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Abstract: Wind farms can contribute to ancillary services to the power system, by advancing and
adopting new control techniques in existing, and also in new, wind turbine generator systems.
One of the most important aspects of ancillary service related to wind farms is frequency regulation,
which is partitioned into inertial response, primary control, and supplementary control or automatic
generation control (AGC). The contribution of wind farms for the first two is well addressed in
literature; however, the AGC and its associated controls require more attention. In this paper,
in the first step, the contribution of wind farms in supplementary/load frequency control of AGC is
overviewed. As second step, a fractional order proportional-integral-differential (FOPID) controller
is proposed to control the governor speed of wind turbine to contribute to the AGC. The performance
of FOPID controller is compared with classic proportional-integral-differential (PID) controller,
to demonstrate the efficacy of the proposed control method in the frequency regulation of a two-area
power system. Furthermore, the effect of penetration level of wind farms on the load frequency
control is analyzed.

Keywords: large-scale wind farm; automatic generation control; load frequency control;
fractional order proportional-integral-differential controller

1. Introduction

In the 21st century, electrical energy is needed more than ever, and the harmful effect of using
fossil fuels to generate electrical energy, such as carbon dioxide emission, has become more serious.
Accordingly, the demand on renewable energy sources to produce electricity from clean energies,
such as wind, solar, hydro, biomass and geothermal, have globally increased. Renewable energies are
salient choice to solve the air pollution problem, however the intermittent output power can create
new challenges in the operation of power systems. Impacts of renewable energies on power systems
operation cannot be ignored, and should be analyzed, along with developing effective mitigation
strategies and technologies—especially for higher level of renewable penetrations.

In the territory of renewable energy sources, development of wind turbine as a source to produce
electrical energy from wind is going on swiftly around the world. In 2017, the installed wind energy
worldwide was more than 539 GW [1]. Such a high generation needs more and more attention, in order
to address the intermittency issues produced by wind turbine itself. Wind turbines are divided into
two groups: Fixed speed and variable speed. The first group, fixed speed, generally use an induction
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generator (IG) that is connected directly to the grid, and are known as fixed speed wind turbine (FSWT).
The second group, variable speed, typically use permanent magnet synchronous generator (PMSG),
or doubly-fed induction generator (DFIG) in their structure, and are known as variable speed wind
turbines (VSWTs). Taking advantage of the power electronic converters, the PMSG is fully decoupled
from the grid. It means that, the stator of PMSG is connected to the back-to-back fully rated power
electronic converters in order to inject the power into the grid. In the other case, DFIGs have both
direct connection and converter-based connection to the grid. The stator of DFIG is connected directly
to the grid while the rotor is connected through partially rated back-to-back converters. The power
electronic converter used in a variable speed wind turbine enables the wind turbine to regulate the
output power over a wide range of wind speeds [2,3]. The variable type is the dominant and promising
type of wind turbines for application in large-scale wind farms. In the domain of wind turbines,
VSWT technology has attracted a lot of attention for integration in power networks, because of its
salient features. The primary advantage of VSWT driven wind generators is that, they allow the
amplitude and frequency of their output voltages to be maintained at a constant value, no matter the
speed of the wind blowing on the wind turbine rotor. Therefore, it can be inferred that they can be
directly connected to the ac power network and remain synchronized at all times with the ac power
network. Other advantages include the ability to control the voltage at point of common coupling and
power factor control (e.g., to maintain the power factor at unity). Furthermore, the VSWT-based wind
generators can produce the maximum power at variable speeds of wind [4].

Penetration level of large scale wind farm is increased in power systems [5]. Since that the
large-scale wind farms have high capacity, they should be investigated like conventional power plants
as they are connected to the electrical power network. In Reference [6], static planning of wind
farms in power networks is reported by optimal load flow. Contribution of wind farms in ancillary
services of power system are investigated in Reference [7]. In this regard, wind farms can contribute to
voltage and reactive power control [8,9], frequency stability and control [10-12], power system stability
enhancement [13,14], harmonic mitigation [15], oscillation damping [16] etc. Since frequency control
is directly related to active power control, and active output power of wind farms has intermittent
characteristic, due to wind uncertainty; this aspect of grid ancillary capability (frequency control)
for wind farms has more significance from the viewpoint of the power system. Frequency control
in wind farms is analyzed in three levels: Inertial control, primary control, and secondary control
or automatic generation control. The inertial and primary control systems are well addressed in the
literature [17,18].

