. It is necessary to predict the minimal updates of
the implicit model and to design a specialized interface to implement these minimal required moments.

The comparison of the four approaches is shown in Table 2. It can be seen that the application
of DES is usually at a cost of overhead in the model implementation. In order to apply the PR to
the agent-based model, it is necessary to choose either the strict discrete method or the implicit
modeling-based discrete method to implement a continuous system as a discrete one.

Table 2. The comparisons of characteristics for the four approaches of combining DES and agent-based
modeling (DES: discrete event simulation; SD: strict discrete, CTD: complete time-stepped and discrete,
PTD: partial time-stepped and discrete, IMD: implicit modeling-based discrete).

Approaches Degree of Utilizing Efficiency
Improvement of DES

Degree of
Implementation

Can Dynamics Be
Fully Modeled?

Available State Update
Mechanism

SD Completely Hard Not CR/PR
CTD Low Simple Yes FS/VS/OS
PTD Relatively low Relatively simple Yes FS/VS/OS + CR/PR
IMD Completely Relatively hard Yes CR/PR

In large-scale military simulations with efficiency requirements, the implicit modeling-based discrete
method is better than the others to realize the hybrid simulation. In some specific large-scale military
applications, it is usually necessary to preserve the dynamics of the system as much as possible for
research purposes, and the details that are of little relevance to the purpose of the study can be simplified
or discarded. Therefore, the important system dynamics can be modeled implicitly in the agent model,
with PR updating the state of the agent.

Appl. Sci. 2017, 7, 1095 7 of 24

3. Problem Description

In order to better describe the problems to be solved in our proposed method, we first present
the symbol table in Table 3. After a review of the military context, the issues in PR will be discussed in
this section.

Table 3. Table of symbols.

Symbol Nomenclature

Nagents The number of agents in the system

agentk The kth agent, 1 ≤ k ≤ Nagents

ak
j (t)

The act performed by the kth agent at time t and this
action is the jth action it performs, 1 ≤ k ≤ Nagents

T The time set

tcurrent The current simulation time, tcurrent ∈ T

tstart(ak
j)

The start time of the jth action ak
j for the kth agent

agentk, tstart(ak
j) ∈ T

tduration(ak
j)

The duration of the jth action ak
j for the kth agent

agentk, tduration(ak
j) ∈ T

sk
t

The state of the kth agent at time t where
1 ≤ k ≤ Nagents

s′kt (tcurrent)
The estimated state of the kth agent at time t
predicted at time tcurrent where t′ ≥ tcurrent

Sk = ∪sk
t The set of all the states of the kth agent

S′k = ∪s′kt The set of all the lookahead states of the kth agent

Ak
j+1 = (ak

0(t0), ak
1(t1), . . . , ak

j (tj))
The sequence of all actions performed by the kth
agent before time t = tj+1

T =
{

t0, t1, . . . , tj

} The set of the beginning time of acts performed by
the kth agent before time t = tj+1

Ak = ∪Ak
j The set of all the actions of the kth agent

A = ∪Ak The set of the system’s actions

∑ = ∪Sk The set of the system’s states

δk
int : Sk → Sk The internal state transition function of the kth agent

δk
ext : ∑×T ×A→ S′k

The external state transition function of the kth agent;
it indicates that the state transition of the kth agent
occurred at one specific moment is related to
the system’s existing acts and states

δk
pre : ∑×T ×A→ S′k

The lookahead function of the state of the kth agent;
this implies that the state of the kth agent predicted at
one specific moment is related to the system’s
existing acts and states

F2
ext = F2

ext(t, s1
t)

= δ2
ext · · · δn

ext(t, s3
t , . . . , sn

t , s1
t)

A compound function of t and s1
t for the second agent

3.1. Context Overview

This section further describes the military context, as well as the need for a hybrid simulation.
In the military context, the typical CAS model can represent military commanders [37,38].

A state-of-the-art military agent model is a perception-based agent model. The commander agent
is created to model the ability of command and control, which can be achieved by simulating

Appl. Sci. 2017, 7, 1095 8 of 24

the commanders’ decision-making process, sensors, weapons, mobile platforms, and communication
facilities to conduct processing, detection, lethality, mobility, and communication, respectively [39,40].
For example, in the Joint Warfare System (JWARS) [41], a Battle Space Entity (BSE), which is the basic
element to represent military forces and systems, is composed of C2, Sensor, Platform, Resource
Manager, and Communication Manager. The sensor uses different detection radii and probabilities
to represent different detection capabilities. Weapons have distinct killing probabilities and ranges.
The maneuver platforms have their own moving speeds.

In military conflict scenarios, the interactions between agents not only involve the exchange of
orders, reports, and requests between the superiors and subordinates in the same side, but also contain
a large number of interaction events concerning perception and attack. In general, the commander
agent forms the understanding of battlefield situations based on information gathered from its own
perception and other commander agents. In light of this cognition, the commander agent completes its
decisions and then performs actions such as movement and combat. In turn, the results of these actions
are fed back from the environment. On the whole, the process forms a perception-based decision cycle.

Influenced by the numerous entities in the military system and the inundated interaction, the
agent-based military simulation has devote much attention to the running efficiency. In particular, when
using iterative runs of large samples to provide optimized solutions in the military decision-making
system, the quality of the provided options depends on the time available before the submission of
the planning [42,43]. The more abundant the time, the more simulations can be carried out, which leads
to more experiments carried out in real time. A lot of work has been studied at different levels on how
to improve the running efficiency of military simulation. Some use low-resolution models [44]. Some
utilize parallel methods or high-performance hardware [45,46]. Some make use of hybrid simulations.
The use of DES in large-scale military simulations is common to enhance performance. For example,
JWARS and Joint Theater Level Simulation (JTLS) [47] are both discrete event simulations.

Therefore, it is worthy for the researchers to study how to establish a hybrid simulation model in
the military context.

3.2. Main Problems of the PR

From the perspective of the number of updates, partial resynchronization is the method with
the minimum number of updates, but there are two important problems that this method possesses,
namely, cyclic dependency and the determination of resynchronization intervals.

3.2.1. Resynchronization Interval Determination

The computational efficiency of the resynchronization mechanism is, to a large extent, determined
by the setting of the resynchronization interval. Accurately calculated resynchronization events usually
mean a larger computation cost on the checking of states [13], while inaccurate resynchronization
intervals can lead to incorrect interaction estimation and the loss of interaction information.

There exists a host of solutions to the RI problems. In a study conducted by Kuchar et al. [48] on
airspace control, the synchronization interval setting of the uncertain dynamic system was understood
as a problem involving signal detection, and the study mainly aimed to minimize false alarms
(i.e., premature resynchronization) and lost detection (i.e., the resynchronization process skipped
certain interactions). In another approach [20], the measurement agent was designed to predict when
an interaction would occur between two related agents as a means of setting the resynchronization
interval and determining which agent to be resynchronized, and a “measurement management
agent” was used to manage the measurement agent related to many agents. The synchronization
time is the minimum value of the next update time predicted by these “measurement management
agents”. It was also proposed that the neural network could be used to predict the interaction between
two agents.

These methods provide a scheme for determining the estimates of the resynchronization interval,
but are not that accurate. If the estimated resynchronization interval is too large, it is possible to miss

Appl. Sci. 2017, 7, 1095 9 of 24

some actual interactions between agents, which means that some important interactions may be lost.
If the estimated resynchronization interval is too small, it is possible to generate more redundant status
updates and synchronization.

In the implicit modeling-based discrete approach, the challenge of RI is how to accurately predict
the interaction events between the implicit models of two agents. Interactive events can typically be
divided into interactions between continuous models, interactions between continuous models and
discrete models, and interactions between discrete models. Among them, interaction events directly
involved in the discrete models are easier to predict because the moments of the interaction events
must be at the discrete time points when the states of the discrete model change.

Therefore, the RI problem has always been an important issue of applying the PR method, whose
difficulty lies in predicting the interaction between the implicit modeling of agents.

3.2.2. Cyclic Dependency

Cyclic dependency [49] can be described as direct or indirect dependencies between two or more
modules when they perform their own functions.

In partial resynchronization, the environmental state is not described in detail. The state of
the agent is updated through the model calculation only when the agent takes the initiative to perform
state transition or when it is required by other agents to conduct state updates. The moment a state
update is required is referred to as the partial resynchronization point, as shown in Figure 3.

