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Abstract: Accurate battery modeling is essential for the state-of-charge (SOC) estimation of electric
vehicles, especially when vehicles are operated in dynamic processes. Temperature is a significant
factor for battery characteristics, especially for the hysteresis phenomenon. Lack of existing literatures
on the consideration of temperature influence in hysteresis voltage can result in errors in SOC
estimation. Therefore, this study gives an insight to the equivalent circuit modeling, considering the
hysteresis and temperature effects. A modified one-state hysteresis equivalent circuit model was
proposed for battery modeling. The characterization of hysteresis voltage versus SOC at various
temperatures was acquired by experimental tests to form a static look-up table. In addition, a strong
tracking filter (STF) was applied for SOC estimation. Numerical simulations and experimental
tests were performed in commercial 18650 type Li(Ni1/3Co1/3Mn1/3)O2 battery. The results were
systematically compared with extended Kalman filter (EKF) and unscented Kalman filter (UKF).
The results of comparison showed the following: (1) the modified model has more voltage tracking
capability than the original model; and (2) the modified model with STF algorithm has better accuracy,
robustness against initial SOC error, voltage measurement drift, and convergence behavior than EKF
and UKF.
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1. Introduction

The concerns in energy crisis and global warming have driven the development of alternative
energy vehicles rapidly. The Electric Vehicles (EVs), which are among the ultimate solutions for
sustainable transportation, have attracted attention in aspects such as rechargeable power batteries
and Battery Management System (BMS).

A key estimative parameter, state of charge (SOC) of a battery, indicates its residual capacity
and reflects the remaining range of an electric vehicle. An accurate SOC estimation can not only
predict the remaining range for the EVs to relieve the “range anxiety” for the drivers, but it can also
help to determine an effective management strategy to avoid cell damage from over-charging and
over-discharging. However, due to the complexity of the chemical and physical processes involved,
characteristics of batteries present a distinct nonlinear feature, which makes their online monitoring a
challenging task. Therefore, special algorithms for SOC online estimation are required.
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Previous papers coining the term ‘SOC’ can date back to the 1960s [1]. After several decades’
efforts, a great variety of approaches have been engaged in targeting monitoring the SOC for EVs.
Generally, the SOC estimation algorithms can be divided into three categories.

The first methods are based on the direct measurement, including the residual capacity method,
the open-circuit voltage (OCV) method, and the Ampere-hour counting based method [2]. The residual
capacity method calculates the SOC by discharging the battery to the lower cut-off voltage in controlled
test equipment. It is also the most reliable method under laboratory conditions, but this is obviously
not the case in online monitoring for BMS. The OCV-based method requires a long rest period, thereby
not practical for EV applications. Moreover, the performance of the OCV-based method becomes
severe for which the battery characteristic of voltage platform is flat, such as LiFePO4 (LFP). To the
authors’ knowledge, only the Ampere-hour counting based method is suitable for online monitoring.
The Ampere-hour counting method estimates the SOC by integrating the flow-in and flow-out current
of the battery. This method reportedly has several theoretical limitations and is an open loop method
that cannot correct the accumulative error caused by current measuring transducers drift. In addition,
the estimation accuracy is dependent on the initial SOC. This method has low robustness against the
acquired signal quality, as well as initial SOC information.

The second types are the machine learning methods, such as the Artificial Neural Network
(ANN), Fuzzy Logic (FL), and Support Vector Machine (SVM). These methods are also called “black
box” model by which these do not need the detailed information of the battery system. Mahmoud
Ismail et al. [3,4] developed an ANN SOC estimator for commercial Li-ion battery. The network
is trained by the input of current and voltage, and the output is the battery SOC. The algorithm
is validated by the benchmark driving cycles and can achieve a relatively high degree of accuracy.
Claudio Burgos et al. [5] introduced a fuzzy-based model to characterize the discharge behavior of
lead-acid batteries. Du Jiani et al. [6] presented a methodology of FL to describe the equivalent circuit
model parameters on SOC and temperature effects. The SVM model is also a smart choice for SOC
estimation, which has been used in several literatures [7–11]. Although much research focused on the
machine learning methods, some of which have shown good performance, the common shortfall of
these methods is the heavy computational burden that makes the online implementation unpractical.

The last algorithms are based on the control-oriented battery model. The model-based estimators
are used to calculate the SOC by characterizing the battery behavior through measurable signals like
current, terminal voltage, and temperature. These model-based estimators include the electrochemical
model, the Equivalent Circuit Model (ECM), and the empirical model. The electrochemical model is
the most precise model among the others, wherein it describes the electrochemical reaction processes of
the battery by adopting a set of partial differential equations. However, it is also the most complicated
model for the limited BMS computational resource. Meanwhile, the empirical model usually has a
simple model structure with a low computation demand. However, a large number of experiments
are required to build a database. Moreover, for most BMS applications, the ECM is used as a solution,
because it meets the best compromise between the accuracy and model complexity.