Imbalance between load and generated power by generators in the system are exhibited through
frequency deviations. An indelible off-normal frequency deviation directly affects power system
operation, security, reliability, and efficiency by damaging equipment, degrading load performance,
overloading of the transmission lines, and triggering the protection devices. Frequency performance of
the power system is regulated in three levels; the first two levels by generation units, and in the third
level, by loads through load shedding in severe situations. These three levels are known as primary
control or inertial response [19], secondary or supplementary control [20] and tertiary or emergency
control or load shedding [21].

Automatic generation control (AGC) is the manner of action of participating generation units in
frequency control. Supplementary frequency control, which is known as load-frequency control (LFC),
is a major function of AGC systems as they operate online to control system frequency and power
generation [22]. Frequency control can be directly dependent on the speed control of the turbines in
the generation units, due to the fact that the frequency generated in the electric network is proportional
to the rotational speed and mechanical power of the generator. In conventional generators (non-wind
turbine), the issue is initially sensed by the governor of the generators, which can adjust the valve
position to change the fuel amount and subsequently change the mechanical power for the electrical
part to track the load change and to restore the frequency to be near the nominal value.
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AGC responsibilities can be classified as a significant control process that operates constantly
to balance the generation and load in the power system at a minimum cost, adjust the generation
to minimize frequency deviation and regulate tie-line power flows. Briefly, the AGC system is
responsible for frequency control and power interchange, as well as optimal economic dispatch.
The AGC system realizes generation changes by sending signals to the under-control generation units.
Due to newly advanced technologies in wind turbines and their controllability, the wind farms can
be mentioned as an acceptable choice to contribute to the AGC. The AGC performance is highly
dependent on how those generating units respond to the commands. The generation unit response
characteristics is mainly affected by the control strategy that the unit utilizes, like robust control
methods [23,24], intelligent algorithms [25,26] and optimization approaches [27,28]. This part can
be solved by integrating appropriate and efficient controller in the wind turbine structure, which is
demonstrated in this study. The control strategy that is utilized for wind farm contribution in the AGC
is the main topic for this paper.

This paper firstly reviews the contribution of wind farms in load frequency control as a major
function of AGC. Different aspects of such contribution, like different control strategies (optimization,
model predictive control and intelligent methods) and coordination with other devices, such as
conventional generation units, flexible AC (alternative current) transmission systems (FACTS)
and energy storage systems are reviewed. As the second stage, a new control methodology by
implementing fractional order proportional-integral-differential (FOPID) controller for supplementary
loop of a variable speed wind generator-based wind farms is proposed. The parameters of the proposed
controller are optimized by sine-cosine algorithm (SCA) to attain efficient control performance in
multi-area power systems. The main contributions of this paper are:

(1) Wind farms contribution to frequency regulation of power systems is studied.

(2) Review on application of wind farms in AGC is presented.

(3) The FOPID controller is applied to variable speed wind turbine.

(4) Performance of FOPID controller for variable speed wind turbine-based wind farm is compared
to classical controller.

(5) Frequency variation effect of different penetration levels of wind farms in power systems
is investigated.

2. Wind Farm Contribution in Frequency Regulation

Granted by new technologies and control methods of wind turbines, wind farms are worthy
choice to contribute to the frequency regulation of the power system. In this regard, operation under
maximum power point tracking, connecting to power system with AC/DC (direct current)/AC
converters and coordination with other conventional power plants are the main issues that to be
investigated for wind farms in order to able to contribute to frequency regulation. Figure 1 shows the
frequency regulation process and related strategies for wind farms to contribute in AGC. This section
generally explains the wind farms contribution in primary frequency control, and their inertial response
to support frequency regulation. Wind farms contribution in AGC and its details are provided in the
next section.



Appl. Sci. 2018, 8, 1848 40f23

Disturbance
/

~N_ ~
T

With secondary control

\ J

o

Without secondarylcontrol
S —_ o, ———_——

Inertial Response

Automatic Generation Control

Frequency Deviations (Hz)

|
|
|
Secondary Control or |
|
|
|

Optimization methods

Intelligent methods

A4

Appropriate control methods

MPC control

Coordination with
conventional generation units

Strategies for wind farms
to contribute to AGC

Energy storage application

FACTS application

(b)

Figure 1. (a) Frequency regulation process; (b) control strategies for wind farms to contribute
to the AGC. AGC, automatic generation control; FACTS, flexible AC transmission systems; MPC,
model predictive control.

Normally, wind turbines operate in maximum power point of tracking (MPPT) mode to extract
maximum possible power from the wind and convert it into electrical power. It is obvious that
such models with MPPT operation mode is not appropriate in AGC studies. In Reference [29],
the performance of wind farms by VSWTs were investigated when they are modeled under the
set-point tracking control strategies for intermittent wind. The superiority of set-point tracking mode
over MPPT mode was proven by the contribution of the wind farms in AGC. To reach high quality
frequency performance, a new method is introduced in Reference [30] to preserve a certain amount of
wind power reserve to contribute in frequency regulation of power system.