Appl. Sci. 2017, 7, 1095 9 of 25

These methods provide a scheme for determining the estimates of the resynchronization
interval, but are not that accurate. If the estimated resynchronization interval is too large, it is possible
to miss some actual interactions between agents, which means that some important interactions may
be lost. If the estimated resynchronization interval is too small, it is possible to generate more
redundant status updates and synchronization.

In the implicit modeling-based discrete approach, the challenge of RI is how to accurately predict
the interaction events between the implicit models of two agents. Interactive events can typically be
divided into interactions between continuous models, interactions between continuous models and
discrete models, and interactions between discrete models. Among them, interaction events directly
involved in the discrete models are easier to predict because the moments of the interaction events
must be at the discrete time points when the states of the discrete model change.

Therefore, the RI problem has always been an important issue of applying the PR method, whose
difficulty lies in predicting the interaction between the implicit modeling of agents.

3.2.2. Cyclic Dependency

Cyclic dependency [49] can be described as direct or indirect dependencies between two or more
modules when they perform their own functions.

In partial resynchronization, the environmental state is not described in detail. The state of the
agent is updated through the model calculation only when the agent takes the initiative to perform
state transition or when it is required by other agents to conduct state updates. The moment a state
update is required is referred to as the partial resynchronization point, as shown in Figure 3.

Figure 3. Cyclic dependency between two agents in partial resynchronization.

When partial resynchronization occurs between two interdependent agents, this method might
involve cyclic dependency. Figure 3 shows the cyclic dependency between two agents. When 1agent

runs to the partial resynchronization point and enters the state update process, as 1agent and 2agent

interact with each other, the states of 1agent at this resynchronization point are affected by the states

of 2agent . Thus, 1agent needs 2agent to update its (2agent ’s) states. However, the update of the

state values of 2agent is also dependent on the states of 1agent at the current moment; thus, to carry

out a state update, 2agent requires 1agent to update its (1agent ’s) states as well. In this dynamic, a

cyclic dependency is formed between 1agent and 2agent .

Such situations may also occur among N agents: e.g., 1agent needs 2agent to update its (

2agent ’s) states; 2agent needs 3agent to update its (3agent ’s) states, …, 1Nagent - needs Nagent to

update its states, and Nagent needs 1agent to update its states.
Thus, the formal definition of CD can be as follows:

Definition 1. (For N agents which are represented as 1agent ,..., iagent ,..., Nagent , there is cyclic
dependency between the state of N agents at time t): t T" Î , if:

Figure 3. Cyclic dependency between two agents in partial resynchronization.

When partial resynchronization occurs between two interdependent agents, this method might
involve cyclic dependency. Figure 3 shows the cyclic dependency between two agents. When agent1

runs to the partial resynchronization point and enters the state update process, as agent1 and agent2

interact with each other, the states of agent1 at this resynchronization point are affected by the states
of agent2. Thus, agent1 needs agent2 to update its (agent2’s) states. However, the update of the state
values of agent2 is also dependent on the states of agent1 at the current moment; thus, to carry out
a state update, agent2 requires agent1 to update its (agent1’s) states as well. In this dynamic, a cyclic
dependency is formed between agent1 and agent2.

Such situations may also occur among N agents: e.g., agent1 needs agent2 to update its (agent2’s)
states; agent2 needs agent3 to update its (agent3’s) states, . . . , agentN−1 needs agentN to update its
states, and agentN needs agent1 to update its states.

Thus, the formal definition of CD can be as follows:

Definition 1. (For N agents which are represented as agent1,...,agenti,...,agentN , there is cyclic dependency
between the state of N agents at time t): ∀t ∈ T , if:

s1
t = δ1

ext(t, s2
t), s2

t = δ2
ext(t, s3

t), ..., si
t = δi

ext(t, si+1
t), ..., sN−1

t = δN−1
ext (t, sN

t), sN
t = δN

ext(t, s1
t)

where:

Appl. Sci. 2017, 7, 1095 10 of 24

N ≥ 2 and N ∈ N , N is the set of natural numbers,
si

t is the states of agenti at time t ,
δi

ext is the external state transition function of agenti.

CD problems can only be triggered by external events. According to Definition 1, the state
transition of the agent that occurs in CD is a function of other agent states. This indicates that
these state transition functions with external dependencies are external state transition functions of
discrete event systems. According to the Discrete Event System Specification proposed by Zeigler [50],
discrete event simulation can only change the state of the external state transition function with
the occurrence of an external event. This means that the interdependence of state updates between
the sender and the receiver at the same simulation event can only be achieved with the arrival of
external interaction events.

CD problems are prevalent in PR-based military simulations. A typical example is the calculation
of ammunition consumption and force change in military conflict. In the conflict between two or more
parties, once a party uses a weapon, the other side will also fight back. During this fight, the combat
unit ammunition consumed and the number of soldiers changes until the battle stops. This process is
a dynamic and continuous process, with interdependence between combat units involved in the battle.
The traditional military simulation uses this process as a continuous state variable, where the states
update in a small step-by-step manner based on the initial states of each step. As we have not found
any relevant solution after we have tried our best, we think this problem still needs to be addressed
for PR.

From the summary in Section 2, it can be seen that the computational efficiency is the key issue
for military simulations. Each step in the “sense-think-act” cycle can intuitively describe the physical
model in the military domain, but the TBM cannot fully represent entities in the military system, such
as semi-autonomous combat units. For a large-scale military simulation, the use of PR mechanism can
reduce unnecessary state updates. However, when using the PR mechanism in the practical application
process, there are still two important issues that need to be studied: RI and CD.

4. The Lookahead Behavior Model

The objective of this paper, in the context of a large-scale military decision-making system
application facing running efficiency problems, is to solve the two problems of PR based on the implicit
modeling method in order to build a more efficient and feasible hybrid simulation.

The concept of “lookahead behavior” is introduced to the traditional agent behavior model
and the “sense-think-lookahead-act” behavior model is proposed, as shown in Figure 4, to solve the
two important problems in the process of partial resynchronization and to realize the agent state
update model based on an event-driven approach. It can make full use of the advantages of the hybrid
simulation composed by the agent model and the DES engine.

A basic aim of LBM is to establish a hybrid simulation based on implicit modeling. The period of
the agent behavior model becomes “sense-think-lookahead-act”. Each step of the behavior is based
on the corresponding event process as a starting point. The intervals between steps can be arbitrarily
delayed, depending on the characteristics of the physical object to be simulated. The initial behavior
event of the agent needs to be initialized during the initialization of the simulation. The event for
one step is not forced to be created and dispatched during the execution of a previous step in the same
cycle. The constraint in the model is that lookahead should be performed right before each action is
taken. After the possible interaction during the action is predicted in the lookahead, the action actually
performed can be simulated.

The main idea of solving RI in the LBM model is to predict beforehand the likely interaction
between agents caused by performing the action. To this end, the authors of this paper propose a time
window-based lookahead method.

Appl. Sci. 2017, 7, 1095 11 of 24

In order to solve the CD problem in the LBM model, the authors propose a method based on state
estimation to break the interdependency cycle of state updates.Appl. Sci. 2017, 7, 1095 11 of 25

Figure 4. The “sense-think-lookahead-act” behavior model.

The main idea of solving RI in the LBM model is to predict beforehand the likely interaction
between agents caused by performing the action. To this end, the authors of this paper propose a
time window-based lookahead method.

In order to solve the CD problem in the LBM model, the authors propose a method based on
state estimation to break the interdependency cycle of state updates.

4.1. Time Window-Based Lookahead

The time window-based lookahead is proposed to solve the RI problem. The core of the problem
is how to accurately predict the resynchronization interval that may occur between agents in the
context of hybrid simulations. In order to fully exploit the efficiency of DES in the background of a
military decision-making system, our work is founded on the implicit modeling-based discrete
approach. Thus, the issue becomes how to accurately predict the interaction between the implicit
models of the two agents.

Further, the interaction events that occur between the implicit models are related to the action
being performed by the agent. The change of the internal implicit model corresponds to the change
of the internal state transition function of the model. This change is determined only by the action of
the model itself. Before the performance of a certain action, the time interval and the corresponding
state transition function can be obtained. Therefore, the lookahead process should be finished before
each action, in order to predict the interaction between the corresponding internal models of two
agents.