Currently, the combinations of ECM and system filtering theory have drawn continuous attention
by scholars and industry developers. Among all the system filtering theories, the Kalman filter
(KF) is the most frequently used [12]. Compared with other system filtering algorithms, the KF
method does not need an accurate initial value of SOC because the result will gradually approach the
optimal value and the current measurement error will be updated during the operational process of
the algorithms. Meanwhile, it is a closed-loop observer, and it can achieve accurate and continuous
estimation performance during the whole range of battery operations. The abovementioned advantages
make KF a promising solution for BMS application implementation. Moreover, the ordinary KF is
only suitable for linear systems, whereas the BMS applications require the use of more complex and
nonlinear algorithms. Several advanced modifications have been proposed, such as an extended
Kalman filter (EKF), unscented Kalman filter (UKF), and Central-Difference Kalman filter (CDKF).
Gregory L. Plett was the first to establish EKF for SOC estimation [13–16]. Based on his pioneering
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work, a great variety of research concerning the applications of EKF to the non-linear system have
been reported in several literatures [17–22]. However, EKF is essentially a first-order Taylor series
expansion of the state-space equations that have the theoretical limitation of estimation accuracy under
the case of high dynamic current change. In addition, the EKF needs to calculate the Jacobi matrix,
which leads to the algorithm being inefficient or even numerical instabilities in the implementation
of a low-cost microcontroller. As an alternative system linear approach, the UKF was developed to
improve the estimation accuracy and to compute reliability Theoretically, all KF variants require the
knowledge of process and measurement noise covariance. Inappropriate tuning parameters may
lead to low convergence and high oscillation. Therefore, adaptive technology has been introduced
to combine with the KFs. Sun et al. [23] presented an adaptive UKF to estimate the SOC of EV
applications. The adaptive adjustment of the noise covariance was dealt by covariance matching
methods. Xiong et al. [24] proposed a data-driven-based approach for SOC estimation by employing
an adaptive EKF algorithm. Their methods achieved good accuracy and convergence for different
types of lithium-ion batteries.

To summarize, a modern smart algorithm for online SOC estimation in a BMS application requires
the following characteristics: capable of describing the first- or second-order nonlinear behavior
of battery system under dynamic excitation; adaptive adjustment for system noise matrices and
high converge robustness against the drastic change of current; numerical stability; and ease of
implementation in an embedded chip.

To address the abovementioned problems, an optimized model-based algorithm combined with
Strong Tracking Filter (STF) was put forward for online SOC monitoring. The one-state hysteresis
model was applied to state-space function and the hysteresis voltage was considered in terms of
temperature. The proposed algorithm has the following advantages: (1) strong robustness against
model uncertainties; (2) strong tracking ability of the mutation status; and (3) a moderate computational
burden. Various experimental tests were designed to validate the proposed approach. The comparisons
among the EKF, UKF, and STF were carried out to evaluate the performance of the proposed algorithm.

The remainder of this paper was organized as follows: The battery modeling was introduced in
Section 2. In Section 3, the experimental setup and identification results were demonstrated in detail.
In Section 4, EKF, UKF, and STF were proposed for the implementation of SOC estimation. Section 5
illustrated the experimental results in comparison with EKF and UKF in the aspects of estimation
accuracy, robustness, and convergence behavior. Section 6 presents the conclusions.

2. Battery Modeling

For control-oriented battery online monitoring, a precise battery state-space model must be
available. As mentioned, the ECM is the most widely used choice in combination with the KFs.
The ECM is based on the Thevenin’s theorem, which approximates the battery’s electrical behavior
through a voltage source and some resistances and capacitors. The accuracy of ECM was enhanced by
adding extra resistance-capacitance terms (RC network) into the circuits. However, the complication of
the model structure could lead to inefficient parameters’ identification and low real-time computation.
Obviously, a reasonable model must consider simulation accuracy, parameterization efficiency, and
computation burden. Additionally, hysteresis is also a very significant variable for lithium-ion
batteries [25–28]. However, studies for this variable are lacking as it is rarely being considered.
In this paper, the hysteresis model was used. As shown in Figure 1, the proposed model consists of
an Electro-Motive Force (EMF) voltage resource, a hysteresis voltage resource, a resistor R0, and a
RC network connected in series. The EMF voltage resource and the hysteresis voltage resource are
together to form a controlled voltage source −Uoc (OCV). R0 is the ohmic resistance. It represents the
instantaneous voltage variation caused by the electrolyte and the active mass. R1 and C1 represent the
polarization resistance and polarization capacitance, respectively. These are also used to depict the
transient response of the cell caused by double-layer capacity effects.
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Figure 1. The schematic diagram of the one-state hysteresis equivalent circuit model (ECM).

The hysteresis effect between the charge and discharge boundary curves is illustrated in Figure 2a.
The curves are obtained by charging/discharging the cell at C/25 rate (a current corresponding to
the manufacturer’s rated capacity for a 25 h discharge to low cut-off voltage) at a temperature of
30 ◦C; 30 ◦C is the standard temperature according to the latest U. S. Advanced Battery Consortium
(USABC) battery test manual [29]. The charge voltage is the upper curve and the discharge voltage is
the lower curve. At such low rate, we believed that the voltage drop was caused by ohmic resistance,
and polarization is small enough to ignore (less than 1 mV in this case). Thus, the voltage difference at
each SOC is caused by the hysteresis phenomenon.

The space function equations corresponding to Figure 1 are derived as follows:
First, according to the Kirchhoff voltage law, the governing equation of the cell model can be

derived as follows: {
UL = Uoc(SOC, T) + IR0 +U1 + h

U1 = − 1
R1C1

U1 +
1

C1
I

(1)

where UL is the terminal voltage of the cell. EMF is just a theoretical concept, where the EMF is
approximated by Uoc(SOC, T) after an hour rest, which is the function of SOC and temperature. U1 is
the voltage over the RC network and h is the voltage caused by hysteresis. I is the main circuit
current. The charging process is positive, and the discharging process is negative. R1 is the polarization
resistance and C1 is the polarization capacitance. h is the hysteresis voltage, it is the function of the
SOC and temperature.