Inertial response of wind turbines is the other important issue for frequency regulation. The FSWTs
can provide an inertial response to the frequency deviation, because of its direct coupling; however,
this inertia is small compared to the synchronous generator. On the other hand, the VSWTs are
connected to the grid by back-to-back voltage or current source converters, which decouples the
complete wind turbine in the case of PMSG and the DFIG partially from the grid to support frequency
regulation. In this situation, the wind turbine cannot contribute to the frequency regulation through
inertial response with its original controller, since it is not connected directly to the grid. Therefore, it is
needed to add supplementary controllers to converter part of VSWTs to prepare them for frequency
change tracking and then do efficient control. In this regard, the VSWTs are equipped with efficient
supplementary frequency control loops to support inertial response, primary frequency control and
secondary frequency control [31-33]. A combination of inertial response and a droop active power
support in VSWTs was shown in Reference [34], in which the wind turbine reached efficient frequency
control for different levels of penetration. A new control strategy to coordinate the inertial control,
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rotor speed and pitch angle control in a DFIG are presented in Reference [35]. In Reference [36],
a deloading strategy was proposed alongside with inertial control loop for the PMSGs to contribute to
the frequency control, by increasing their active power production. Efficient damping of frequency
oscillations and improving the frequency regulation capability were the main advantages for the
strategy. In sharp contrast to MPPT, deloaded strategy is a method to limit the generation of wind
turbine through power curve of turbine to make it feasible to contribute to frequency control [37].
In Reference [38] a novel strategy was proposed to strengthen the primary control capability of VSWTs
for frequency control with fast response, which can improve the VSWTs contribution in the AGC.

Coordination between wind farms and conventional power plants in terms of frequency
control is also investigated in order to reach more efficient frequency response through wind farms.
In References [39,40], it is shown that the provided inertial response from DFIG wind farms is only
efficient for low level of penetration. Authors have proposed an inertial coordination strategy between
the wind farms and conventional power plants in a high level of penetration, which has shown
improvement in frequency performance compared to uncoordinated strategy. In Reference [41], it is
shown that the inertial response coordination between conventional power plants and wind farms
can help the system to reach efficient frequency response in terms of smoothing tie-line fluctuations,
reduced peak frequency excursion and settling time.

The literature shows also that the wind farms can contribute in the frequency regulation of the
power systems by different strategies and at different stages of the frequency regulation. Most of the
abovementioned studies covered by the inertial response and primary control of DFIGs to contribute
in primary frequency control of power system. However, the secondary frequency control or LFC as a
part of AGC is not well addressed for the wind farms.

3. Wind Farms Contribution in AGC

The AGC is responsible for minimization of power system cost, due to operation of different
power plants, removing the steady-state and transient frequency deviations and smoothing the tie-line
power between areas. As stated earlier, this study investigates the last items—which are known as
secondary frequency control or LFC.

There is a vast body of literature on control strategies for wind farms to contribute in the LFC.
Because of simplicity in structure and industry application of proportional integral (PI) controller,
most of the studies have used the PI controller in VSWT structure to contribute to the secondary
frequency control. However, a range of other control approaches can be examined for such contribution.
Generally, over and undershoots, settling time, steady-state error and some other control indices are
investigated to evaluate the performance of controllers in the LFC. A simple PI controller tuned by try
and error for wind turbine was proposed for secondary frequency control in Reference [42], which was
able to restore the frequency to its nominal value.

Applied control strategies for wind farms can be classified into optimization methods,
intelligent methods, and model predictive control methods for PI controllers in wind turbine structure.
Furthermore, contribution to the AGC issues through the wind farm by the integration of energy
storage systems and FACTS devices are investigated.

3.1. Applied Control Methods

Optimization of the parameters in a PI controller structure is one of the basic methods to reach
efficient control performance. Simple parameter optimization based-on integral of square error index
was applied to the PI controller in the wind turbine structure to coordinate the wind turbine with
AGC system of an isolated power system, as reported in Reference [43]. The efficiency of DFIG’s
contribution in AGC of isolated power system was demonstrated by a high level of wind farm
penetration. Similar methods were used in Reference [44], to prove the DFIGs contribution to the AGC
of multi-area power systems. Dynamic participation of DFIG-based wind farms in an optimal AGC is
demonstrated in Reference [45], which is effective to reach higher a stability margin and smooth the
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frequency response with a suitable damping. These studies showed the contribution of the DFIGs in
the AGC of power systems; however, the simple method for the optimization process is the deficiency.