The basic idea of the time window-based lookahead is to provide a time window determined by
the duration affected by the action and to use the internal model related to the action to determine
when the interaction events may happen during that period. The time window and interaction event
are defined as follows:

Definition 2. (Time window): A time window windowT in a lookahead step of an agent kagent can be defined
as:

0[, ()]kwindow current current durationT t t t a= +

where currentt is the current simulation time which satisfies 0()
k

current startt t a= . This means that action 0
ka

is the next action to be performed at once for kagent , 0()
k

durationt a is the duration of the next action for

kagent , and 1()
k

current durationt t a+ is the end time of the time window, which is also the end time of the next
action for the agent.

Figure 4. The “sense-think-lookahead-act” behavior model.

4.1. Time Window-Based Lookahead

The time window-based lookahead is proposed to solve the RI problem. The core of the problem is
how to accurately predict the resynchronization interval that may occur between agents in the context
of hybrid simulations. In order to fully exploit the efficiency of DES in the background of a military
decision-making system, our work is founded on the implicit modeling-based discrete approach. Thus,
the issue becomes how to accurately predict the interaction between the implicit models of the two agents.

Further, the interaction events that occur between the implicit models are related to the action
being performed by the agent. The change of the internal implicit model corresponds to the change of
the internal state transition function of the model. This change is determined only by the action of
the model itself. Before the performance of a certain action, the time interval and the corresponding
state transition function can be obtained. Therefore, the lookahead process should be finished before
each action, in order to predict the interaction between the corresponding internal models of two agents.

The basic idea of the time window-based lookahead is to provide a time window determined by
the duration affected by the action and to use the internal model related to the action to determine
when the interaction events may happen during that period. The time window and interaction event
are defined as follows:

Definition 2. (Time window): A time window Twindow in a lookahead step of an agent agentk can be defined as:

Twindow = [tcurrent, tcurrent + tduration(ak
0)]

where tcurrent is the current simulation time which satisfies tcurrent = tstart(ak
0). This means that action ak

0 is
the next action to be performed at once for agentk, tduration(ak

0) is the duration of the next action for agentk,
and tcurrent + tduration(ak

1) is the end time of the time window, which is also the end time of the next action for
the agent.

Definition 3. (Interaction event): An interaction event Eventk for two agents (referred to as agentk and agentl)
is structured as:

Eventk,l =< agentsender, agentreceiver, tcreate, toccur, interactionk,l >

Appl. Sci. 2017, 7, 1095 12 of 24

where:

agentsender is the sender of Eventk interaction event, and can be agentk or agentl ;
agentreceiver is the receiver of Eventk, and is an alternative choice;
tcreate is the creating time of Eventk;
toccur is the occurring time of Eventk; and
interactionk,l represents the corresponding interaction.

In Definition 3, the sender and the receiver of the event can be specified according to the specific
kind of interaction, facilitating the sender to trigger the state transition of the receiver.

When a primary updating agent agentk is going to perform its next action ak
1, there can be

two situations for the state change during the performing of ak
1.

The first one refers to the situation where no other agents interact with the primary updating
agent during ak

1. It is known that action ak
1 initiates a process of internal state transition δk

int, which
means the agent will spend time on performing ak

1. At this point, the state of the primary updating
agent can be described as being driven by two events, specifically, the start of the “action” and the end
of the “action”. Other state transitions for this action are implied in the internal state transition
function δk

int.
For example, in a military simulation of the Anglo-Zulu War [8], Zulu agents can be initialized

with a preset movement vector to straight in the direct of the British line. The initial movement
vector can be modeled as implicit state transition functions for the states of speed and position. When
a Zulu agent starts its movement, it will spend some time on the “moving” action until it arrives at its
destination, if not to be replaced by another action of “direct charge”.

The second situation refers to the situation where there are other agents interacting with
the primary updating agent. At this point, the state of the primary updating agent is affected by
the actions of other agents; therefore, these interactions can be described as events.

As the performance of the action is the “blasting fuse” leading to the change of the agent’s state,
the interaction between agents is based on their state. In addition, the determination of the interaction
result depends on the act type. Therefore, the interaction between two agents depends on their act
and state.

For instance, as the Zulu agent approaches, the British agent sees the enemy troop drawing closer.
At this time, the occurrence of the perceiving interaction for the British agent’s perceptual behavior is
related to the relative distance between the Zulu agent and the British agent. Only when the Zulu agent
is within the detection scope of the British agent will there be a perception interaction between them.
Thus, the actions and states of these agents are needed to predict the interactive behavior between
agents that may occur using the lookahead process.

The main idea of the time window-based lookahead is based on the “safe” time advancement
carried out by the time window, as shown in detail below.

According to Definition 2, a time window is created regarding the sequence of actions to be
performed by the agent (which is called the primary agent). Agents associated with it (i.e., agents that
may interact with the primary agent) can either “safely” advance to the end of this time window, or can
“safely” advance until they interact with each other in this time window. This means that the related
agents either will not interact with the primary agent within this time period, or they will conduct
time synchronization by generating interaction events within the time window. If an interaction event
is generated, then this interaction event may be the input event that changes the primary agent’s state,
and the action corresponding to the time window may be affected by this interaction event; thus,
the original action of the primary agent will be rescheduled at the moment the interaction event occurs.
If there is no interaction event between the primary agent and the related ones in the time window,
the primary agent can obtain the state when the action ends, performing its state transition function,
and can start performing the next action in the action sequence. By constantly calculating interactions
that may occur in the time window, the agent’s action is divided into several sections by the interaction

Appl. Sci. 2017, 7, 1095 13 of 24

events, and the performance of the agent’s action is going to “jump” in the timeline from one moment
to another.

Figure 5 shows a case to explain the basic principle of predicting resynchronization time using
the lookahead method. In this example, there are two moving units, which are modeled as agent1 and
agent2. The current time of the scheduler is tcurrent. The action sequence of movement to be performed
by agent1 is A1 =

{
a1

0,, a1
n
}

, and agent2 is performing its movement of a2
0 in its action sequence

A2 =
{

a2
0,, a2

m
}

at the current moment, where n and m are the numbers of actions to be performed
sequentially for agent1 and agent2. The moving speed update functions for agent1 and agent2 are
modeled as internal state transitions of δ1

int and δ2
int, respectively. That is, for agent1, the action a1

0
corresponds to the internal state transition δ1

int, which will cause agent1 to change its state from tstart(a1
0)

to tstart(a1
0) + tduration(a1

0). For agent2, the state is changed by the internal state transition δ2
int.

With the change in the speed vector, the spatial positions of agents might change, which could
lead to the occurrence of interactions, such as detections.

Without any consideration of interactions between agent1 and agent2, two events for performing
action a1

0 can be created to perform the internal state transition. The “start action” event for a1
0 is

represented as E0, while the “ending action” event for a1
0 is denoted as E1. Let t1 = tstart(a1

0), and
t2 = tstart(a1

0) + tduration(a1
0). The initial situation is illustrated in Figure 5a.

Appl. Sci. 2017, 7, 1095 13 of 25

interaction event is generated, then this interaction event may be the input event that changes the
primary agent’s state, and the action corresponding to the time window may be affected by this
interaction event; thus, the original action of the primary agent will be rescheduled at the moment
the interaction event occurs. If there is no interaction event between the primary agent and the related
ones in the time window, the primary agent can obtain the state when the action ends, performing
its state transition function, and can start performing the next action in the action sequence. By
constantly calculating interactions that may occur in the time window, the agent’s action is divided
into several sections by the interaction events, and the performance of the agent’s action is going to
“jump” in the timeline from one moment to another.

Figure 5 shows a case to explain the basic principle of predicting resynchronization time using
the lookahead method. In this example, there are two moving units, which are modeled as 1agent

and 2agent . The current time of the scheduler is currentt . The action sequence of movement to be

performed by 1agent is 1 1 1
0{ ,...., }nA a a= , and 2agent is performing its movement of 2

0a in its

action sequence 2 2 2
0{ ,...., }mA a a= at the current moment, where n and m are the numbers of actions

to be performed sequentially for 1agent and 2agent . The moving speed update functions for 1agent

and 2agent are modeled as internal state transitions of 1
intd and 2

intd , respectively. That is, for

1agent , the action 1
0a corresponds to the internal state transition 1

intd , which will cause 1agent to

change its state from 1
0()startt a to 1 1

0 0() ()start durationt a t a+ . For 2agent , the state is changed by the

internal state transition 2
intd .

With the change in the speed vector, the spatial positions of agents might change, which could
lead to the occurrence of interactions, such as detections.

Without any consideration of interactions between 1agent and 2agent , two events for

performing action 1
0a can be created to perform the internal state transition. The “start action” event

for 1
0a is represented as 0E , while the “ending action” event for 1

0a is denoted as 1E . Let
1

1 0()startt t a= , and 1 1
2 0 0() ()start durationt t a t a= + . The initial situation is illustrated in Figure 5a.

