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Abstract: Surface contamination by microbes is a major public health concern. A damp environment is
one of potential sources for microbe proliferation. Smart photocatalytic coatings on building surfaces
using semiconductors like titania (TiO2) can effectively curb this growing threat. Metal-doped
titania in anatase phase has been proven as a promising candidate for energy and environmental
applications. In this present work, the antimicrobial efficacy of copper (Cu)-doped TiO2 (Cu-TiO2)
was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive)
under visible light irradiation. Doping of a minute fraction of Cu (0.5 mol %) in TiO2 was carried out
via sol-gel technique. Cu-TiO2 further calcined at various temperatures (in the range of 500–700 ◦C) to
evaluate the thermal stability of TiO2 anatase phase. The physico-chemical properties of the samples
were characterized through X-ray diffraction (XRD), Raman spectroscopy, X-ray photo-electron
spectroscopy (XPS) and UV–visible spectroscopy techniques. XRD results revealed that the anatase
phase of TiO2 was maintained well, up to 650 ◦C, by the Cu dopant. UV–vis results suggested
that the visible light absorption property of Cu-TiO2 was enhanced and the band gap is reduced to
2.8 eV. Density functional theory (DFT) studies emphasize the introduction of Cu+ and Cu2+ ions
by replacing Ti4+ ions in the TiO2 lattice, creating oxygen vacancies. These further promoted the
photocatalytic efficiency. A significantly high bacterial inactivation (99.9999%) was attained in 30 min
of visible light irradiation by Cu-TiO2.

Keywords: Cu-doped TiO2; doping; phase transition; Escherichia coli; Staphylococcus aureus;
photocatalysis; antibacterial coatings

1. Introduction

The formation of microbial colonies inside the wet or damp indoor environments is one of the
major contributing elements to the deterioration of indoor air quality [1,2]. These microorganisms
have the potential to produce contaminants like spores, allergens and toxins affecting the health of the
occupants [3,4]. This kind of continuous exposure can lead to various health concerns like respiratory
or skin diseases [5,6]. Several studies in the past few decades have looked at the alteration of building
materials and paints to overcome the challenges of indoor microbial contamination [7,8]. Most of the
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physicochemical techniques and usual cleaning procedures are inactive to completely eliminate the
microbes. Photocatalysis is one of the most promising, simple and economically viable technology to
address indoor air microbial contamination [9].

Existing photocatalyst-based coatings suffer two important disadvantages, they require artificial
UV light sources to generate reactive oxygen species (ROS) and secondly these coatings remain inactive
in dark atmosphere as the ROS generated in light declines with time [10]. TiO2 has been recognized
as a traditional semiconductor photocatalyst, which has been widely reported for its anti-microbial
coatings [11,12]. The formation of uniform aqueous slurry and the feasibility of deposition on the
various substrates make TiO2 a lucrative candidate [13,14]. However, this material suffers from its own
set of limitations. Among the three phases of TiO2, anatase is reported to be the most photocatalytically
active phase [15]. However, the phase stability of anatase is very crucial as it has a tendency to
rutilation at elevated temperatures. Apart from this, low visible light absorption because of the wide
band gap of TiO2 (3.2 eV) is incompatible to receive visible light for practical applications [16].

Elemental doping, morphological tailoring in the form of nanotubes and fibers, making composites
out of new 2-D materials like graphene, C3N4, are some of the efficient techniques to overcome these
limitations [17–20]. Earlier studies on heterojunctions of anatase-rutile and anatase-brookite for
photocatalytic applications have been reported. Although anatase is the photocatalytically active
phase, the heterojunctions formed in the mixed phase samples showed superior photocatalytic
activity under visible light [21,22]. It is attributed to the delayed charge recombination initiated
by the electron-hole separation effect [22]. Elemental doping is an effective strategy to tune the
band gap of TiO2 by introducing new energy levels in between and by alteration of conduction
band minima (CBM) and valence band maxima (VBM) [23,24]. In this regard, cationic dopants
served to extend the visible light absorption and also enhanced the high temperature stability of
the anatase phase TiO2. Copper is one of the interesting dopants added to TiO2 at the different
mole and weight percent. Cu-doped TiO2 was evaluated for various photocatalytic applications like
Hydrogen production [25–28], CO2 conversion [29], degradation of dyes and organic contaminants.
Kim et al. reported that Cu existed in the form of both Cu+ and Cu2+ states in Cu-doped TiO2 thin
films. These nano-architectures showed higher activity for degradation of organic dye molecules
under visible light illumination [30]. Similarly, Varghese et al., demonstrated high CO2 conversion
to hydrocarbon fuels using Cu incorporated TiO2 nanotube arrays [31]. In another study, authors
explored the electronic and structural stability of Cu-doped TiO2 synthesized in different acidic
mediums (HNO3 and H2SO4). The doped sample calcined at 600 ◦C displayed high photocatalytic
activity for phenol degradation [32]. Several studies demonstrating the photocatalytic anti-bacterial
efficiency were also reported (Table S1) [33–40]. However, in most of the cases, a high concentration of
Cu was used to display the antimicrobial activity and did not study the effect of calcination temperature.
They either calcined at a single temperature or kept the temperature below that of the anatase-rutile
phase transition. So, this work provides new insights into higher temperature anatase phase stability of
Cu-doped TiO2. Additionally, Cu dopants were deposited on morphologically tuned TiO2 nanotubes
and nanofibers. This involves a series of cumbersome synthesis techniques.