A range of metaheuristic optimization methods are utilized in wind turbines to contribute to
the AGC [46-52]. Ant colony optimization (ACO) approach [46], craziness-based particle swarm
optimization (CRPSO) [47], improved particle swarm optimization (IPSO) [48], opposition learning
based gravitational search algorithm (OGSA) [49], genetic algorithm (GA) [50], non-dominated
sorting genetic algorithm-II (NSGAII) [51], and non-dominated Cuckoo search algorithm (NSCS) [52]
are successfully applied to classic PI controller of VSWT wind turbines to contribute in the AGC.
In Reference [53], ant lion optimization (ALO) is proposed to optimize the parameters of a new
controller known as trajectory following controller in the structure of wind turbines. Efficiency of the
proposed controller was shown over optimized PI and PID controllers in minimizing the settling time
and peak overshoot of frequency performance.

Intelligent methods like fuzzy logic and artificial neural network (ANN) are applied to automatic
generation control of wind integrated power systems [54-57]. Simplicity in the design process for
fuzzy logic approach has made it impressive to apply in VSWT wind turbines. In Reference [54],
a fuzzy-based PI controller is designed for DFIG-based wind farms to contribute in AGC of a two-area
power system. It is shown that utilizing fuzzy approach can be more effective compared to a simple
PI controller in the frequency regulation under different load changes and wind penetration levels.
However, the fuzzy logic method is a suitable choice for frequency control of wind integrated power
systems, the expert knowledge base design process of the fuzzy logic may deteriorate its performance.
For this reason, in Reference [55], a combined Jaya algorithm (JA)-fuzzy logic based proportional
integral differential (PID) controller is proposed for the LFC of three area power system integrated
with wind farms. Trained for a wide range of operation conditions and load changes, a non-linear
recurrent ANN is demonstrated in Reference [56] using off-line data for the wind farm contribution
in the AGC of multi-area power system. Better frequency performance in terms of lesser undershoot
and settling time, and faster oscillation damping compared to the conventional PI controller are the
superiority of the proposed controller. As another class of supervised learning-based controller, a
least square support vector machine method is proposed in Reference [57] for the AGC in a wind
integrated multi-area power system. Compared to multi-layer perceptron neural network based AGC,
the proposed controller is efficient for the frequency control purpose.

The model predictive control (MPC) approach has been utilized for an AGC system,
incorporated with wind farms successfully [58—-61]. The operation process through MPC is an
optimization process that can be defined at each time instants. The important point of the optimization
process of the MPC is to compute a new control input vector to be fed to the system and taking into
account the system constraints at the same time. Considering the governor and turbine parameters
variation, as well as load changes, an MPC approach is developed for the AGC in a single-area
power system [58], and multi-area power system [59], in the presence of a DFIG-based wind farm.
Robust performance of the proposed MPC, due to parameter variation is the main advantage compared
to the classic controllers. To make the MPC more efficient for AGC studies in the presence of wind
farms, a distributed MPC known as DMPC is employed by [60,61]. The main advantage of the DMPC
application is dividing the whole system into some subsystems and controlling of each subsystem by a
local MPC controller. The DMPC approach shows more robust and efficient performance in the AGC
compared to the central or simple MPC.

3.2. BESS and FACTS Integration with Wind Farm

The intermittent and unpredictable output power of wind farms may cause the use of
supplementary source of energies in the power system to reach a more efficient frequency control
and AGC contribution in the power system. Energy storage system is one of the important sources
of energy that can be installed in wind integrated power systems to absorb and release the energy.
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Integration of a real 34 MW battery storage system in a 51 MW wind farm in Japan is shown in
Reference [62]. Frequency control is one of the important aims in utilizing this battery storage.

As there are many types of energy storage technologies, the redox flow batteries (RFB), flywheels,
capacitive energy storages and superconducting magnetic energy storages (SMES) have the most
contribution for wind farms in the AGC based on the literature. Furthermore, there is high potential
to improve the frequency control of multi-area power systems with FACTS devices, since they can
control the tie-lines power. Regarding the mentioned features, energy storage systems and FACTS
have the most contribution for wind farms to contribute in AGC of power systems.

Integration of flywheel storage systems with wind farms was investigated in Reference [63];
in which the wind-flywheel system reduced the settling time and smoothed the frequency deviations
more effectively. In Reference [64], it was shown that the application of SMES system in addition to
dynamic active power support from wind farm is an impressive solution to improve the transient
performance of the frequency after some disturbances. Coordinated design of AGC and redox flow
batteries to minimize the frequency deviation in the wind integrated multi-area power system was
demonstrated in Reference [65].