(a) (b)

Figure 5. The lookahead principle based on the time window. (a) The initial state. (b) The state after
the lookahead procedure.

After the two events for 1
0a are scheduled, the time window can be obtained as 1 2[,]windowT t t=

according to Definition 2. Then, the intersection of functions 1
intd and 2

intd can be calculated to

Scheduler time

State

Simulation
time

...

State

Simulation
time

t0

t1 t2

E0

E1 E2Time window

...

Scheduler
time

State

Simulation
time

t0

t1

t3

...

State

Simulation
time

E3E0

E1

t2

Time window

Figure 5. The lookahead principle based on the time window. (a) The initial state. (b) The state after
the lookahead procedure.

After the two events for a1
0 are scheduled, the time window can be obtained as Twindow = [t1, t2]

according to Definition 2. Then, the intersection of functions δ1
int and δ2

int can be calculated to generate
the interaction1,2 between agent1 and agent2 within the time window. Supposing that interaction1,2

will occur at t3, the interaction event will be E3 = E1,2 =< agent1, agent2, t1, t3, interaction1,2 >,
according to Definition 3. The situation after the lookahead process is illustrated in Figure 5b.
It is a remarkable fact that the t3 is a time in the future, indicating that the event E3 is a result of
the prediction of the lookahead.

In the processing of E3, the original state transition for agent1 might be interrupted. The state of
agent1 will be updated and resynchronized with agent2. Meanwhile, the event E2 could be canceled
if the action a1

0 can only be partially carried out as a1
0. Under the circumstances, the following action

sequence of agent1 will be regenerated at t3 as A1
= (a1

0).
The time window-based lookahead algorithm shown above can be described as Algorithm 1.

The duration of action tduration, along with the start time of action tstart, is determined when the action

Appl. Sci. 2017, 7, 1095 14 of 24

is created. The predictInteraction (a0,ai) procedure refers to the calculation of the intersection of
two internal state transition functions, which are related to a0 and ai, respectively.

Algorithm 1: Time window-based lookahead algorithm.

Input: next action to be performed at the moment by the primary Agent0: a0; duration of action: tduration
Variables:

tcurrent// current simulation time
Output: EventSet =

{
(Eventj, StateLookaheadj)

}
1 Twindow = [tcurrent, tcurrent + tduration]

2 AgentList = getAgentsMayInteractWithAction (a0)
3 for each agenti in the AgentList
4 ai = getCurrentPerformingAction(agenti)
5 InteractionSet = predictInteraction(a0,ai)
6 for each interactionj in the InteractionSet
7 tj = getPredictedTimeOfInteraction (interactionj)
8 StateLookaheadj = getPredictedStateOfInteraction(interactionj)
9 if(tj ⊆ Twindow)
10 Eventj = createEventFrominteraction(agent0, agenti, tj, interactionj)
11 EventSet← (Eventj, StateLookaheadj)

12 end if
13 end for
14 end for

According to Algorithm 1, after the interaction between the primary agent and the other agent
in the time window is predicted, the corresponding interaction event can be created according
to the predicted time and the agents who participate in the interaction. This lookahead process
identifies possible resynchronization interactions within the time window. However, the calculation
of the intersection of the internal state transition function may be time-consuming and needs to be
optimized according to the actual model. At the same time, the scheduling of interaction events is
implemented in the modeling process, so it is necessary to determine all types of interactions between
different types of agents before modeling. This aggravates the coupling between models and increases
the difficulty of modeling.

4.2. Estimate Value-Based Unlock

The lookahead process described above has realized the prediction of resynchronization time. This
sub-section will detail the manner in which the lookahead process solves the problem of cyclic dependency.

The goal of CD in the LBM is to break the cycle of dependency for state updates. This paper
proposes a method based on state estimation. The method uses the estimated value for the dependent
state to perform the initial state transition calculation, and then uses the final state transition value to
replace the estimated one.

The estimated value of state sk
t for agentk in this paper is represented as s′kt = δk

pre(t), where t is
the moment when the state will occur in future. The estimated state value can solve the CD between
the two agents, as shown in the proof of Lemma 1.

Lemma 1. Estimated value can eliminate the cyclic dependency between two agents at time t in partial
resynchronization.

Proof. Assume there is cyclic dependency between agent1 and agent2 at a future time t; that is,
the states of agent1 and agent2 satisfy s1

t = δ1
ext(t, s2

t), s2
t = δ2

ext(t, s1
t).

Appl. Sci. 2017, 7, 1095 15 of 24

Then:
∃i, j ∈ N,

s.t. ti, tj < t, a1
i (ti) ∈ A1, a2

j (tj) ∈ A2

ti+1 ≥ t, tj+1 ≥ t

namely, the latest actions performed by agent1 and agent2 before time t can always be found, and:

s′1t , s′2t satisfies

{
s′1t = δ1

pre(ti), s′2t = δ2
ext(t, s′1t), i f ti ≥ tj

s′2t = δ2
pre(tj), s′1t = δ1

ext(t, s′2t), i f ti < tj

The following formula can be obtained: s1
t = δ1

ext(t, s′2t), s2
t = δ2

ext(t, s′1t); that is, the states of
agent1 and agent2 at time t are only related to the state of the lookahead prediction.

According to Lemma 1, the estimated state values can resolve the CD problem between couples
of agents (see the proof of Theorem 1).

Theorem 1. The estimated value can eliminate the cyclic dependency between agents in partial resynchronization.

Proof. If there is cyclic dependency between n agents at time t, then according to Definition 1,
the following can be obtained: s1

t = δ1
ext(t, s2

t), s2
t = δ2

ext(t, s3
t), . . . , sn−1

t = δn−1
ext (t, sn

t), sn
t = δn

ext(t, s1
t).

According to the transitivity of the function, we can determine that: s1
t = δ1

ext(t, s2
t), s2

t =

δ2
ext · · · δn

ext(t, s3
t , . . . , sn

t , s1
t). That is, there is cyclic dependency between agent1 and agent2 at time

t, which could be defined as s1
t = δ1

ext(t, s2
t), s2

t = F2
ext(t, s1

t), where F2
ext = δ2

ext · · · δn
ext(t, s3

t , . . . , sn
t , s1

t)

represents a compound function of t and s1
t .

From Lemma 1, the estimated value can eliminate the cyclic dependency between agent1 and
agent2 at time t; that is, s′1t , s′2t can always be found so that s1

t = δ1
ext(t, s′2t), s2

t = F2
ext(t, s′1t). Then:

s1
t = δ1

ext(t, s′2t), s2
t = δ2

ext(t, s3
t), . . . , sn−1

t = δn−1
ext (t, sn

t), sn
t = δn

ext(t, s′1t)

Thus, it is clear that cyclic dependency no longer exists among the states of the n agents. Therefore,
lookahead can eliminate the cyclic dependency between the n agents in partial resynchronization.

Since the CD problem occurs at the moment the interaction event occurs, the time window used
to break the dependency loop is a time window of length 0.

Using the estimated value to unlock the state dependencies when updating the state, the problem
of how to estimate the status value needs to be addressed. Plenty of time is obviously needed to
accurately estimate the state, and the error between the state estimate and the true value will affect
the accuracy of the state update. In the present work, the authors of this paper mainly use the method
of pre-calculation to save some typical values in some typical scenarios in a local file. Then, the state
estimates are interpolated from the typical values so as to achieve a compromise between calculation
accuracy and efficiency.

5. Case and Experiments

In order to evaluate the LBM, this paper designs a simple military test case to study the efficiency
of different state update mechanisms. The specific assumptions and initial conditions of the experiment
are described in Section 5.1. The process of modeling the typical behavior in the scenario is presented
in Section 5.2. Then, Section 5.3 gives the experimental results and a brief analysis.

5.1. Case Scenario and Experiment Setup

A simple military air defense scenario is designed with both red and blue units. The red side
mainly contains pairs of radar and artillery deployed in the same position, while the units of the blue

Appl. Sci. 2017, 7, 1095 16 of 24

side are the aircrafts. The detection model of radar uses a simplified constant-delay model based on
the detection radius, that is, after the target enters the detection range for a constant time, the radar
performs a detection to obtain the target information. The artillery attacks the target after another
constant time of the target detection. The damage on the aircraft is not considered. The aircraft’s
motion model is a continuous model, using uniform linear motion to update the position. Radar
perception and artillery attacks are both discrete models.