The SOC of the cell can be expressed as follows:

SOC(k) = SOC(0) +

∫ k
0 ηIdt
CN

(2)

where SOC(0) is the initial SOC value of the cell; SOC(k) is the current SOC value at time k; CN is the
nominal capacity and the function of the discharge rate and temperature; η is the coulomb efficiency,
the function of current and temperature [30].

To implement the one-state hysteresis model to KFs, the above equations need to be discretized to
the following linear discrete form [31]:

UL, k = Uoc,k + R0Ik +U1, k + hk (3)

U1,k = exp
(
− Ts

R1C1

)
U1,k−1 +

[
1− exp

(
− Ts

R1C1

)]
R1Ik−1 (4)

SOCk = SOCk−1 +
ηTs

CN
Ik−1 (5)
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Figure 2. Open circuit voltage (OCV) discharge and charge boundary at 30 ◦C: (a) the discharge and
charge curve; (b) the hysteresis level.

For the hysteresis state function, let h(S, t) be the hysteresis voltage as the function of SOC and
time, and Ŝ = dS/dt.

dh(S, t)
dS

= γsgn(Ŝ)(M(S, Ŝ)− h(S, t)) (6)

where M(S, Ŝ) is the maximum hysteresis voltage as a function of SOC and SOC changing rate. γ is a
positive constant to tune the rate of decay, and sgn(Ŝ) is to make the equation stable for charge and
discharge process.

Since dh(S, t)/dt = dh(S, t)/dS× dS/dt, the deformation of Equation (6) can be expressed by
Equation (7):

dh(S, t)
dt

= γsgn(Ŝ)(M(S, Ŝ)− h(S, t))× dS
dt

(7)

According to Equation (2), it is easy to conclude that dS/dt = η I/CN . Meanwhile, sgn(Ŝ) ×
dS/dt = |dS/dt|. Then, Equation (7) is rewritten by:

ĥ(t) =
∣∣∣∣η I(t)γ

CN

∣∣∣∣M(S, Ŝ)−
∣∣∣∣η I(t)γ

CN

∣∣∣∣h(t) (8)
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And then, discretize Equation (8) to:

hk = exp
(
−
∣∣∣∣η I(t)γ

CN

∣∣∣∣)hk−1 +

(
1− exp

(
−
∣∣∣∣η I(t)γ

CN

∣∣∣∣))M(S, Ŝ) (9)

3. Battery Experiments

3.1. Test Bench

As shown in Figure 3, an experimental test bench was established to study the characteristics
of the lithium-ion battery. The experimental setup consisted of the following: (1) a set of Sony
US18650VTC5a type cells (Sony Corp., Tokyo, Japan) with Li(Ni1/3Co1/3Mn1/3)O2 (NCM) cathode and
graphite anode; (2) a thermal chamber with temperature control; (3) current and voltage sensors; (4) a
battery test station; (5) a host computer with software to set up the database; and (6) a Matlab 2017b
(MathWorks Inc., Natick, MA, USA) to run the model. The cell is a commercial battery that is used
for high specific energy demand application with a nominal voltage of 3.7 V and a nominal capacity
of 2.5 Ah. The main characteristics of nominal voltage and nominal capacity are shown in Table 1.
For the tests, the temperature chamber was set at −20 ◦C, −10 ◦C, 0 ◦C, 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C,
50 ◦C, respectively. The battery test station (NEWARE BTS4002, Shenzhen, China) was used for test
profile control. Each channel of the BTS was capable of ±20 A current and +5 V voltage. The accuracy
of current and voltage measurement was 50 mA and 10 mV, respectively.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 28 
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Table 1. Characteristics of Sony US18650VTC5a cell.

Item Rating

Capacity 2.5 Ah
End of discharge voltage 2.5 V
Maximum charge voltage 4.2 V

Maximum discharge current rate 12 C
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3.2. Test Schedule

Overall, the tests involved in this study were categorized into one of two types, namely,
a parameterization and a validation test schedule. The parameterization test includes hysteresis
voltage test and a series of HPPC (Hybrid Pulse Power Characterization) tests.

The hysteresis voltage is a considerable factor for battery modeling. Thus, the hysteresis voltage
test was conducted at various temperatures to improve the model accuracy. During the hysteresis
voltage test, the cells were discharged by 1/25 C constant current, until the low cut-off voltage (2.5 V)
was reached. After the 1 h period rest, the cells were recharged by the same 1/25 C rate until the upper
cut-off voltage (4.2 V). This test was carried out at temperatures of 0 ◦C, 15 ◦C, 30 ◦C, and 45 ◦C. There
were 4 cycles involved in total, all the discharge and chaege cycles was carried out by constant current
(CC) method.