The aforementioned studies have investigated the sole integration of energy storage systems
for wind farms in the AGC issue. However, application of energy storages in one area may not
affect the frequency performance of other areas; as well application of energy storage for all areas is
not an economical solution. Therefore, it is rational to use FACTS devices alongside wind-storage
system to better control of tie-line power. The efficiency of such system was proven in Reference [66]
by coordinated design of thyristor-controlled phase shifter (TCPS) and SMES system (in one area)
incorporated with dynamic participation of wind farms in a deregulated two-area power system.
Similar system was investigated in Reference [67] by applying the SMES system to each areas of
the two-area power system. Such applications increase the cost of system, since the electromagnetic
energy storage systems are still expensive. Furthermore, coordinate application of RFB with static
synchronous series compensators (SSSC), and capacitive energy storage (CES) with TCPS, in wind
integrated power systems for better contribution in the AGC were addressed by the studies [68,69].

Furthermore, a detailed review of existing papers in Sections 3.1 and 3.2 is summarized in Table 1.
Type of generation units contributed in the power systems, system configuration (energy storage and
FACTS), control approach, and optimization techniques are addressed in Table 1. As shown, most of
the studies are done in multi-area power system that demonstrates the capability of wind power to
contribute to frequency control of large-scale power system.

Table 1. Review of papers in wind farm contribution in AGC.

Ref. Generation Unit System Configuration Control Approach (AGC) ql.lztcl}r:: ization
Wind Thermal Gas Hydro ques

[43] 4 4 Single area power system Integral controller _

[44] V4 V4 V4 v Three area power system Integral controller _

[45] Vv v/ Two area power system Integral controller _

[46] 4 4 Two area power system PI controller ACO

[47] 4 V4 Vv Two area power system Integral controller CRPSO

[48] Vv Vv Three area power system PI controller IPSO

[49] 4 V4 4 4 Four area power system PID controller OGSA

[50] Vv v v Deregulated two area power system PI controller GA

[51] 4 4 Two area power system Integral controller NSGAIL

[52] 4 4 Two area power system Integral controller NSCS

[53] Vv Vv Two area power system Integral controller ALO

[54] V4 V4 Two area power system Fuzzy logic-PI controller _

[55] 4 V4 Three area power system Fuzzy logic-PID controller JA

[56] Vv 4 Two area power system Non-linear recurrent ANN _

[57] V4 V4 Two area power system Least squares vector machines _
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Generation Unit

Optimization

Ref. System Configuration Control Approach (AGC) .
Wind Thermal Gas Hydro Techniques
[58] Vv Vv Single area power system MPC _
[59] V4 V4 Two area power system MPC _
[60] 4 v Three area power system DMPC _
[61] 4 4 Four area power system DMPC _
[62] 4 V4 Two area power system with flywheel PID controller _
Deregulated two area power system
[63] 4 Vv v with SMES Integral controller CRPSO
Grey Wolf
[64] V4 V4 V4 Two area power system with RFB PID controller Optimizer
(GWO)
- Deregulated two area power system
[65] Vv Vv Vv with SMES and TCPS Integral controller CRPSO
. . . - Multi-Verse
[66] v v N Two area power system with SMES Fuzzy logic-PID with derivative Optimizer
and TCPS filter controller
(MVO)
Deregulated two area power system
[67] V4 V4 V4 V4 with CES and TCPS Integral controller _
[68] J v J J Two area power system with RFB Integral controller CA

and SSSC

4. Proposed Wind Farm Control Technique in AGC

4.1. Wind Turbine Modeling in AGC

DFIG is the most commercially used variable speed wind turbine and therefore it is used in this
research to demonstrate the effect of wind turbine in AGC. The DFIG wind turbine participates in
frequency control through releasing the stored kinetic energy in the turbine blades under sudden load
changes. Extracting the stored kinetic energy and converting it into electric energy depends on the
turbine inertia, and its control system. Figure 2 shows the block diagram of DFIG-based wind turbine
used in this paper for the AGC issue.

a)max
1 T, AX, |1 AP,
Af — — ‘
i 1+sT, 1+sT, R
w
Frequency Washout =
Measurement Filter ..
‘min <V+ 1 APNC .
: f 1+sT,
/ Wind
/N FOPID @i Turbine
Aw ’ .
./ Controller AP
Speed Controller
a)max
/ APNC,re/
+
Aw 1
258, =