In order to simplify the implementation, two types of agents are established: StaticAgent on
the red side and MovingAgent on the blue side. StaticAgent simulates the capabilities of detection and
attacking of radar and artillery, respectively, whereas MovingAgent simulates the process in which
the aircraft performs movements.

Experiments are carried out to simulate the process of sense, move, and attack of the two kinds
of agents. The experiment is as follows: set the initial and ending positions of all MovingAgents
and perform the moving action amove to move from the initial position to the destination at a fixed
speed. When the destination is reached, the agent resets the initial and ending positions and continues
the movement. StaticAgent detects the MovingAgents and performs the attack action aattack.

Four sets of experiments are conducted to evaluate the efficiency of LBM, namely:

(1) Fixed time synchronization-based simulation (FS);
(2) Variable time synchronization-based simulation (VS);
(3) Complete resynchronization-based simulation (CR);
(4) Partial resynchronization-based LBM simulation (LBM-PR).

In the LBM model, the agent spends its time mainly on performing state updates, executing
the behavior cycle, and forecasting the synchronization interval. Assuming that each agent finishes
the three tasks for constant time durations, the number of state updates, the number of executed cycles,
and the number of lookaheads will affect the time spent by the agent model. Therefore, this paper
uses these measurements as the LBM performance indicators. Taking account of random factors, this
experiment will use the average of these measurements as the ultimate performance metric.

The parameters of this experiment are shown in Table 4.

Table 4. Experiment configurations.

Parameter Value

Size of virtual space 10,000 × 10,000
Number of agents in total 10, 20, 30, 50, 70, 100, 200, 300, 400, 500, 600

Speed of MovingAgent Random number, 1–100
Detection radius of StaticAgent Random number, 0–50

5.2. Modeling of Lookahead

In the above scenario, the manner in which the time window-based lookahead process is realized
was demonstrated through the interaction between one MovingAgent and one StaticAgent, as follows:

Two agents are in the scenario: the MovingAgent and the StaticAgent, as shown in Figure 6.
Current simulation time is t1. The MovingAgent is fetching the first action of amove from its action list,
as it is going to arrive at point B linearly at constant speed at t2. The StaticAgent is an attacking agent
located at point C. The sense model of the StaticAgent is a simplified time-delayed sense model with
a detection range of R, and a delayed detection time of tD.

Appl. Sci. 2017, 7, 1095 17 of 24

Appl. Sci. 2017, 7, 1095 17 of 25

uses these measurements as the LBM performance indicators. Taking account of random factors, this
experiment will use the average of these measurements as the ultimate performance metric.

The parameters of this experiment are shown in Table 4.

Table 4. Experiment configurations.

Parameter Value
Size of virtual space 10,000 × 10,000

Number of agents in total 10, 20, 30, 50, 70, 100, 200, 300, 400, 500, 600
Speed of MovingAgent Random number, 1–100

Detection radius of StaticAgent Random number, 0–50

5.2. Modeling of Lookahead

In the above scenario, the manner in which the time window-based lookahead process is realized
was demonstrated through the interaction between one MovingAgent and one StaticAgent, as
follows:

Two agents are in the scenario: the MovingAgent and the StaticAgent, as shown in Figure 6.
Current simulation time is 1

t . The MovingAgent is fetching the first action of
move
a from its action

list, as it is going to arrive at point B linearly at constant speed at 2
t . The StaticAgent is an attacking

agent located at point C. The sense model of the StaticAgent is a simplified time-delayed sense model
with a detection range of R, and a delayed detection time of

D
t .

Figure 6. The small scenario of the test case.

According to the sequence of events that an event scheduler processes to advance the simulation
clock, the procedure of the lookahead and act of the

move
a can be simulated as follows:

Step 1: Perform lookahead for
move
a , current simulation time is

1
t .

Create and schedule the endMoving event
EndMoving
E with processing time of 2

t . Create the

time window
1 1 2
[,]T t t= . Then, predict the interactions between the MovingAgent and the

StaticAgent during
1
T , which are

EnterDetection
interaction and

ExitDetection
interaction , with occurring

time of 3
t and 4

t . Next, create and schedule interaction events
EnterDetection
E and

ExitDetection
E .

Step 2: Process event
EnterDetection
E , current simulation time is 3

t .

In this step, the StaticAgent creates and schedules the detection event
Detection
E at

3 D
t t+ .

Step 3: Process event
Detection
E , current simulation time is

3 D
t t+ .

The StaticAgent performs “sense” behavior, adds the MovingAgent into the target list, and the
states are resynchronized between the MovingAgent and the StaticAgent. It is assumed that the

Figure 6. The small scenario of the test case.

According to the sequence of events that an event scheduler processes to advance the simulation
clock, the procedure of the lookahead and act of the amove can be simulated as follows:

Step 1: Perform lookahead for amove, current simulation time is t1.
Create and schedule the endMoving event EEndMoving with processing time of t2. Create the time

window T1 = [t1, t2]. Then, predict the interactions between the MovingAgent and the StaticAgent
during T1, which are interactionEnterDetection and interactionExitDetection, with occurring time of t3 and
t4. Next, create and schedule interaction events EEnterDetection and EExitDetection.

Step 2: Process event EEnterDetection, current simulation time is t3.
In this step, the StaticAgent creates and schedules the detection event EDetection at t3 + tD.
Step 3: Process event EDetection, current simulation time is t3 + tD.
The StaticAgent performs “sense” behavior, adds the MovingAgent into the target list, and

the states are resynchronized between the MovingAgent and the StaticAgent. It is assumed that
the StaticAgent decides on an attacking action aattack at t5. Then, the lookahead event ElookaheadAttack is
created and scheduled at t5 to predict the attacking action’s effect.

Step 4: Process event ElookaheadAttack; current simulation time is t5.
In this step, the EAttack is created and scheduled attacking action at t5.
Step 5: Process event EAttack; current simulation time is t5.
Step 6: Process event EExitDetection; current simulation time is t4.
Create and schedule the lose detection event ELoseDetection for StaticAgent at t4.
Step 7: Process event ELoseDetection; current simulation time is t4.
The StaticAgent performs “sense” behavior; delete the MovingAgents from the target list.
Step 8: Process event EEndMoving; current simulation time is t2.
The MovingAgent arrives at the destination. The procedure ends, and the action amove is

completely performed.
The lookahead process in Step 1 predicts two interactions caused by detection of the StaticAgent,

which results in resynchronization between the MovingAgent and the StaticAgent, and divides
the moving action into several sub-motions. In Figure 7, the resynchronization between the MovingAgent
and the StaticAgent occurs at simulation time t3, t3 + tD, t5, and t4. In the time window from t1 to t2, the
state updates for the MovingAgent are skipped over without any interactions between the MovingAgent
and the StaticAgent, except for those at the resynchronization point.

Appl. Sci. 2017, 7, 1095 18 of 24

Appl. Sci. 2017, 7, 1095 18 of 25

StaticAgent decides on an attacking action
attack
a at 5

t . Then, the lookahead event
lookaheadAttack
E is

created and scheduled at 5
t to predict the attacking action’s effect.

Step 4: Process event
lookaheadAttack
E ; current simulation time is 5

t .

In this step, the
Attack
E is created and scheduled attacking action at 5

t .

Step 5: Process event
Attack
E ; current simulation time is 5

t .

Step 6: Process event
ExitDetection
E ; current simulation time is

4
t .

Create and schedule the lose detection event
LoseDetection
E for StaticAgent at

4
t .

Step 7: Process event
LoseDetection
E ; current simulation time is 4

t .
The StaticAgent performs “sense” behavior; delete the MovingAgents from the target list.
Step 8: Process event

EndMoving
E ; current simulation time is 2

t .

The MovingAgent arrives at the destination. The procedure ends, and the action
move
a is

completely performed.
The lookahead process in Step 1 predicts two interactions caused by detection of the StaticAgent,

which results in resynchronization between the MovingAgent and the StaticAgent, and divides the
moving action into several sub-motions. In Figure 7, the resynchronization between the
MovingAgent and the StaticAgent occurs at simulation time 3

t , 3 D
t t+ , 5

t , and 4
t . In the time

window from 1
t to 2

t , the state updates for the MovingAgent are skipped over without any
interactions between the MovingAgent and the StaticAgent, except for those at the resynchronization
point.

Figure 7. The process of the moving action when the MovingAgent is attacked.