The HPPC test profile as referred to [29], was composed of a series of hybrid pulse power steps
with 1 h rest at each SOC point. The current profile and the voltage response of a HPPC microcycle are
shown in Figure 4. The HPPC test was carried out with 1 C rate under the temperatures ranging from
0 ◦C to 50 ◦C, with an interval of 10 ◦C. In HPPC test, the model parameters of OCV, R0, R1, C1 were
identified online. The identification results were discussed in Section 3.4.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 28 
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Figure 4. Current profile and voltage response of a hybrid pulse power characterization
(HPPC) microcycle.
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The purpose of the validation test was to evaluate the performance of the modified model, as well
as the SOC approach, which will be introduced in the next section. Therefore, a current sequence
derived from the Federal Urban Driving Schedule (FUDS) cycle was used in this study. FUDS is a
dynamic current load which is designed to simulate the battery operation case in EV applications.
In summary, the entire profile consisted of nine typical FUDS microcycles; a 1/3 C constant current
discharge between the FUDS cycles and the constant current discharge was a rest period of one hour.
To implement the FUDS to the cells, the battery size factor (BSF) was scaled down to 9.25 Wh. The cells
were fully charged before the test and were discharged to the low cut-off voltage of 2.5 V at last.
Therefore, the “true value” of SOC was calculated by the accumulative Ampere-hours flowing in
and out of the battery. Figure 5 shows the sampled current and voltage of the validation test profile.
The validation test was run at the temperature ranges from −20 ◦C to 50 ◦C. It is worth pointing out
that the test should be terminated immediately when the low cut-off voltage of 2.5 V was reached.Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 28 
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Figure 5. The profile of validation test cycles: (a) current profile; (b) voltage response.
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3.3. Parameters Identification

In this work, two types of battery parameters are needed to be identified, namely the function
of hv = f (SOC, T), and the intrinsic parameters of the ECM which were identified offline and online,
respectively. Let ξ =

[
OCV, R+

0 , R−0 , R1, C1
]

be the online identification parameters. The current and
voltage response of HPPC data were selected and identified by using recursive least square method
(RLS). For online identification, because OCV is the function of SOC, an OCV function is needed for
curve fitting. Here, the model proposed by Plett [14] was employed. The OCV at the end of the 1 h rest
period of HPPC at each SOC was adopted.

OCV = k0 −
k1

SOC
− k2SOC + k3 In(SOC) + k4 In(1− SOC) (10)

Taking 0 ◦C as an example, the measured OCV and the nonlinear fitted function are displayed
in Figure 6a. In Figure 6b, the generalized residual was utilized to describe the degree of the fitting.
The data at the rest of the temperatures has the similar results.
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To further improve the model accuracy, the OCV was corrected by hv; the hv is preprocessed to
form an offline hv-SOC-T look-up table. As shown in Figure 7, the OCV boundaries of discharge and
charge process and hysteresis level under various temperatures were depicted.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 28 
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Figure 7. The OCV and hysteresis level under different temperatures: (a) the OCV boundaries of
discharge and charge process at different temperatures; (b) the hysteresis voltage level.

3.4. Identification Results

The identified model was validated by the validation test profile. Here, we defined the original
model as lacking hysteresis terms, whereas the improved model as considering hysteresis and
temperature effect. The quantitative evaluation of goodness-of-fit of the model, MAE (Mean Absolute
Error), and RMSE (Root Mean Squared Error) were introduced by the following equations:

MAE =

(∫ n
k=0

∣∣Ŝ(k)− S(k)
∣∣

n

)
× 100% (11)

RMSE =

√∑n
k=0
(
Ŝ(k)− S(k)

)
n

× 100% (12)



Appl. Sci. 2018, 8, 2084 11 of 27

where S(k) is the experimental data and Ŝ(k) is the estimated value at step k.
Again, taking 0 ◦C for example, the simulated voltage by the original model and improved model

are shown in Figure 8a and the errors of the two models are depicted in Figure 8b. For the profile at
0 ◦C, the MAE of the original model and improved model were 47.9 mV and 24.0 mV, respectively;
and the RMSE of the original model and improved model were 59.8 mV and 29.9 mV, respectively.
The MAE and RMSE at all temperatures are illustrated in Figure 9. Generally, the MAE and RMSE of
both the original model and improved model decreased as the temperatures increased. However, as the
temperature moves farther away from 30 ◦C, the performance of the proposed model becomes better
than the original model. Unlike the proposed model, the original model’s parameters were identified
at 0 ◦C, thus the lack of parameters’ correction in terms of the temperatures led the above results.
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4. SOC Estimation Based on EKF and UKF

According to Equations (3)–(5) and (9), the state-space equation is as follows: U1,k
hk

SOCk


=


exp

(
− Ts

R1C1

)
0 0

0 exp
(
−
∣∣∣ η IkγTs

CN

∣∣∣) 0

0 0 1


 U1,k−1

hk−1
SOCk−1



+


[
1− exp

(
− Ts

R1C1

)]
R1 0 0

0
(

1− exp
(
−
∣∣∣ η I(t)γTs

CN

∣∣∣)) 0

0 0 ηTs
CN


 Ik−1

M
(
S, Ŝ
)

Ik−1

+ ωk−1

(13)

UL, k = Uoc,k + R0 Ik + U1, k + hk + υk (14)

where ωk−1 is the system process noise and υk is the measurement noise. Based on the above state-space
equations, the proposed model can be implemented on EKF and UKF, respectively

4.1. Extended Kalman Filtering

As there have been plenty of published literatures on the EKF approach, the algorithm principle
was shortly introduced, to avoid repetitions. The nonlinear state-space equation and measurement
discretized equation can be represented as follows:

xk+1 = f (xk, uk) + Γkωk (15)

yk+1 = g(xk, uk) + υk (16)

where f (xk, uk) is the nonlinear state function and g(xk, uk) is the nonlinear measurement function.
Then, Âk =

∂ f (xk ,uk)
∂xk

∣∣∣
xk=x̂k

, Ĉk =
∂g(xk ,uk)

∂xk

∣∣∣
xk=x̂k

was defined as the Jacobian matrix of f (·) and

g(·), respectively.
The EKF is summarized in Table 2 as referenced in [13].
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Table 2. Summary of the extended Kalman filter (EKF) approach for SOC estimation.