J Mechanical

0]

min

Inertia

Figure 2. Block diagram of doubly-fed induction generator (DFIG) based wind turbine model.
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In this model, the extra signal AP}‘ tries to adapt the set point power as a function of frequency
deviation rate Af. Another signal, AP}, attempts to maintain the speed of wind turbine at a desired
value for producing the maximum output. In the considered model, ¢ is error signal in speed of the
wind turbine, Aw* and Aw are the reference and actual deviations of wind turbine speed, respectively.
In order to obtain Aw, a mechanical equation can be stated as follows [37]:

dAw

Fr 120(Ty — Te), 1)

where T, is the mechanical torque and T, is the electrical torque. Equation (1) represents the swing
equation, which shows that the change in generator speed result from a difference in the electrical
torque and the mechanical torque. The equation can be rewritten based on the active power as follows:

dAw
2H x - APNc ref — APNC, ()
where H and APyc s are the inertia constant of the generator and the desired wind source output
obtained using power versus wind speed characteristics with the wind speed as its input. A description
of the related calculations of Aw is indicated in Figure 1. The wind turbine is specified by a time

constant (T,) as follows:
1

1+4sT,’

The effect of the conventional generators frequency changes on DFIG is determined by a filter with
time constant T,. A governor droop (R) is added, which is the rate of change of frequency with respect
to generator power change. It shows a load sharing pattern of a particular generator. The activation of
inertial and droop control loop determines the support to frequency regulation problem. The frequency
change is an input to droop control loop and it provides additional active power support to the system.
A washout filter with time constant T, is added in the model to provide non-zero output during the
transient periods only and is able to reject the steady-state frequency deviations. The power change of
generator AP]’: can be shown as follows:

®)

1
AP} = 2%, ()

where, R and Ax; are the parameter of speed regulation and sensed frequency changes, respectively.
Equation (4) shows the droop control of the governor of the wind turbine as the primary frequency
control [37]. Finally, the total injected power APy into the power system can be written as:

APyc = AP} + AP}, (5)

It should be noted that an FOPID controller for supplementary loop of DFIGs is applied, which is
known as speed controller. To tune the parameters of FOPID controller, the SCA method is employed
in this study. Figure 3 illustrates the considered power system integrated with DFIG-based wind
farms in each area. Detailed data about the system parameters and their description are accessible in
Reference [26].
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Figure 3. Two-area power system in the presence of wind farms.

4.2. Design Procedure of SCA-Based FOPID Controller

4.2.1. Fractional Order PID Controller

Benefit from a high degree of freedom (by selecting suitable values for A and ), fractional order
controllers are regularly more adequate than usually used integer order models like PI and PID
controllers. The general form of FOPID controller is depicted in Figure 3 and it is mathematically
represented as:

K
PIADM = Kp + 571 1+ KpSH. 6)

Herein, A and y represent the fractional order operators often adjustable in the range of (0, 1) and
Kp, Kj and Kp are the proportional, integral and differential gains of FOPID controller respectively.
It can be seen from Figure 4 that, the FOPID controller can operate like simple classic controllers
(P, I, PI, PID) by selecting 0 and 1 for A and u [70].
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(tu)=(0.0) | (FOPID) | (A#)=(0.1) —

\

Ly [Ny S

Figure 4. The general structure of the proposed fractional order proportional-integral-differential
(FOPID) controller.

There are 5 parameters for the FOPID controller, which should be optimized by optimization
algorithms. In this study, the SCA approach is utilized for optimization of FOPID controller. For this
purpose and at the first step, the objective function and adjustable parameters of the controllers should
be determined.

4.2.2. Objective Function Formulation and Employed Optimization Algorithm

In order to damp the frequency deviations and tie-line power oscillations effectively, considering a
suitable objective function is essential. The considered objective function should be defined such that
the output properties in the time domain, such as peak overshoot, peak time and settling time of the
considered variables are minimized. In this paper, the integral of time multiplied squared error (ITSE)
performance index is considered as the objective function.

Tsim
ITSE = / EAF?+ Af2 + APR)dt, %
0

where T, denotes the simulation time. Af; and Af, are the frequency deviations of area 1 and area
2, respectively. APy, is the tie-line power deviation. The ITSE index uses advantages of both ISE and
ITAE indices. The ITSE utilizes squared error and time multiplication to diminish large oscillations
and decrease long settling time. The SCA optimization algorithm is employed here to minimize the
ITSE index and optimize all the adjustable parameters subject to constraints. The constraints for a
FOPID controller are as follows:

Kl.rgﬁn S KP S K%mx’ Kgnin S KI S Kr[nax (8)
KBin < Kp <KB™,0<A<1,0<p<1’

4.2.3. Sine-Cosine Algorithm

Sine-cosine Algorithm (SCA) is a new population-based optimization approach for solving
optimization problems [71]. The optimization process in SCA is based-on a set of random solutions
that applies a sine and cosine functions based-on a mathematical model to fluctuate outwards or
towards the best solution. The SCA has two phases known as exploration and exploitation in the
optimization process. To establish exploration and exploitation of the search space to rapid achieve the
optimal solution, this algorithm uses many random and adaptive variables. The position updating
equation related to any search agent X; can be written as follows:

t ; t t
11 Xi+ry xsin(rp) x|r3Pf — Xi|  r4<05 c
X = rn=c—t- 9
i +
{Xf rixcos(rp) x 3Pt — Xt|  r>05 1 T’ ©)
i 1 2 34 i 4 =Y.