5.3. Experiment Results

The experiments compare the efficiencies of FS, VS, CR, and LBM-PR. We execute the
experiments 100 times with the simulation time of 10,000 s, and count the average numbers of updates,
movements, and sensations in the four simulations. The minimum time interval for a time-stepped
method (e.g., FS, VS) is limited to 1. The experimental results are shown from Figure 8 to Figure 10.

Figures 8–10 show the changes of the average number of updates, movements, and sensations
with agent numbers when different time mechanisms are used. “FS × 1” in the figures represents the
FS simulation with a fixed time step of 1. “FS × 2” represents the FS simulation with a fixed time step
of 2. “Resyn” represents the asynchronous simulation including the “CR” and “LBM-PR” methods.
Since the average number of movements and the sensation of complete resynchronization and partial

Figure 7. The process of the moving action when the MovingAgent is attacked.

5.3. Experiment Results

The experiments compare the efficiencies of FS, VS, CR, and LBM-PR. We execute the experiments
100 times with the simulation time of 10,000 s, and count the average numbers of updates, movements,
and sensations in the four simulations. The minimum time interval for a time-stepped method (e.g.,
FS, VS) is limited to 1. The experimental results are shown in Figures 8–10.

Figures 8–10 show the changes of the average number of updates, movements, and sensations
with agent numbers when different time mechanisms are used. “FS × 1” in the figures represents
the FS simulation with a fixed time step of 1. “FS × 2” represents the FS simulation with a fixed
time step of 2. “Resyn” represents the asynchronous simulation including the “CR” and “LBM-PR”
methods. Since the average number of movements and the sensation of complete resynchronization
and partial resynchronization simulations are the same, the “Resyn” curve is used for both of them in
Figures 9 and 10.

Appl. Sci. 2017, 7, 1095 19 of 25

resynchronization simulations are the same, the “Resyn” curve is used for both of them in Figures 9
and 10.

0

2000

4000

6000

8000

10,000

12,000

14,000

0 100 200 300 400 500 600 700

LBM-PR

FS × 1

FS × 2

VS

CR

AverageUpdates

Figure 8. The change of average numbers of updates with agent number.

0

2000

4000

6000

8000

10,000

12,000

0 100 200 300 400 500 600 700

Resyn

FS × 1

FS × 2

VS

AverageMovements

Figure 9. The change of average numbers of movements with agent number.

Figure 8. The change of average numbers of updates with agent number.

Appl. Sci. 2017, 7, 1095 19 of 24

Appl. Sci. 2017, 7, 1095 19 of 25

resynchronization simulations are the same, the “Resyn” curve is used for both of them in Figures 9
and 10.

0

2000

4000

6000

8000

10,000

12,000

14,000

0 100 200 300 400 500 600 700

LBM-PR

FS × 1

FS × 2

VS

CR

AverageUpdates

Figure 8. The change of average numbers of updates with agent number.

0

2000

4000

6000

8000

10,000

12,000

0 100 200 300 400 500 600 700

Resyn

FS × 1

FS × 2

VS

AverageMovements

Figure 9. The change of average numbers of movements with agent number. Figure 9. The change of average numbers of movements with agent number.Appl. Sci. 2017, 7, 1095 20 of 25

0

2000

4000

6000

8000

10,000

12,000

0 100 200 300 400 500 600 700

Resyn

FS × 1

FS × 2

VS

AverageSensations

Figure 10. The change of average numbers of sensations with agent number.

The experimental results show that the overall performance of LBM-PR is higher than those of
state update mechanisms on the selected samples. Ideally, the number of lookahead occurrences is
the same as the number of movements, so that the indicator for movements can reflect that for
lookaheads.

It can be seen from the results that:
(1) The counted numbers for the FS are not changed with the increasing number of agents,

because every agent updates, senses, and moves at every time step, although there might be more
interactions when the total number of agents grows larger.

(2) CR and LBM-PR simulations are superior to the synchronous simulations in efficiency and
accuracy for updating the state. Agents in CR and LBM-PR simulations can accurately take their
behaviors of “sense” and “move” when, and only when, required. The number of updates is strictly
constrained by the time step in the synchronous simulation. The VS method can capture many more
interactions than “FS × 2”, as some interactions may happen between the time step of the “FS × 2”
method. When some interactions occur between the minimum time intervals, even the VR method
will miss them. That is why the average number of updates for CR exceeds the numbers for VR and
“FS × 1”.

(3) LBM-PR simulation is superior to CR in the average numbers of updates. At every
resynchronization time, all agents update their states in CR, while only some involved agents are
required to update in LBM-PR.

(4) The average numbers of movements and sensations for LBM-PR and CR are the same for the
same quantities of agents, as the resynchronization only affects the update of the agent but not the
motion or sense behavior being performing.

(5) When the number of agents increases from 10 to 100, the average numbers of sensations for
VS, CR, and LBM-PR increase obviously. This is because when the size of virtual space stays the same,
there are more agents, and thus more interactions between agents. When the number of agents
reaches 100, it can be seen from the VR that detection events happen almost at each step on average.
At this point, simulations with a fixed step greater than 1 may lose some interactions that occur
between two steps.

6. Discussions

This section discusses the characteristics and scope of the LBM proposed in this paper based on
a case study.

Figure 10. The change of average numbers of sensations with agent number.

The experimental results show that the overall performance of LBM-PR is higher than those of state
update mechanisms on the selected samples. Ideally, the number of lookahead occurrences is the same
as the number of movements, so that the indicator for movements can reflect that for lookaheads.

It can be seen from the results that:
(1) The counted numbers for the FS are not changed with the increasing number of agents, because

every agent updates, senses, and moves at every time step, although there might be more interactions
when the total number of agents grows larger.

(2) CR and LBM-PR simulations are superior to the synchronous simulations in efficiency and
accuracy for updating the state. Agents in CR and LBM-PR simulations can accurately take their
behaviors of “sense” and “move” when, and only when, required. The number of updates is strictly
constrained by the time step in the synchronous simulation. The VS method can capture many more
interactions than “FS × 2”, as some interactions may happen between the time step of the “FS × 2”
method. When some interactions occur between the minimum time intervals, even the VR method
will miss them. That is why the average number of updates for CR exceeds the numbers for VR and
“FS × 1”.

Appl. Sci. 2017, 7, 1095 20 of 24

(3) LBM-PR simulation is superior to CR in the average numbers of updates. At every
resynchronization time, all agents update their states in CR, while only some involved agents are
required to update in LBM-PR.

(4) The average numbers of movements and sensations for LBM-PR and CR are the same for
the same quantities of agents, as the resynchronization only affects the update of the agent but not
the motion or sense behavior being performing.

(5) When the number of agents increases from 10 to 100, the average numbers of sensations for
VS, CR, and LBM-PR increase obviously. This is because when the size of virtual space stays the same,
there are more agents, and thus more interactions between agents. When the number of agents reaches
100, it can be seen from the VR that detection events happen almost at each step on average. At this
point, simulations with a fixed step greater than 1 may lose some interactions that occur between
two steps.

6. Discussions

This section discusses the characteristics and scope of the LBM proposed in this paper based on
a case study.

6.1. Characteristics

The comparisons of LBM with original TBM and delayed TBM are shown in Table 5. Compared to
the TBM, the LBM model adds a lookahead step before the action step, and requires that the lookahead
must be performed before the action is executed. The implicit modeling of the continuous model
makes the links between the steps within a cycle no longer tight, so the delays or overlap relationships
between different steps and different cycles become more casual. The continuous models are inside
the agent, and the steps of think and sense can be skipped. Therefore, the proposed LBM could be
used to model semi-autonomous entities in the military field.

Table 5. Comparisons of LBM with original TBM and delayed TBM (LBM: lookahead behavior model,
TBM: traditional agent behavior model).

Aspects Original TBM Delayed TBM LBM

Steps contained in
a cycle Sense, think, and act Sense, think, and act Sense, think, lookahead, and

act

The relationship of
steps

Serial in a cycle,
indispensible for

each step

Serial in a cycle with arbitrary
delays between two steps,

indispensible for think step

Think/sense can be skipped,
indispensible for lookahead

before each action

The relationship of
cycles Fixed time interval Arbitrary delay Arbitrary

Ability to conduct
simultaneously No Yes (except for think step) Yes

Number of updates More More Less

Number of
resynchronizations More More Less

LBM uses a PR-based hybrid simulation paradigm, and has advantages in performance compared
with those of the original TBM and delayed TBM. LBM-PR does not need to be updated periodically,
and can skip many unnecessary state updates in the continuous model. It will not lose interaction
events thanks to the accurate prediction of interaction events.