Initialization

1. Initialize with:

x̂0|0 = E(x0), P0|0 = E
[(

x0 − x̂0|0
)(

x0 − x̂0|0
)T
]

State prediction

1. Update the step state vector:
x̂k|k−1 = Ak−1 x̂k−1|k−1 + Bk−1uk−1
2. Update the step error covariance:

Pk|k−1 = Ak−1Pk−1|k−1 AT
k−1 + Γk−1Qk−1ΓT

k−1

Measurement update

1. Calculate the Kalman gain:

Kk = Pk|k−1CT
k

(
CkPk|k−1CT

k + Rk

)−1

2. Update the measurement vector:
x̂k|k = x̂k|k−1 + Kk(yk − g(xk, uk))

3. Update the error covariance:
Pk|k = (1− KkCk)Pk|k−1

The key point for implementing the EKF to our proposed model is to deal with the Ck. The detailed
derivation process is below:

Assume that the vector of the parameters is θ = [R+
0 , R−0 , M, λ] , where R+

0 is the ohmic
resistance when the cell is charging and R−0 is the ohmic resistance when the cell is discharging.
Then, to calculate Cθ

k :

dg(xk, uk, θ)

dθ
=

∂g(xk, uk, θ)

∂θ
+

∂g(xk, uk, θ)

∂xk

dxk
dθ

(17)

dxk
dθ

=
∂ f (xk−1, uk−1, θ)

∂θ
+

∂ f (xk−1, uk−1, θ)

∂xk−1

dxk−1
dθ

(18)

The equation can be calculated recursively, and the initial value of dxk
dθ (k = 0) can be set to zero.

In this particular case:
∂g(xk, uk, θ)

∂θ
=
[
I+ I− 0 0

]
(19)

∂g(xk, uk, θ)

∂xk
=

[
1 1

∂OCV(Sk)

∂Sk

]
(20)

∂ f (xk−1, uk−1, θ)
∂θ

=

 0 0 0 0

0 0
(

1− exp
(∣∣∣ ηik−1γTs

CN

∣∣∣))sgn(ik−1)
(
hk−1 −M

(
S, Ŝ

))
0 0 0 0

∣∣∣ ηik−1Ts
CN

∣∣∣ exp
(∣∣∣ ηik−1γTs

CN

∣∣∣)
 (21)

∂ f (xk−1, uk−1, θ)

∂xk−1
=


exp

(
− Ts

R1C1

)
0 0

0 exp
(
−
∣∣∣ ηikγTs

CN

∣∣∣) 0

0 0 1

 (22)

With the above equations, EKF can be executed recursively by repeating the steps in Table 2.

4.2. Unscented Kalman Filtering

Kalman filter is an optimum state recursive observer, and the frameworks of both EKF and UKF
have a similar prediction-update structure. Alternatively, UKF linearized the system by unscented
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transform (UT) rather than the Taylor expansion adopted by EKF. UKF not only achieves a higher-order
approximation expansion but also avoids the need to compute the Jacobian matrix. Based on the same
discretized state-space Equations (13) and (14), the UKF algorithm steps are as follows:

Let χ be a n-dimension vector which obeys X = N(χ, P) distribution.
Initialization:

x0 = E(x0), P0 =
[
(x0 − x0)(x0 − x0)

T
]

(23)

Generate the sigma points via:

χi,k−1 =


xk−1, i = 0

xk−1 +
(√

(n + λ)Pk−1

)
, i = 1, 2, . . . , n

xk−1 −
(√

(n + λ)Pk−1

)
, i = n + 1, . . . , 2n

(24)

And their weights are computed via:{
Wm

0 = λ
(n+λ)

Wm
i = 1

2(n+λ)
i = 1, . . . , 2n

(25)

{
Wc

0 = λ
(n+λ)

+
(
1− α2 + β

)
Wc

i = 1
2(n+λ)

i = 1, . . . , 2n
(26)

where λ is the scaling parameter, which satisfies:

λ = α2(n + κ)− n (27)

α is a small positive number (10−4 ≤ α ≤ 1). β is used for absorbing a priori information for
variable χ. For Gaussian distribution, β = 2 is optimal. κ is a scaling factor that determine the degree
of freedom of the sigma points, usually set 0 or 3− n to guarantee the positive definiteness of output
variable covariance.

Prediction update:
χi,k|k−1 = f

(
χi,k−1, uk

)
i = 0, . . . , 2n (28)

xk|k−1 =
2n

∑
i=0

Wm
i χi,k|k−1 (29)

Update the error covariance:

Pk|k−1 =
2n

∑
i=0

Wc
i

(
χi,k|k−1 − xk|k−1

)(
χi,k|k−1 − xk|k−1

)T
+ Qk (30)

where Qk is the covariance matrix of the state noise.
Measurement update:

yi, k|k−1 = g
(
χi,k−1, uk

)
i = 0, . . . , 2n (31)

yk|k−1 =
2n

∑
i=0

Wm
i yi,k−1 (32)

Calculate prediction covariance and cross-covariance:

Pyy, k =
2n

∑
i=0

Wc
i

(
yi,k|k−1 − yk|k−1

)(
yi,k|k−1 − yk|k−1

)T
+ Rk (33)
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Pxy, k =
2n

∑
i=0

Wc
i

(
χi,k|k−1 − xk|k−1

)(
yi,k|k−1 − yk|k−1

)T
(34)

where Rk is the covariance matrix of the measurement noise.
Calculate the Kalman gain:

Kk =
Pxy, k

Pyy, k
(35)

State estimate measurement update:

xk|k = xk|k−1 + Kk

(
yk − yk|k−1

)
(36)

Error covariance measurement update:

Pk|k = Pk|k−1 − KkPyy,kKT
k (37)

The UKF calculation procedure is summarized in Table 3.