c
— ¢ 1
r c ’ ( 0)
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where X! and P! are the position of the current solution and the position of the best solution in j-th
dimension at the t-th iteration, respectively. Furthermore, T is the maximum number of iterations,
and c is a constant value. 1y 7o r3 and r4 are random numbers. r; is a control parameter that states
the next position, which could be either in the space between the solution and destination or outside;
ry expresses how far the movement should be towards or outwards the destination. r3 is a random
weighting parameter for emphasizing (r3 > 1) or deemphasizing (r3 < 1) the effect of destination to
define the distance; and, 74 is a switching parameter, which switches between the sine and cosine
components, equally.

5. Simulation Results

To validate the performance of the DFIGs equipped with the SCA optimized FOPID controllers,
fourth scenarios are considered and evaluated in the considered two-area power system. Simulations
are accomplished in the MATLAB/Simulink environment. The scenarios show the performance
of proposed controller for a step load change, sinusoidal load change, effects of different level of
wind penetration on AGC, and sensitivity analysis for 25% deviation in the loading condition and
the synchronizing coefficient (T1,). The optimal gains of the FOPID and PID controllers, which are
optimized by the SCA method are given in Table 2.

Table 2. Optimal parameters of controllers obtained by the sine-cosine algorithm (SCA).

Controller Type  Areas Kp K Kp A u
FOPID-DFIG Area 1l 0.2104 —0.2002 0.7112 0.4704  0.6387
PID-DFIG Area 1l 0.1509 —0.1807 0.7409 - -
PID-AGC Areal 0.8544 0.2979 0.5840 - -
FOPID-DFIG Area 2 0.2194 —0.2233 0.2901 0.4418  0.5794
PID-DFIG Area 2 0.1644 —0.1907 0.6987 - -
PID-AGC Area 2 0.4811 0.2977 0.5133 - -

5.1. First Scenario: Step Load Change

As the first scenario, performance of the DFIGs equipped with the SCA optimized FOPID
controllers is investigated under a 0.01 p.u. step load change in area 1. The area frequency and tie-line
power deviations are illustrated in Figure 5. As shown in this figure, the performance of the SCA-based
FOPID controller with 10% wind penetration is compared with the SCA-based PID controller, with 10%
wind penetration and the condition that there is no DFIGs in any areas. Area frequency and tie-line
power oscillations are remarkably damped by the proposed SCA-based FOPID controller compared
with two other controllers. The ITSE performance index, peak overshoot, peak time and settling
time are shown in Table 3. The SCA-based FOPID controller has the lowest value of the ITSE index
compared to the other controllers for the first scenario. Therefore, it can be concluded that the
proposed controller improves the dynamic responses for the studied power system more efficiently.
Furthermore, the settling time and peak overshoot are reduced by the proposed controller. Note that
the peak overshoot unit for the frequency deviation is Hz; and for the tie-line power deviations is pu.
In this study, settling time is the time required for an output to reach and remain within a 5% error
band following some input stimulus. Furthermore, minimum damping ratio provides a mathematical
means of expressing the level of damping in a system relative to critical damping.
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Figure 5. Frequency deviation and tie-line active power change in the first scenario, (a) frequency

deviation in area 1; (b) frequency deviation in area 2; and (c) tie-line power deviation.
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Table 3. Frequency deviation and tie-line power characteristics of FOPID, PID and just AGC.

Controller Type Signal MDR PO PT ST ITSE
Afq 0.0208 0.6997 14.1210

FOPID-based DFIG & AGC Afr 0.1910 0.0131 1.5054 14.8400  0.0026
APy 0.0036 1.1957 21.0161
Afq 0.0301 0.7311 17.0812

PID-based DFIG & AGC Afr 0.0658 0.0194 1.5536 18.3103  0.0041
APy 0.0053 1.2089 23.4412
Afq 0.0389 0.9309 28.1927

Without DFIG (Just AGC) Afp 0.0498 0.0449 2.0776 27.1289  0.0333
APy 0.0073 1.3934 32.5925

MDR, minimum damping ratio; PO, peak overshoot; PT, peak time; ST, settling time.