In the present study, we demonstrate a facile one-step sol-gel technique to prepare 0.5 mol %
of Cu-TiO2. The as-prepared samples were calcined at different temperatures ranging from 500 to
700 ◦C. Density Functional Theory (DFT) simulations were also performed to understand any bandgap
alteration of TiO2 lattice and the formation of oxygen vacancies after Cu doping. The anatase phase of
TiO2 was maintained (55%) up to 650 ◦C. The sample calcined at 650 ◦C illustrated high visible light
absorption, and Cu doping resulted in lowering of TiO2 band gap from 3.2 eV (for anatase TiO2) to
2.8 eV. Cu-TiO2 was further assessed for the photocatalytic disinfection efficiency towards Escherichia
coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains. A 5-Log reduction by
the Cu-TiO2 was attained at a very short time span of 30 min.
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2. Materials and Methods

2.1. Chemicals and Reagents

All the materials used were of analytical grade. The materials were used as received,
without further purification. Titanium isopropoxide (97%), copper sulphate pentahydrate (≥98.0%)
and isopropanol (≥99.5%) were purchased from Sigma-Aldrich. Strains of Staphylococcus aureus
(ATCC-25923) and Escherichia coli (ATCC-25922) were purchased from LGC Standards. Nutrient broth
No.2, Agar and all other consumables were bought from Cruinn Diagnostics Ltd (Dublin, Ireland).
Deionized water was used in all experiments.

2.2. Synthesis of Cu-TiO2

Cu-TiO2 was synthesized using a sol-gel method as follows: 40 mL of titanium isopropoxide
(TTIP) was stirred in isopropanol (200 mL) for 15 min (solution A). The required amount of copper
sulphate was taken separately in deionized water (200 mL) and the mixture was stirred for 15 min
(solution B). The ratio of both solvents was kept constant. Then, Solution B was added dropwise to
solution A under vigorous stirring. After that, the mixture was further kept for gelation for 2 h at
room temperature. The resulting gel was dried in an oven at 100 ◦C for 12 h. The powder was then
calcined at various temperatures (500 ◦C, 600 ◦C, 650 ◦C and 700 ◦C) at a ramp rate of 10 ◦C/min for
2 h. Pure TiO2 was also synthesized by the same procedure without the addition of copper sulphate
and calcined at two different temperatures (500 ◦C and 700 ◦C) to obtain pristine anatase and rutile
samples, respectively. These samples were used as the control for all further experiments.

2.3. Density Functional Theory (DFT) Computations

DFT calculations were performed using the VASP5.2 [41,42] code with projector augmented wave
(PAW) [43,44] potentials to account for the core–valence interaction and a kinetic energy cut-off of
400 eV. Cu was substitutionally doped onto a Ti site in an anatase (4 × 4 × 3) supercell. This gives
a dopant percentage of ~0.5%, which is consistent with the experimental concentrations of Cu in
TiO2 [25,32,45]. Γ-point sampling was used and structures were relaxed until forces were less than
0.01 eV Å−1.

Calculations were performed taking into account spin polarization and no symmetry constraints
were imposed. For DFT calculations corrected for onsite Coulomb interactions (DFT + U), U = 4.5 eV
was applied to the Ti 3d states and U = 7 eV was applied to the Cu 3d states, arising from the inability of
the local density and generalized gradient approximations to consistently describe both Ti3+ and Cu2+

oxidation states [46,47]. These choices for U are based on previous studies [48–52]. In addition, the DFT
+ U correction was applied to the O 2p states, as a result of the hole states formed when substituting
the lower valance Cu cation on a Ti site [53]. Comparisons of the DFT + U results were made for
these systems with no +U correction. However, this set-up is unable to consistently describe the
oxygen hole states and the Ti3+ and Cu2+ oxidation states of the cations and thus results are not shown
for this computational set-up. The starting geometries were manually distorted from the symmetric
bulk geometry in order to examine relaxation to distorted geometries, which can be compared with
undistorted geometries. To study the charge compensation that arises as a result of the difference in
the Cu2+ and Ti4+ oxidation states, one oxygen ion was removed from different sites of the most stable
Cu-doped structures and the energy of formation was calculated by the following equation:

Evac = E
(
CuxTi1−xO2−y

)
+

1
2

E(O2)− E(CuxTi1−xO2) (1)

where E
(
CuxTi1−xO2−y

)
is the total energy of Cu-doped TiO2 with a charge compensating oxygen

vacancy and E(CuxTi1−xO2) is the total energy of Cu-doped TiO2. The formation energy is referenced
to half the total energy of O2.
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Copper ions were initially in the 2+ oxidation state and calculations were therefore performed
with 1 and 3 unpaired spins taking into account the electron deficit due to substitutional doping of
Cu2+ for Ti4+ and the d9 configuration of Cu2+. The oxidation states of Cu dopant, lattice Ti and O ions
were determined from Bader charge analysis [54].

2.4. Characterization

The as-synthesized samples were characterized by various techniques. The crystallinity of the
samples was analyzed by X-ray diffraction (XRD). The diffractograms were produced using Cu Kα

radiation (λ = 0.15418 nm) in a Siemens D500 X-ray powder diffractometer (Karlsruhe, Germany).
The diffraction was examined in the range of 10◦–80◦. Anatase and rutile percentages of TiO2 were
measured by the Spurr equation [15].

FR =
1

1 + 0.8[IA(101)/IR(110)]
(2)

where FR is the quantity of rutile phase; IA(101) and IR(110) are the intensity of anatase peak and rutile
peak respectively. The crystallinity of the samples was calculated using the Scherrer equation [55].

Φ =
Kλ

β cos θ
(3)

where Φ is the crystallite size; K is the shape factor with a value close to unity; λ is the wavelength of
X-rays; β is the full width half-maximum (FWHM) of the main intensity peak; and θ is the Bragg angle.

The phase transformation was also analyzed using Raman spectroscopy (Horiba Jobin Yvan
LabRAM HR 800, Villeneuve d’Ascq, France) with a grating of 300 gr/mm. A 660 nm solid state diode
laser standard bandwidth version with double edge filter upgrade was the laser used. The acquisition
time was 3 s.

The bonding interactions and oxidation state of elements were studied with the help of X-ray
photoelectron spectroscopy. XPS analyses were performed on a ThermoFisher Scientific Instruments
(East Grinstead, UK) K-Alpha+ spectrometer. XPS spectra were acquired using a monochromated Al
Kα X-ray source (hn = 1486.6 eV). An X-ray spot of ~400 µm radius was employed. Survey spectra
were acquired employing a Pass Energy of 200 eV. High resolution, core level spectra for all elements
were acquired with a Pass Energy of 50 eV. All spectra were charge referenced against the C1s peak at
285 eV to correct for charging effects during acquisition. Quantitative surface chemical analyses were
calculated from the high resolution, core level spectra following the removal of a non-linear (Shirley)
background. The manufacturers’ Avantage software was used which incorporates the appropriate
sensitivity factors and corrects for the electron energy analyzer transmission function.

The optical properties of the as prepared samples were measured using a Perkin-Elmer UV–Vis
Spectrophotometer (Beaconsfield, Buckinghamshire, UK) Barium sulphate (BaSO4) was used as
a reference, and slit width was set to 1 nm. Additionally, band gap was calculated from the UV
DRS spectrum by using Kubelka-Munk function F(R) [56].

F(R) =
(1− R)2

2R
(4)

where R is the absolute reflectance of the sample.
The photocatalytic experiments were performed inside a weathering and corrosion photo-reactor

(Q-sun Xe-1-S) from Q-Labs (Saarbrucken, Germany).