Table 3. Summary of the unscented Kalman filter (UKF) approach for SOC estimation.

Initialization

1. Initialize with:
x0 = E(x0), P0 =

[
(x0 − x0)(x0 − x0)

T
]

State prediction

1. Update the step state vector:
χi,k|k−1 = f

(
χi,k−1, uk

)
i = 0, . . . , 2n

xk|k−1 =
2n
∑

i=0
Wm

i χi,k|k−1

2. Update the step error covariance:

Pk|k−1 =
2n
∑

i=0
Wc

i

(
χi,k|k−1 − xk|k−1

)(
χi,k|k−1 − xk|k−1

)T
+ Qk

Measurement update

1. Output estimate time update:
yi, k|k−1 = g

(
χi,k−1, uk

)
i = 0, . . . , 2n

yk|k−1 =
2n
∑

i=0
Wm

i yi,k−1

2. Calculate prediction covariance:

Pyy, k =
2n
∑

i=0
Wc

i

(
yi,k|k−1 − yk|k−1

)(
yi,k|k−1 − yk|k−1

)T
+ Rk

3. Calculate cross-covariance covariance:

Pxy, k =
2n
∑

i=0
Wc

i

(
χi,k|k−1 − xk|k−1

)(
yi,k|k−1 − yk|k−1

)T

Measurement correction

1. Calculate the Kalman gain:
Kk =

Pxy, k
Pyy, k

2. State estimate measurement update:

xk|k = xk|k−1 + Kk

(
yk − yk|k−1

)
3. Error covariance measurement update:

Pk|k = Pk|k−1 − KkPyy,kKT
k

4.3. Strong Tracking Unscented Kalman Filtering

Although UKF can achieve better performance than EKF in estimation accuracy, it should be
mentioned that UKF could lose the tracking capability and fail to converge the real value when it comes
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to the scenario that there is an abnormal change in one of the state vector components. Unfortunately,
in real-world conditions, batteries suffer from highly dynamic current load that results in sudden
acceleration and deceleration of driver intent. For the algorithm serve in a BMS, the sudden change of
state vector, as well as the measurement error caused by the transducer, may lead to poor performance
or biased results. Therefore, the STF is introduced in this study to address this problem. The idea
of STF is to adjust Kalman gain matrix Kk by introducing the suboptimal multiple fading factors
into the covariance matrix Pk|k−1 [30]. With the adaptively modifying Kalman gain matrix and priori
covariance matrix online, STF is able to resist the sudden change of system state vectors. The algorithm
for µk and Pk|k−1 are as follows [30,32]:

Firstly, define the residual error εk and residual error sequence covariance matrix Vk:

εk = yk − yk|k−1 (38)

Vk =

{
εkεT

k k = 1
ρVk−1+εkεT

k
1+ρ k ≥ 2

(39)

Generally, set ρ = 0.95.
Secondly, define the matrixes Nk and Mk as:{

Nk = Vk − CkQk−1CT
k − Rk

Mk = CkPk|k−1CT
k + Rk −Vk + Nk

(40)

Lastly, the fading factor µk is calculated by the following equation:

uk =

{
tr[Nk ]
tr[Mk ]

uk ≥ 1

1 uk ≤ 1
(41)

where tr[·] represents the trace of the matrix.
STF enforces the output residuals to be orthogonal or approximately orthogonal at each step to

overcome the dynamic errors. The Pk|k−1 is recalculated by Equation (42) to replace Equation (30).
The rest of the algorithm framework is the same as UKF algorithm.

Pk|k−1 = uk

2n

∑
i=0

Wc
i

(
χi,k|k−1 − xk|k−1

)(
χi,k|k−1 − xk|k−1

)T
+ Qk (42)

The process of STF for SOC online estimation is summarized in Figure 10. After the initialization
with the state vector x0 and error covariance P0, the data obtained by HPPC were used for model
parameters update, then the fading factor was calculated according to the residual error εk. Afterward,
the typical Kalman steps were performed while the a prior covariance matrix Pk|k−1 was corrected by
fading factor.
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5. Results and Discussion

The estimation performance of the three Kalman observers was compared. Since the true value
of SOC in the validation test was calculated by the accumulative Ampere-hours flowing in and out
of the battery, the test cells were fully charged by the CC–CV method and rested for 1 h at each
test temperature to guarantee the initial SOC0 to be 100%. The block diagram of our proposed
SOC observers is illustrated in Figure 11. The validation test profile was loaded into the cells and
Matlab/Simulink model, simultaneously. The sampling time was 1 s, and the model parameters were
updated according to the current SOC, I, and T. The parameters of each algorithm were configured
as follows:

Qk = [0.1 0; 0 0.00001]; Rk = 0.001; α = 0.002; β = 2; κ = 1.
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Figure 11. Block diagram of the proposed battery SOC observers.