6.2. Applicable Scope

As mentioned above, the sense, think, and act steps in the LBM model can simulate the sensor
detection, commander decision-making, and platform mobility plus weapon lethality, respectively.

Appl. Sci. 2017, 7, 1095 21 of 24

At the same time, the implicit modeling-based discrete method is used in modeling the dynamics of
the system to realize the state transition of the continuous model (such as the movement process).
In the lookahead step, the LBM predicts possible interaction events within the time window, according
to the actions the agents would take and the corresponding implicit models.

Moreover, LBM can simulate semi-autonomous entities in the military field, or skip the sense step
to simulate entities whose self-perceiving capabilities can be ignored in the battlefields. This shows that
LBM has the ability to model complex military systems, which include continuous and discrete models.

The implementation of LBM-PR makes LBM take full advantage of the efficient scheduling of DES.
This advantage is even more pronounced in systems where the scale is large and the agent behaviors
do not change frequently.

However, there are also some disadvantages in efficiency. The event scheduler itself has some
overhead in the event scheduling and cancellation. If the frequent changes in behavior lead to
the cancellation of a large number of events, it will not only bring additional operating costs for
the event scheduler, but also increase the number of invalid lookaheads.

The lookahead process in LBM is closely related to the model. In practice, it is often necessary to
simplify the model or optimize the lookahead process according to the research content. In the example
discussed in this article, the movement of the MovingAgent is sufficiently simplified, otherwise
the overhead of the lookahead itself will increase.

Compared to other methods, LBM increases the difficulty in modeling. Specifically, the time
window-based lookahead needs to pre-sort all possible types of events, as well as all possible
interactions between agents. The estimated value-based unlock requires the pre-recognition of all
possible CDs among all agents, and an estimated state value set or a state prediction function is
suggested to be prepared in advance of the simulation. In systems that require a large number of run
iterations for decision-making, the estimated value needed to resolve the cyclic dependency should be
derived from some statistical values in practice.

7. Conclusions and Future Work

In this study, it is demonstrated that a proposed lookahead behavior model based on a time
window could effectively solve the problem of resynchronization interval determination and cyclic
dependency in a multi-agent hybrid simulation with partial resynchronization. The implementation
process of the lookahead algorithm is described, showing that the lookahead process can eliminate
cyclic dependency in the state update process of the agents. This type of behavior model is of great
significance to the design and implementation of hybrid simulation, and it is helpful in realizing
efficient hybrid simulation systems with a smaller number of agent state updates.

Although the LBM presented in this paper has the ability to model complex military systems
and demonstrates better computational efficiency in a given case, the work of this paper still needs to
be tested in real-world scenarios. First, the interaction prediction process needs to be optimized in
conjunction with real applications, for example, by finding some algorithms to filter the calculation
of interactions, which obviously will not happen. Secondly, the performance experiments in more
application scenarios will be conducted further to clarify whether and when the performance gains
from LBM-PR can offset the overheads of lookahead to a large extent.

Acknowledgments: This study was supported by the National Natural Science Foundation of China (61473300)
and the Natural Science Foundation of Hunan Province (2017JJ3371).

Author Contributions: Mei Yang proposed the method and wrote the paper; Yong Peng analyzed the problem;
Quan-jun Yin designed the experiments and the structure of the paper; Ru-sheng Ju and Xiao Xu designed the case
and performed the experiments; and Ke-di Huang analyzed the case.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2017, 7, 1095 22 of 24

References

1. Riley, P.F.; Riley, G.F. Next Generation Modeling III—Agents:Spades—A Distributed Agent Simulation
Environment with Software-in-the-Loop Execution. In Proceedings of the 35th Conference on Winter
Simulation: Driving Innovation, New Orleans, LA, USA, 7–10 December 2003; pp. 817–825.

2. Uhrmacher, A.M.; Tyschler, P.; Tyschler, D. Modeling and simulation of mobile agents. Future Gener.
Comput. Syst. 2000, 17, 107–118. [CrossRef]

3. Theodoropoulos, G.; Logan, B. A framework for the Distributed Simulation of Agent-Based Systems.
In Proceedings of the 13th European Simulation Multiconference (ESM’99), Warsaw, Poland, 1–4 June 1999;
pp. 58–65.

4. Hybinette, M.; Kraemer, E.; Xiong, Y.; Matthews, G.; Ahmed, J. Sassy: A design for a scalable agent-based
simulation system using a distributed discrete event infrastructure. In Proceedings of the 2006 Winter
Simulation Conference—(WSC 2006), Monterey, CA, USA, 3–6 December 2006; pp. 926–933.

5. Sanchez, S.M.; Lucas, T.W. Exploring the world of agent-based simulations: Simple models, complex analyses.
In Proceedings of the 2002 Winter Simulation Conference—(WSC 2002), San Diego, CA, USA, 8–11 December
2002; pp. 116–126.

6. Kearns, M.; Singh, S.; Shelton, C.R.; Kormann, D.; Kormann, D. Cobot in lambdamoo: An adaptive social
statistics agent. Auton. Agents Multi-Agent Syst. 2006, 13, 327–354.

7. Scogings, C.; Hawick, K.A. Altruism amongst spatial predator-prey animats. In 11th International Conference
on the Simulation and Synthesis of Living Systems (ALife XI); Bullock, S., Nobel, J., Watson, R., Bedau, M., Eds.;
MIT Press: Winchester, UK, 2008; pp. 537–544.

8. Cioffirevilla, C. Invariance and universality in social agent-based simulations. Proc. Natl. Acad. Sci. USA
2002, 99, 7314–7316. [CrossRef] [PubMed]

9. Scogings, C.; Hawick, K.A. An agent-based model of the Battle of Isandlwana. In Proceedings of the 2012
Winter Simulation Conference—(WSC 2012), Raleigh, NC, USA, 9–12 December 2012; pp. 1–12.

10. Ilachinski, A. Artificial War: Multiagent-Based Simulation of Combat; World Scientific: River Edge, NJ,
USA, 2004.

11. Beeker, E.R., III; Page, E.H. A case study of the development and use of a MANA-based federation for
studying US border operations. In Proceedings of the 2006 Winter Simulation Conference, Monterey, CA,
USA, 3–6 December 2006; pp. 841–847.

12. Wu, S.; Shuman, L.; Bidanda, B.; Kelley, M.; Sochats, K.; Balaban, C. Agent-based discrete event simulation
modeling for disaster responses. In Proceedings of the IIE Annual Conference and Expo 2008, Vancouver,
BC, Canada, 17–22 May 2008; pp. 1908–1913.

13. Zhang, B.; Chan, W.K.; Ukkusuri, S.V. Agent-based discrete-event hybrid space modeling approach for
transportation evacuation simulation. In Proceedings of the Winter Simulation Conference 2011, Raleigh,
NC, USA, 11–14 December 2011; Volume 16, pp. 199–209.

14. Bouarfa, S.; Blom, H.A.; Curran, R.; Everdij, M.H. Agent-based modeling and simulation of emergent
behavior in air transportation. Complex Adapt. Syst. Model. 2013, 1, 15. [CrossRef]

15. Davis, P.K.; Kahan, J.P. Theory and Methods for Supporting High Level Military Decisionmaking; Rand Corporation:
Santa Monica, CA, USA, 2007.

16. Fishwick, P.A.; Kim, G.; Jin, J.L. Improved decision making through simulation based planning. Simul. Trans.
Soc. Model. Simul. Int. 1996, 67, 315–327. [CrossRef]

17. Schoemaker, P.J.H. Multiple scenario development—Its conceptual and behavioral foundation. Strat. Manag. J.
1993, 14, 193–213. [CrossRef]

18. Lauren, M.; Stephen, R. Map-Aware Non-Uniform Automata (MANA)—A New Zealand Approach to
Scenario Modelling. J. Battlef. Technol. 2002, 5, 27–31.

19. Ross, J.L. A comparative study of simulation software for modeling stability operations. In Proceedings of
the 2012 Symposium on Military Modeling and Simulation, Orlando, FL, USA, 26–30 March 2012.