2.5. Measurement of Antimicrobial Activity

All the glassware used was autoclaved before carrying out the photocatalytic experiments.
E. coli (Gram-negative bacterium) and S. aureus (Gram-positive bacterium) were used to study the
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antibacterial activity of the Cu-TiO2. Nutrient broth culture medium was prepared by dissolving 25 g
of nutrient broth No.2 (10 g peptone, 5.0 g NaCl, 10 g beef extract) in 1 L of distilled water followed
by sterilization at 121 ◦C using an autoclave. The 90 mm agar plates were prepared by dissolving
28 g nutrient agar (5 g peptone, 8.0 g NaCl, 3.0 g Beef extract, Agar No. 2) in 1 L distilled water,
then autoclaved at 121 ◦C for 15 min and poured into petri dishes. The strains were inoculated in
20 mL of nutrient broth and incubated for 24 h at 37 ◦C. A definite amount of the grown culture
was transferred to the cylindrical glass vessel to make the working solution of 104 CFU/mL (colony
forming unit/mL). The reaction mixture was kept inside the photo test chamber for visible light
irradiation. The photocatalyst concentration was fixed at 1 g/L and irradiated for 3 h. Aliquots of 1 mL
were extracted out from the reaction mixture at a regular time interval of 10 min. In order to attain
a countable CFU, the bacterial solution was diluted in a PBS solution once and later 100 µL of the
diluted solution was plated. Finally, the plates were incubated at 37 ◦C for 24 h. The colonies formed
on the agar plates were counted and recorded as CFU/mL. A control experiment was also conducted
in the absence of the photocatalyst. The same set of samples was tested simultaneously under dark
conditions. The antimicrobial efficiency was calculated using two methods; (i) log reduction and (ii)
N/N0% versus time.

log reduction = log10
(A)

(B)
⇒ log10 (A) − log10 (B) (5)

where, A = initial number of viable microorganisms, B = number of viable microorganisms at any time
“t”, log10 (A)→ N0, log10 (B)→ N for any time “t”.

3. Results

3.1. Density Functional Theory Simulations

There have been some theoretical papers on the topic of Cu-doped anatase TiO2 [57–60].
A DFT + U study [59] of anatase doped with Cu at a concentration of 6.25%, applied U = 8 eV
to the Ti 3d states; this recovers the bulk TiO2 energy gap but is not to be recommended for other
properties. No +U correction is applied to the Cu 3d states, despite issues with describing these
electronic states. A reduction in the band gap was reported in all studies and this is attributed to
a combination of Cu 3d and O 2p states above the valence band maximum (VBM). Navas et al. provided
a comprehensive study [58] of Cu-doping in anatase which combined both experiment and theory
including DFT + U calculations with the +U correction on Ti 3d orbitals only. However, the inclusion
of a +U correction for Cu 3d states is particularly important in correctly describing the Cu2+ oxidation
state [48,49,61]. They reported greater band gap reduction with increases in dopant concentration due
to the covalent character of the Cu-O interaction leading to new states at the VBM. DFT studies have
examined the impact of Cu-doping of the anatase (101) surface [62,63] with a focus on surface mediated
phenomena in catalysis. A generalized gradient approximation (GGA) study showed that Cu dopants
at the anatase (101) surface inhibit the dissociation of adsorbed water to hydroxyls [62]. The authors
attributed enhancements in the photocatalytic activity to arise instead from the electronic properties
and inter-bandgap states, rather than the promotion of water dissociation. A GGA + U study found
little difference in the formation energies for substitutional doping of Cu at surface and sub-surface Ti
sites [63] suggesting both are equally favorable. The emergence of impurity levels in the TiO2 bandgap
led to a predicted red shift in light absorption compared to unmodified TiO2. A theoretical account
of Cu-doping in rutile, in the context of the effect of oxygen vacancies on the magnetic moment of
Cu-doped TiO2 [64], reported that oxygen vacancies are most stable near the Cu impurity.

Figure 1a shows the local atomic structure in the vicinity of the Cu dopant. The geometry around
the dopant is symmetric in which apical Cu-O and equatorial Cu-O distances are 2.01 Å and 1.99 Å;
these can be compared with corresponding Ti-O distances of 2.02 Å and 2.00 Å for undoped anatase.
Figure 1b displays the excess spin density plot and shows that the hole states are spread over the
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oxygen sites neighboring the dopant. The computed spin magnetizations are 0.13 µB for both apical
sites and 0.2 µB for the four equatorial sites. The Bader charge of the Cu dopant is 9.6 electrons and the
spin magnetization is 0.97 µB, consistent with the d9 configuration of the Cu2+ oxidation state.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 20 
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Figure 1. (a) Relaxed atomic structure of bulk anatase TiO2 in the vicinity of the Cu dopant and
(b) excess spin density plot for Cu-doped anatase TiO2. Spin isosurfaces enclose densities of up to 0.02
eV/Å3. In this and subsequent figures Ti is represented by a grey sphere, O by a red sphere and Cu by
an orange sphere.

For the solution with the +U correction applied to the O 2p states, the local atomic structure
near the dopant site is distorted asymmetrically; this set up results in localization of the hole
states predominantly on the apical oxygen sites and the resulting Cu-OAp distances are 2.27 Å and
2.42 Å. These elongated bonds are consistent with formation of an oxygen polaron as has been
observed in other materials [46,47,65–69]. The computed spin magnetizations for these O sites
are 0.78 µB and 0.73 µB and the Bader charges are reduced by 0.5 electrons after hole localization,
from 7.3 to 6.8 electrons. The four equatorial Cu-OEq distances are 1.99–2.00 Å. For the remainder of
the calculations the differences arising from U(O) = 0 eV vs. U(O) = 7 eV are quantitative in nature
and the general characteristics of Cu-doped anatase are consistent, in particular charge compensation.
Thus, for brevity we include only the results arising from calculations for which U(O) = 0 eV.