The prediction accuracy of the three observers under each specific temperature was discussed.
The comparative results between the experimental data obtained by the test equipment and the
simulation data calculated by the three aforementioned algorithms under 0 ◦C are shown in Figure 12a.
Figure 12b is the zoomed figure for Figure 12a from 4000 s to 6500 s. As a result, it can be seen that
the performance of STF was better than UKF, and UKF was better than EKF. As shown in Figure 5a,
both charging and discharging processes existed in the FUDS cycles. However, the voltage presented a
general descending trend which was corroborated by the SOC result as shown in Figure 12b. Hence,
it can be said that EKF has the weakest capacity against the undulation which was caused by the
charging and discharging conversion. The weakness in voltage tracking makes EKF curve the most
fluctuant one in Figure 12b. Meanwhile, the estimation errors were also demonstrated in Figure 12c,
and EKF has the lowest robustness to SOC fluctuation. The max data jitter reached 8% when the battery
is working at low temperature. In addition, the MAE and RMSE were employed here again to evaluate
the accuracy of EKF, UKF, and STF. Figure 13 shows the MAE and RMSE of the three algorithms at
each temperature. For EKF and UKF, the MAE and RMSE decreased as the temperature increased.
However, there was an anomaly that occurs in the case when the STF was at 0 ◦C. We believe that the
reason for the anomaly was that when cells were loading at 0 ◦C, the external performance deteriorated
and the voltage fluctuation became more severe when the current direction changed. Consequently,
the strong tracking factor µk began to step in and corrected the estimation results by adjusting the a
prior covariance Pk|k−1. The statistical data of the MAE and RMSE are summarized in Table 4.
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Figure 12. Comparative results of EKF, UKF, and STF for SOC estimation: (a) SOC estimation results;
(b) the enlarged window from 4000 to 6500 s; (c) SOC estimation error.



Appl. Sci. 2018, 8, 2084 20 of 27

Appl. Sci. 2018, 8, x FOR PEER REVIEW  21 of 28 

Appl. Sci. 2018, 8, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/applsci 

 

Figure 12. Comparative results of EKF, UKF, and STF for SOC estimation: (a) SOC estimation results; 

(b) the enlarged window from 4000 to 6500 s; (c) SOC estimation error. 

 

Figure 13. The MAE and RMSE of EKF, UKF, and STF at different temperatures. 

Table 4. The statistical data of MAE and RMSE for EKF, UKF, and STF. 

MAE 

 −20 °C −10 °C 0 °C 10 °C 20 °C 30 °C 40 °C 50 °C 

EKF 4.2556 2.8469 2.4179 2.1860 2.1458 1.7587 1.3136 1.2558 

UKF 3.9459 2.6408 1.8307 2.0419 2.1688 1.7202 1.1985 1.1593 

STF 3.2692 2.2711 1.6102 1.9618 1.9292 1.5580 1.0925 1.1274 

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
-8

-6

-4

-2

0

2

4

6

8

10

E
rr

o
r 

(%
)

Time (s)

 EKF

 UKF

 STF

(c)

-20 -10 0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 MAE of EKF

 MAE of UKF

 MAE of STUKF

 RMSE of EKF 

 RMSE of UKF

 RMSE of STUKF

Temperature (℃ )

M
A

E
 (

%
)

2

3

4

5

6

 R
M

S
E

 (
%

)

Figure 13. The MAE and RMSE of EKF, UKF, and STF at different temperatures.

Table 4. The statistical data of MAE and RMSE for EKF, UKF, and STF.

MAE

−20 ◦C −10 ◦C 0 ◦C 10 ◦C 20 ◦C 30 ◦C 40 ◦C 50 ◦C
EKF 4.2556 2.8469 2.4179 2.1860 2.1458 1.7587 1.3136 1.2558
UKF 3.9459 2.6408 1.8307 2.0419 2.1688 1.7202 1.1985 1.1593
STF 3.2692 2.2711 1.6102 1.9618 1.9292 1.5580 1.0925 1.1274

RMSE

−20 ◦C −10 ◦C 0 ◦C 10 ◦C 20 ◦C 30 ◦C 40 ◦C 50 ◦C
EKF 5.7263 3.1847 2.8112 2.3636 2.2978 1.9360 1.5081 1.4964
UKF 4.6393 2.6023 2.0419 2.1297 2.2687 1.8886 1.3736 1.3426
STF 4.0924 2.5410 1.8461 2.1017 2.0763 1.7240 1.2160 1.2795