5.2. Second Scenario: Comparison of Results in Different Level of Wind Penetration

In this scenario, the performance of the DFIGs equipped with the SCA optimized FOPID controller
is investigated under different levels of wind power penetration. Herein, 10%, 15% and 20% penetration
levels are considered for the wind power. The penetration level of wind power is increased through
reducing the existing generator units by x%, i.e., an x% reduction in system inertia constant. In the
other words, an x% increase in wind power is fulfilled through decreasing the inertia by x% [72].
In Figure 6, the system dynamic responses of 10%, 15% and 20% penetration levels of wind power are
demonstrated. As can be seen, by increasing the wind power penetration level, although the inertia of
wind system decreases, the proposed FOPID controller provides better frequency performance in high
penetration level.

5.3. Third Scenario: Sinusoidal Load Change

The third scenario verifies the performance of the DFIGs equipped with the SCA optimized
FOPID controllers in a sinusoidal load perturbation, which is applied in area 1. This sinusoidal load
perturbation is formulated as follows:

APy = —0.002sin(4t) + 0.002sin(4.7t) + 0.003 sin(4.7t). (11)

Under the supposed sinusoidal load perturbation, the area frequency and tie-line power
oscillations are exhibited in Figure 7. The results illustrate that the oscillations are effectively damped
by employing the FOPID controllers.

5.4. Fourth Scenario: Sensitivity Analysis

In the Fourth scenario, a sensitivity analysis is done to examine the robustness of the proposed
controller under a wide variation in governor time constant of steam turbine (Ts;) and the
synchronizing coefficient (T1,) separately. To do so, the T, (as an indicator of active tie-line power
between the areas) and T are changed by +25% of nominal value regarding the first scenario condition.
The dynamic responses for the case of DFIGs equipped with the SCA optimized FOPID controllers
after applying uncertainties in T, and T, are depicted in Figures 8 and 9, respectively. Furthermore,
the system damping characteristics for both changes are listed in Table 3.
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Figure 8. Simulation results for £25% of synchronizing coefficient, (a) frequency deviation in area 1;
(b) frequency deviation in area 2; and (c) tie-line power deviation.
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Figure 9. Simulation results for £25% of time constant of steam turbine, (a) frequency deviation in area
1; (b) frequency deviation in area 2; and (c) tie-line power deviation.

It can be seen from the Figures 8 and 9, and in Table 4 that in comparison with the nominal
responses demonstrated in Table 2 and Figure 5, the considered severe variations have negligible
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impacts on the system dynamic performance, since the damping ratios, performance indices and
damping control measures deviate slightly from the nominal values so that the power system is still
stable as before. Therefore, the adjustable parameters of the controllers are tuned for the nominal
condition and it is not necessary to tune the parameters for the +-25% change in the T1, and Tsg again.

Table 4. Frequency deviation and tie-line power characteristics of FOPID controllers for £25%
variations in the time constant of steam turbine and synchronizing coefficient.

FOPID-based DFIG & AGC  Signal ~ MDR PO PT(s) ST(s) ITSE
Afy 0.0201 0.6765  19.2995

Tip 4 25% Af 0.0537 0.0146 14438  19.0713  0.0053
APy, 0.0040 11106  21.2130
Af 0.0217 07285  14.9600

—25% Af, 0.1096 0.0112 15874  13.8402  0.0023
APy, 0.0031 13164  20.9504
Afy 0.0209 0.6997  15.0300

Teg +25% Af 0.0745 0.0132 15054  14.9200  0.0027
APy, 0.0036 11957  21.0041
Afy 0.0208 0.6997  14.5210

59, Af, 0.0815 0.0131 15054  14.4467  0.0026
APy, 0.0036 11957 202161

MDR, minim damping ratio; PO, peak overshoot; PT peak time; ST, settling time.

6. Conclusions and Future Directions

This paper presented a review on wind farms contribution to the automatic generation control of
power systems. The applied control strategies and other alternatives for wind farms were investigated.
Fractional order PID controller was deployed for DFIG wind turbines for more efficient contribution in
the load frequency control of multi-area power systems. Four scenarios, including step and sinusoidal
load changes, sensitivity analysis, and the effect of different levels of DFIG penetration, demonstrated
that the proposed controller is efficient for the wind farms in the load frequency control. Minimizing
the overshoot and settling time, and better oscillation damping were highlighted as the salient features
for the SCA-based FOPID controller in the structure of DFIGs.

The role of wind farms to contribute in automatic generation control is still an active field of study
for future research. The literature of control strategies in wind farm is limited to model predictive
control, optimization and intelligent methods. On the other hand, application of lithium-ion battery
energy storages, which nowadays are utilized in wind farms and other types of energy storage systems
can be investigated in this area of research. Coordination between wind farms and photovoltaic
farms as the frontier renewable energies to contribute in the automatic generation control can also be
extended in the future.
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