In response to the charge imbalance which arises when replacing Ti4+ with lower valent Cu2+,
the system compensates through formation of an oxygen vacancy. The most stable site for this
compensating oxygen vacancy is the O site neighboring the Cu dopant in the equatorial position and
this has a computed formation energy of −0.35 eV.

The top panels of Figure 2 show the geometry of the charge compensated system in the vicinity of
the Cu dopant; the oxygen vacancy site is indicated by a black circle. After formation of the charge
compensating oxygen vacancy, the Cu and Ti ions to which the removed O atom was bound have
five-fold coordination. The Ti ions move off their lattice sites and outwards from the vacancy site and
this distortion leads to the shortening of metal-oxygen bonds opposite the vacancy by 0.13–0.16 Å.
After oxygen vacancy formation, four of the Cu-O bonds contract by 0.01–0.06 Å. The fifth Cu-O
distance, involving the OEq atom opposite the vacancy site, increases by 0.07 Å. In this configuration
the Bader charge on the dopant is 9.7 electrons and the spin magnetization is 0.75 µB, indicating a Cu2+

oxidation state.
For the formation of a second, reducing oxygen vacancy, the most stable site is a second equatorial

site neighboring the dopant and adjacent to the first vacancy. This oxygen vacancy forms with an
energy cost of +3.27 eV and the local geometry about the dopant is shown in the bottom panels of
Figure 2, with the oxygen vacancies indicated by black circles. This energy cost is similar to undoped
bulk anatase so that Cu doping has no significant effect on the reducibility of anatase.
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Both Cu-OAp distances contract to 1.93 Å, while the two remaining Cu-OEq distances are 2.08 Å
and 2.10 Å. After formation of the second oxygen vacancy two electrons are released and we analyze
computed Bader charges and spin magnetizations to determine where these electrons are localized.
For the Cu dopant the Bader charge increases from 9.7 to 10.3 electrons and the spin magnetization is
0 µB, consistent with reduction from Cu2+ to Cu+. The second electron localizes at a Ti site which is
five-fold-coordinated due to formation of the second oxygen vacancy. This site has a Bader charge of
1.7 electrons and a spin magnetization of 0.95 µB, indicating reduction to Ti3+. For comparison, the Ti4+

ions in TiO2 have computed Bader charges of 1.29–1.34 electrons.
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The projected electronic density of states (PEDOS) plots for pure TiO2 anatase is shown in
Figure 3a, highlighting the typical O 2p dominated valance band region and the Ti 3d dominated
conduction band region. Figure 3b shows the PEDOS for Cu doping where a clear Cu2+ derived state
is present in the TiO2 energy gap.

For the ground state of Cu-doped anatase, with a single, compensating oxygen vacancy, and the
reduced system, with two oxygen vacancies, the PEDOS are shown in the bottom panels of Figure 3.
For the ground state system (Figure 3c) the empty 3d state of the Cu2+ ion lies above the conduction
band minimum (CBM) of the TiO2 host, so that the dopant has no impact on the magnitude of the band
gap. However, states emerge in the band gap after formation of the second oxygen vacancy, as shown in
Figure 3d. These states are derived from the reduced Ti3+ and Cu+ ions which may act as recombination
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centers, thereby reducing photocatalytic activity. In the reduced system, Cu-derived states also emerge
at the valence band edge and extend the VBM to higher energies leading to a decrease in the band gap.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 20 
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3.2. X-ray Diffraction (XRD)

XRD is utilized to study the impact of Cu doping on the anatase to rutile phase transition of
TiO2 at various calcination temperatures. Figure 4a shows the XRD profiles of pure anatase TiO2 and
0.5% Cu-TiO2 (calcined at 500 ◦C, 600 ◦C, 650 ◦C and 700 ◦C). XRD spectrum of rutile TiO2 is also
provided for reference. The spectra of undoped samples of TiO2 for all the given temperatures are
given in Figure S1. The anatase and rutile peak intensities are generally observed at 25.4◦ and 27.3◦,
respectively, (101 and 110) [15]. These values were used to calculate the percentage of anatase and
rutile of TiO2 in all samples using the Spurr equation (Equation (2)). Cu-TiO2 at 500 ◦C and 600 ◦C
exhibited 100% of anatase while the sample at 700 ◦C showed 100% of rutile. Interestingly, calcined at
650 ◦C yielded a mixture phase constituting 55% of anatase and 45% of rutile TiO2 (Figure 4b).