In real applications, it is impossible to obtain the true initial SOC0 before use. Therefore,
the robustness against the unknown initial SOC0 was also a crucial indicator of the estimation
algorithms. Taking the experimental data from 0 ◦C as examples, Figure 14 shows the comparative
results of the three algorithms with a SOC guess of 80% at 0 ◦C. From Figure 14a, all three algorithms
could trace the true trajectory accurately and converge to the true value quickly even with large initial
errors. From the enlarged window of 0 to 1500 s as shown in Figure 14b, it was clear that STF and
UKF converged faster than EKF. Figure 14c demonstrates the estimation errors; the RMSEs of STF and
UKF were 1.98% and 2.26%, respectively, which were 48.28% and 29.91% smaller than those of the
EKF. The simulation results were consistent with the fact that UT transformation, which is utilized by
UKF and STF, will produce less truncation error than first-order Taylor expansion, which is employed
by EKF.
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Figure 14. Robustness performance results with a SOC guess of 80% at a temperature of 0 ◦C: (a) SOC
estimation results; (b) the enlarged window from 0 to 1500 s; (c) SOC estimation error.
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To further discuss this topic, the initial SOC guess was set to 80%, 50%, and 30%, respectively.
Figure 15 shows the part of the estimation results, and all the cases were summarized in Table 5
for comparison. There was an interesting point that could be noted in Figure 15. Regardless of the
initial SOC guess values, all the curves converged at a specific point. After that point, the estimated
curves present overlapped. We called this occurrence the convergence point, because it represented the
convergence time of the algorithm. Judging from the position of the convergence point, the convergence
times of UKF and STF were almost the same but a bit less than that of EKF. All the three algorithms
were less than 2.5% of the whole operation time. This result is satisfactory for BMS applications.Appl. Sci. 2018, 8, x FOR PEER REVIEW  24 of 28 
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Figure 15. The robustness results for three algorithms: (a) EKF; (b) UKF; (c) STF.

Table 5. The MAE and RMSE by EKF, UKF, and STF at 0 ◦C.

MAE

Initial SOC Guess (%) EKF UKF STF
80 2.431 1.906 1.603
50 2.632 2.043 1.732
30 2.761 2.122 1.826

RMSE

Initial SOC Guess (%) EKF UKF STF
80 2.936 2.260 1.980
50 4.045 3.173 2.967
30 5.032 3.884 3.805

Finally, we were also interested in the robustness against the voltage measurement signal of
the three algorithms. The quality of the acquired voltage signals was always a challenge for BMS,
especially when the BMS was exposed to the vehicle’s high electromagnetic interference environment.
Hence, a constant −5 mV voltage measurement offset is designed to simulated the real-world voltage
sensor drift in the BMS. We used the test datasheet of 30 ◦C for validation. The voltage offset data was
embedded in the validation test datasheet of 30 ◦C with the initial SOC at 100%.

As shown in Figure 16, the STF had minimum error and the fastest convergence rate. Moreover,
the MAE and RMSE of the three algorithms were tabulated in Table 6. With the same initial SOC,
the MAE and RMSE of three algorithms were arranged from large to small by EKF, UKF, and STF
sequence, thereby suggesting that STF was the most robust.
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Figure 16. The estimated SOC error of the algorithms with −5 mV voltage offset at 30 ◦C.

Table 6. The MAE and RMSE of three algorithms when with voltage measurement offset.

Algorithm MAE (%) RMSE (%)

EKF 2.262 2.385
UKF 2.222 2.305
STF 2.186 2.280

6. Conclusions

We presented a modified ECM that took hysteresis and temperature effect into account for the
first time. The proposed model aimed to improve the voltage tracking accuracy of the existing ECM
whose applicability is often limited to steady current profiles and certain temperatures. With the
offline hysteresis-SOC-T table correcting the OCV and the rest of the model parameters were estimated
online, the improved model has the adaptability to ambient temperature rather than origin model.
Then the improved model was applied to three model-based recursive estimators including EKF,
UKF, and STF for SOC estimation. The procedures to execute each step for parameter identification
and the algorithms were explained in detail. Lastly, the model and the estimators were validated
by experimental test with commercial 18650 type Li(Ni1/3Co1/3Mn1/3)O2 cells. The validation test
consisted of several high dynamic FUDS microcycles, rest period, and a discharge process. This test
was carried out under different temperatures ranging from 0 ◦C to 50 ◦C. The MAE and RMSE
of the proposed model were smaller than the ordinary model in voltage estimation. In the same
vein, the performances of EKF, UKF, and STF were also evaluated by MAE and RMSE. The STF
algorithm outperformed UKF and EKF in estimation accuracy, robustness, and convergence behavior,
thereby demonstrating a better solution for BMS application.
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Nomenclature

CN Battery nominal capacity
UL terminal voltage
U1 voltage over RC network
Uoc open circle voltage
R1 polarization resistance
C1 polarization capacitance
I+ battery charge current
I− battery discharge current
k time step index
η coulomb efficiency
hk hysteresis voltage
γ positive constant to tune the rate of decay
S(k) experimental data (battery voltage or SOC) at step k
Ŝ(k) estimated value (battery voltage or SOC) at step k
k|k-1 prior estimation state
ωk system process noise
υk measurement noise
ξ identification parameters
χ a n-dimension vector for state space
λ scaling parameter
Wm

i weights of mean
Wc

i weights of covariance
α small positive number
β state distribution parameter
κ scaling factor
Qk covariance matrix of the state noise
Rk covariance matrix of the measurement noise
Kk Kalman gain
εk residual error
Vk residual error sequence covariance matrix
µk fading factor
List of abbreviations
ANN Artificial Neural Network
BMS Battery Management System
BSF Battery Size Factor
CDKF Central-Difference Kalman filter
ECM Equivalent Circuit Model
EKF Extended Kalman Filter
EMF Electro-Motive Force
EV Electric Vehicles
FL Fuzzy Logic
FUDS Federal Urban Driving Schedule
HPPC Hybrid Pulse Power Characterization
KF Kalman filter
MAE Mean Absolute Error
OCV Open Circuit Voltage
RLS Least Square Method
RMSE Root Mean Squared Error
SOC State of Charge
STF Strong Tracking Filter
SVM Support Vector Machine
UKF Unscented Klaman Filter
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