20. Lee, S.; Pritchett, A.R.; Goldsman, D. Hybrid agent-based simulation for analyzing the national airspace
system. In Proceedings of the Winter Simulation Conference, Arlington, VA, USA, 9–12 December 2001;
pp. 1029–1036.

http://dx.doi.org/10.1016/S0167-739X(99)00107-7
http://dx.doi.org/10.1073/pnas.082081499
http://www.ncbi.nlm.nih.gov/pubmed/12011412
http://dx.doi.org/10.1186/2194-3206-1-15
http://dx.doi.org/10.1177/003754979606700503
http://dx.doi.org/10.1002/smj.4250140304

Appl. Sci. 2017, 7, 1095 23 of 24

21. Chan, W.K.V.; Son, Y.J.; Macal, C.M. Agent-based simulation tutorial—Simulation of emergent behavior and
differences between agent-based simulation and discrete-event simulation. In Proceedings of the Winter
Simulation Conference, Baltimore, MD, USA, 5–8 December 2010; pp. 135–150.

22. Brandolini, M.; Rocca, A.; Bruzzone, A.G.; Briano, C.; Petrova, P. Poly-functional intelligent agents for
computer generated forces. In Proceedings of the Winter Simulation Conference, Washington, DC, USA,
5–8 December 2004; pp. 1045–1053.

23. Zhaoxia, W.; Minrui, F.; Dajun, D.; Min, Z. Decentralized Event-Triggered Average Consensus for
Multi-Agent Systems in CPSs with Communication Constraints. J. Battlef. Technol. 2015, 2, 248–257.

24. Zeigler, B.P.; Kim, T.G.; Praehofer, H. Theory of Modeling and Simulation, 2nd ed.; Academic Press: San Diego,
CA, USA, 2000; p. 474.

25. Zhenhua, W.; Juanjuan, X.; Huanshui, Z. Consensus seeking for discrete-time multi-agent systems with
communication delay. IEEE/CAA J. Autom. Sin. 2015, 2, 151–157.

26. Wu, Y.; He, X. Secure Consensus Control for Multi-Agent Systems with Attacks and Communication Delays.
IEEE/CAA J. Autom. Sin. 2017, 4, 136–142. [CrossRef]

27. Hou, M.; Zhu, H.; Zhou, M.C.; Arrabito, G.R. Optimizing Operator-Agent Interaction in Intelligent Adaptive
Interface Design: A Conceptual Framework. IEEE Trans. Syst. Man Cybern. Part C 2011, 41, 161–178.
[CrossRef]

28. Banks, J.; Carson, J.S., II; Nelson, B.L.; Nicol, D.M. Discrete-Event System Simulation, 4th ed.; Person Education:
New York, NY, USA, 2005.

29. Qian, X.; Yu, J.; Dai, R. A new discipline of science-the study of open complex giant system and its
methodology. Nature 1990, 13, 3–10.

30. Oguara, T.; Chen, D.; Theodoropoulos, G.; Logan, B.; Lees, M. An adaptive load management mechanism
for distributed simulation of multi-agent systems. In Proceedings of the IEEE International Symposium on
Distributed Simulation and Real-Time Applications, Montreal, QC, Canada, 10–12 October 2005; pp. 179–186.

31. Reifelhoess, P. SPADES: A System for Parallel-Agent, Discrete-Event Simulation; American Association for
Artificial Intelligence: Menlo Park, CA, USA, 2003; pp. 41–42.

32. Scogings, C.J.; Hawick, K.A.; James, H.A. Tools and techniques for optimisation of microscopic artificial life
simulation models. In Proceedings of the IASTED International Conference on Modelling, Simulation and
Optimization, Gaborone, Botswana, 11–13 September 2006; pp. 90–95.

33. Hu, X.; Muzy, A.; Ntaimo, L. A hybrid agent-cellular space modeling approach for fire spread and
suppression simulation. In Proceedings of the 37th Conference on Winter Simulation, Orlando, FL, USA,
4–7 December 2005; pp. 248–255.

34. Klingener, J.F. Programming combined discrete-continuous simulation models for performance. In Proceedings
of the 28th conference on Winter simulation, Coronado, CA, USA, 8–11 December 1996; pp. 833–839.

35. Dubiel, B.; Tsimhoni, O. Integrating agent based modeling into a discrete event simulation. In Proceedings
of the 2005 Winter Simulation Conference—(WSC 2005), Lake Buena Vista, FL, USA, 4–7 December 2005;
pp. 1029–1037.

36. Wu, S. Agent-Based Discrete Event Simulation Modeling and Evolutionary Real-Time Decision Making for
Large-Scale Systems. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2008.

37. Hiniker, P.J. A model of command and control processes for JWARS: Test results from controlled experiments
and simulation runs. In Proceedings of the 7th International Command & Control Research & Technology
Symposium, Quebec City, QC, Canada, 16–20 September 2002; pp. 1–16.

38. Mason, C.R.; Moffat, J. An agent architecture for implementing command and control in military simulations.
In Proceedings of the Winter Simulation Conference, Arlington, VA, USA, 9–12 December 2001; pp. 721–729.

39. Lim, K.L.; Mann, I.; Santos, R.; Tobin, B.; Berryman, M.J.; Abbott, D.; Ryan, A. Adaptive battle agents:
Complex adaptive combat models. In Microelectronics, MEMS, and Nanotechnology; SPIE: New York, NY,
USA, 2005; pp. 48–60.

40. Hiniker, P. The loaded loop: A complex adaptive systems model of C2 processes in combat. In Proceedings
of the RAND Modeling of C2 Decision Processes Workshop, Mclean, VA, USA, 31 July–2 August 2001.

41. Skinner, A.; Mcintyre, G.A. The Joint Warfare System (JWARS): A modeling and analysis tool for the defense
department. In Proceedings of the Winter Simulation Conference 2011, Raleigh, NC, USA, 11–14 December
2011; pp. 691–696.

http://dx.doi.org/10.1109/JAS.2016.7510010
http://dx.doi.org/10.1109/TSMCC.2010.2052041

Appl. Sci. 2017, 7, 1095 24 of 24

42. Huang, K.D.; Zhao, X.Y.; Yang, S.L.; Yang, M.; Hu, F.H.; Cai, Y. System design description infrastructure
overview for military simulation and analysis system. J. Syst. Simul. 2012, 24, 2439–2447.

43. Yang, M.; Zhao, X.-Y.; Cai, Y.; Huang, K.-D. Key technologies of high performance simulation for analytical
simulation evaluation. J. Syst. Simul. 2012, 24, 49–53, 81.

44. Liu, B.H.; Huang, K.D. Multi-resolution modeling: Present status and trends. Acta Simul. Syst. Sin. 2004, 16,
1150–1154.

45. Hawick, K.A.; James, H.A.; Scogings, C. High-performance Spatial Simulations and optimisations on 64-bit
architectures. In Proceedings of the International Conference on Modeling, Scotland, UK, 24–29 July 2005;
pp. 129–135.

46. Bouwens, C.L.; Barnes, S.B.; Pratt, D.; Melim, P. Adapting forces modeling and simulation applications for
use on high performance computational systems. In Proceedings of the Spring Simulation Multiconference,
Orlando, FL, USA, 11–15 April 2010; p. 148.

47. Prochnow, D.L.; Furness, C.Z.; Roberts, J. The use of the Joint Theater Level Simulation (JTLS) with the High
Level Architecture (HLA) to produce distributed training environments. In Proceedings of the Simulation
Interoperability Workshop, Orlando, FL, USA, 26–31 March 2000.

48. James, K.K. Methodology for Alerting-System Performance Evaluation. J. Guid. Control Dyn. 1996, 19,
438–444.

49. Jonsson, B.; Perathoner, S.; Thiele, L.; Yi, W. Cyclic dependencies in modular performance analysis.
In Proceedings of the ACM International Conference on Embedded Software, Atlanta, GA, USA,
19–24 October 2008; pp. 179–188.

50. Kim, T.G.; Zeigler, B.P. The DEVS Formalism: Hierarchical, Modular Systems Specification in
an Object Oriented Framework. Proceedings of 1987 Winter Simulation Conference, Atlanta, GA, USA,
14 December 1987; pp. 559–566.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Traditional Agent Behavior Model
	State Update Mechanism in Agent-Based Modeling
	Approaches of Combining DES and Agent-Based Modeling

	Problem Description
	Context Overview
	Main Problems of the PR
	Resynchronization Interval Determination
	Cyclic Dependency

	The Lookahead Behavior Model
	Time Window-Based Lookahead
	Estimate Value-Based Unlock

	Case and Experiments
	Case Scenario and Experiment Setup
	Modeling of Lookahead
	Experiment Results

	Discussions
	Characteristics
	Applicable Scope

	Conclusions and Future Work