The diffractogram also illustrates the increase in the intensity of the signature peaks of both
anatase and rutile phases with increase in calcination temperature. The Schrerr equation (Equation (3))
is used to calculate the average crystalline size (Table 1). The decrease in the FWHM values helped in
exhibiting the increase in average crystallite size from 8.83 nm for anatase TiO2 to 28.8 nm for the mixed
phase sample (calcined at 650 ◦C). This is attributed to the thermally promoted crystallite growth [70].
For any photocatalytic application the need for improved visible light activity and high temperature
stability are two fundamental desirable properties. In this study, the XRD results shows the presence
of mixed phase at a high calcination temperature of 650 ◦C by doping a very minute fraction of Cu.
This prime reason makes the sample an interesting candidate for further studies and hence, hereafter,
the mixed phase sample was used for further characterizations and application. Additionally, anatase
(TiO2—500 ◦C) and rutile (TiO2—700 ◦C) samples are taken as controls.
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3.3. Raman Spectroscopy

The anatase-to-rutile transition of Cu-TiO2 was further examined using Raman spectroscopy.
A typical Raman spectrum shows characteristic modes at different wavenumbers, corresponding to
Raman shifts. The active modes for anatase are A1g, 2B1g and 3Eg at 147, 197, 396, 516 and 638 cm−1

respectively. For rutile, the Raman active modes are A1g, B1g, B2g and 3Eg at 144, 238, 446 and
612 cm−1 [15]. Raman spectra displayed the presence of the titania peaks and did not exhibit the
occurrence of copper/copper oxides or other impurities (Figure 5). The Raman results are consistent
with the data observed in XRD analysis. The anatase phase of titania is retained well by the Cu doping.
Similar results were also observed for higher concentration (<0.5 mol %) of Cu-doped samples [71–73].
However, as observed in the figure below, the doped sample shows a small decrease in frequency of
2.35 cm−1 (red shift as illustrated in the inset of the image). Decrease in frequency is the resultant of
the Cu insertion in the TiO2 lattice, which subsequently weakens the bond between the O-Ti-O bond,
therefore leading to a higher lattice constant.
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3.4. X-ray Photoelectron Spectroscopy (XPS)

The X-ray Photoelectron Spectroscopy (XPS) quantifications were performed to analyze the
elemental composition of anatase TiO2 and Cu-doped samples. Figure 6a provides the survey spectrum
of anatase TiO2 and 0.5% Cu-doped TiO2 calcined at 650 ◦C. It illustrates the presence of titanium,
oxygen and additionally copper for the doped sample. A small amount of carbon peak also emerged,
which is acquired during the synthesis and calcination processes. An introduction of Cu into TiO2

lattice resulted in substitution of Ti4+ by the Cu2+ ion [74]. Hence, instead of O-Ti-O bonds new
bonds of Cu-O are established. Figure 6b provides the high-resolution spectra of Ti 2p, which exhibits
very sharp, symmetric and intense peaks, indicating the presence of Ti+4 state. The deconvoluted
Ti 2p peaks of anatase appears at 457.4 eV and 463.06 eV, which is ascribed to Ti 2p3/2 and Ti 2p1/2
(Ti-O bond) respectively. In the case of Cu-TiO2 650 ◦C, a significant shift of around 1.7 eV is observed
for both Ti 2p3/2 and Ti 2p1/2 (459.06 eV and 464.83 eV) [75,76]. The shift in the peak is attributed to the
introduction of Cu in the lattice. The Ti 2p peaks of Cu-TiO2 650 ◦C do not show any indication of Ti3+

or Ti2+ states. Similarly, Figure 6c illustrates the high-resolution spectra of O 1s, where peaks at 528.59
eV constitutes to the crystal lattice oxygen (O-Ti4+) and 530.40 eV for adsorbed hydroxyl or oxygen
molecules. Whilst the O 1s spectrum of the doped sample showed a similar shift as observed for Ti
2p spectrum attributed to the introduction of copper atom in the lattice [77]. The Cu 2p3 spectrum
(Figure 6d) on deconvolution exhibits an intense peak at 933.13 eV and a shorter peak at 934.60 eV,
ascribed to Cu+ and Cu2+ states [75].
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temperature [75,79]. Usually, the TiO2 exhibits stable anatase phase in the range of 500–600 °C and 
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Figure 6. (a) Survey spectrum of anatase and 0.5% Cu-TiO2; (b) high resolution Ti 2p spectra of anatase
and 0.5% Cu-TiO2 650 ◦C.; (c) high resolution O 1s spectra of anatase and 0.5% Cu-TiO2 650 ◦C.;
(d) high resolution Cu 2p3 spectra of 0.5% Cu-TiO2 650 ◦C.

Figure 7 illustrates the high-resolution spectra of 0.5% Cu-TiO2 samples calcined at different
temperatures. It is observed that with increase in temperature from 500 ◦C to 700 ◦C the Cu+ state
observed at 933.1 eV gradually decreases. While the Cu2+ state at 934.3 eV is only observed at 650 ◦C
and 700 ◦C. Additionally, two satellite peaks of Cu2+ were also observed at 941.3 eV and 944.2 eV for
700 ◦C [75,78]. The intensity of the peak at 934.3 eV gradually increases with the increase in calcination
temperature [75,79]. Usually, the TiO2 exhibits stable anatase phase in the range of 500–600 ◦C and
converts to rutile with increase in temperature. However, the change in oxidation states with increase
in calcination temperature in our Cu-doped samples (change in oxygen vacancies) contributes to the
high temperature stability of the oxygen-rich anatase phase at 650 ◦C [23,34].
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Previous studies have reported that Cu2+/Cu+ replaces Ti4+ from the TiO2 lattice resulting in
the formation of oxygen vacancies. This leads to the formation of high absorption of a visible light
and narrowing of band gap, as observed in Figure 8. The TiO6 octahedron has Ti in Ti4+ state with
an ionic radius of 0.0605 nm. On the other hand, the ionic radii of Cu2+ and Cu+ exist as 0.073 nm
and 0.077 nm, respectively [80]. Moreover, the electronegativity values of Ti and Cu are 1.54 and
1.90, respectively. According to Hume-Rothery principles, the lattice substitution between atoms
could only happen if the differences between them is less than 20% [77]. Considering the difference
in the values of ionic radii and the electronegativity of the atoms, the substitution process of Ti by
Cu would be challenging. Early DFT-based theoretical studies have reported that maximum doping
concentration for Cu should be less than 0.3 at % to cause a lattice substitution [81]. Thus, in the
present study a doping of 0.5 mol % exhibits the successful doping of Cu inside the TiO2 lattice.
The doped copper existing in both oxidation states (Cu+ and Cu2+) results in the formation of single
and double oxygen vacancies. However, the Ti 2p and O 1s spectra fail to provide any information
regarding the new vacancies formed in the doped sample. The presence of adsorbed O2 and hydroxyl
molecules is indicated in the O 1s spectra, which explains the occupancy of the adsorbed molecules at
the vacancy sites.
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3.5. UV–Vis Absorption and Bandgap Estimation

The electronic band structures of the as-prepared samples were analyzed by UV–Vis absorption
(Figure 8). The pristine TiO2 at anatase phase shows an intense absorption in the Ultra-Violet region
(around 350 nm). While the rutile sample exhibits at 380 nm, on the other hand the Cu-doped sample
indicated a red shift extending up to 600 nm. This is attributed to the characteristic surface plasmon
resonance of Cu nanoparticles. The successful doping of Cu is also evident from the change in the
color observed in the samples, shifting from pure white to light yellow (as shown in the inset of
Figure 8b). The band gap value of the samples was estimated using the Kubelka–Munk equation
(Equation (4)) [51]. The band gap values of pristine TiO2 at anatase and rutile phases were observed to
be 3.17 eV and 3.03 eV, respectively. The Cu-doped sample showed a significant dip in the band gap
value up to 2.8 eV.

3.6. Photocatalytic Antibacterial Activity

To demonstrate the visible light efficiency of the doped Cu samples, photocatalytic antibacterial
experiments were carried out under dark and visible light irradiation, respectively. The following
data was also compared with the pristine TiO2 in anatase and rutile phases (Figure 9). The samples
were evaluated in relation to two different bacterial strains (E. coli and S. aureus). In the absence of
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photocatalyst, the growth of both the strains persisted under light and dark conditions. On the other
hand, on exposing the bacterial cells with catalyst (1 g/L) under visible light and dark conditions
yielded different results.
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650 ◦C samples.

In dark atmosphere, no significant change in bacterial growth was observed even after
90 min. While the bacterial growth significantly decreased within 30 min of visible light irradiation
(5-Log reduction shown in Figure 10); 99.9999% bacterial reduction was achieved in the presence of
Cu-doped samples in a time span as short as 30 min (Figure 11). Moreover, the anatase and rutile TiO2

samples showed complete disinfection within 60 and 90 min of irradiation respectively. This indicates
the stability of the cell structure and the importance of light in the inactivation process.
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Figure 10. Photocatalytic antibacterial disinfection efficiency of anatase, rutile and 0.5% Cu-TiO2

samples with E. coli and S. aureus.

However, the inactivation observed is a synergetic effect of TiO2, as well as Cu ions in the presence
of visible light. None of the test samples in a dark atmosphere exhibited any bactericidal property.
Therefore, the cease in cell proliferation is a photo-induced inactivation rather than chemo-toxic killing
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of bacterial cells. The introduction of Cu significantly improved the visible absorption efficiency which
effectively contributed to the enhanced bacterial inactivation kinetics as observed compared to the
control samples.
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4. Discussion

From the DFT analysis, it is assumed that the creation of a single vacancy by Cu in Cu2+ (CuO) state
only exists on the surface which does not contributes to the alteration of the band gap of the material
at a very small mole percentage. On the other hand, dual vacancy created by the Cu dopant (Cu+ state)
does change the band gap of the material, as well as introducing various trap sites in between.
This reduces the overall band gap energy, but the trap sites potentially serve as recombination centers.
XPS analysis showed the co-existence of Cu in +1 (Cu2O) and +2 (CuO) oxidation states, where Cu+ is
the major species in the sample which necessarily committed in the variation of optical property of
the sample which is also evident in the UV–vis absorption plot (Figure 8a). A possible photocatalytic
disinfection mechanism is proposed based on the DFT, XPS and UV–vis results (Figure 12).

On light illumination, electron-hole pairs are generated on the individual surfaces of TiO2

and Cu2O. The photo-excited charge carriers have the ability to recombine or participate in the
photocatalysis reaction. TiO2 (a n-type semiconductor) has the conduction and valence band edge
values at 3.1 eV and −0.1 eV, respectively [25], while the Cu2O (a p-type semiconductor) has the
conduction and valence band edge potential at 1.91 eV and −0.26 eV, respectively [82]. Under light
irradiation, both semiconductor surfaces are in contact, drives the electron transfer process (Figure 12a).
As the electron from conduction band of Cu2O moves to that of TiO2 and the hole migrates from the
valence band of TiO2 to that of Cu2O [83]. This results in the lowering of the Fermi level of Cu2O and
rising of the TiO2, such that to reach a pseudo equilibrium phase resulting in formation of internal
electric field. Furthermore, this external field prevents the flow of charge carriers from the opposite
sites and thus makes these charge carriers participate in the photocatalytic reaction. Apart from the p-n
junction formed by the Cu2O and anatase TiO2, there exists a considerable proportion of rutile phase
in our samples. This anatase and rutile mixture forms a possible type 2 heterojunction which also
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necessarily contributes to the improved catalytic activity (Figure 12b) [84]. The enhanced antimicrobial
activity could also be attributed to the well-known bactericide activity of Cu ions in the sample [85].

The charge carriers formed on various heterojunction sites (type 2 junction of anatase–rutile and
p-n junction of Cu2O-anatase TiO2) reacts with the oxygen and water adsorbed on the catalyst surface
to produce superoxide radicals and hydroxyl radicals, respectively. These reactive oxygen species
(ROS) further interact with the bacterial cell wall which results in membrane disruption and outflow
of intracellular materials; this results in cell lysis (Figure 12). In addition to this, the ROS produced has
the ability to interact with the sugar phosphate groups present in the DNA of the bacteria to cause
gene alteration. Furthermore, altering the protein expression responsible for cellular functioning leads
to additional cell damage [11,86].
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5. Conclusions

In the present work, a 0.5 mol % Cu-doped TiO2 visible light active semiconductor material has
been synthesized through a sol-gel approach. The as-synthesized materials have been thoroughly
characterized with the help of XRD, XPS, Raman, UV–DRS and DFT analyses. The introduction of
a small mole percent of Cu inside the TiO2 crystal lattice has led to increased thermal stability and
antimicrobial efficiency. The anatase phase of TiO2 is retained well up to 650 ◦C by Cu doping. Almost
all micro-organisms tested (E. coli and S. aureus) are inactivated by Cu-TiO2 within 30 min of visible
light irradiation. The high antimicrobial efficiency of Cu-TiO2 is attributed to the synergistic effect of
p-n junction (between TiO2 anatase and rutile), heterojunctions formed (between TiO2 and Cu2O) and
of copper ions. The results have also compared with pure TiO2 anatase and rutile. The as-synthesized
high temperature stable smart materials could be used to develop antimicrobial coatings or can be
incorporated in paints or building wares (ceramics, tiles, etc.) as a potential antibacterial agent.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/11/2067/
s1, Figure S1: XRD profiles of undoped TiO2 at different temperatures, Table S1: Summarise glance of literature of
Cu-TiO2 for Antimicrobial disinfection.
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