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Abstract: This paper proposes an energy management strategy for a power-split plug-in hybrid
electric vehicle (PHEV) based on reinforcement learning (RL). Firstly, a control-oriented power-split
PHEV model is built, and then the RL method is employed based on the Markov Decision Process
(MDP) to find the optimal solution according to the built model. During the strategy search, several
different standard driving schedules are chosen, and the transfer probability of the power demand
is derived based on the Markov chain. Accordingly, the optimal control strategy is found by the
Q-learning (QL) algorithm, which can decide suitable energy allocation between the gasoline engine
and the battery pack. Simulation results indicate that the RL-based control strategy could not only
lessen fuel consumption under different driving cycles, but also limit the maximum discharge power
of battery, compared with the charging depletion/charging sustaining (CD/CS) method and the
equivalent consumption minimization strategy (ECMS).

Keywords: energy management strategy; Markov decision process (MDP); plug-in hybrid electric
vehicles (PHEVs); Q-learning (QL); reinforcement learning (RL)

1. Introduction

In recent years, as the greenhouse effect and air pollution have become increasingly severe, green
energy attracts more attention in all walks of life. In automotive industry, exhaust emission from
conventional fuel vehicles is an important factor that causes the environmental pollution. Developing
new energy vehicles (NEVs) has shown its significance in reducing emission and lessening induced
air pollution. Currently, NEVs can be mainly classified into three types, i.e., fuel cell vehicles, battery
electric vehicles (BEVs) and hybrid electric vehicles (HEVs), and they are usually equipped with an
energy storage system, such as a battery pack or a super-capacitor [1,2]. For BEVs, it can be powered
purely by the battery pack or the super-capacitor. Plug-in hybrid electric vehicles (PHEVs) are
considered to combine advantages of both BEVs and HEVs [3]. Compared with HEVs, the prominent
advantage of PHEVs is that the battery pack can be recharged by the external charging plug, thereby
supplying certain all electric range (AER). Compared with BEVs, the controller of PHEVs can start
the engine to sustain the battery when a certain battery state of charge (SOC) threshold is reached
and meanwhile supply the extended driving range. Consequently, it is critical to manage the power
distribution between the battery and the engine properly in PHEVs.

Energy management strategy (EMS) of PHEVs is responsible for power and energy distribution
among different energy storage systems, such as gasoline engine and electromotor. Different control
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tradeoff of energy management target is mentioned in related literatures [4,5] including fuel economy
improvement [6], and tailpipe emission reduction [7]. Rule based and optimization based methods
are mostly considered, as discussed by the authors of [8]. Rule based methods are relatively easier
to exploit and are widely employed in practice [9,10]. In [9], a classified rule based EMS is designed,
which emphasizes on different operating modes of PHEVs, and simulation results yields satisfied
emission reduction. However, these rule based strategies highly depend on design process and
engineering experience, thus leading to longer design time [11]. On the contrary, modern real-time and
global optimization based algorithms can be applied with provable optimal guarantee. In particular,
dynamic programming (DP), adopted by many researchers, is generally treated as an emblematic
algorithm among all the optimal methods [12–15]. In [12], the investigators proposed an intelligent
EMS based on DP, by which numerical simulation results manifest the improved fuel economy
dramatically. Quadratic programming (QP) is also a mature algorithm to search for the optimal
result with affordable operational budgets [16], compared with DP. Pontryagin minimum principle
(PMP) [17] and equivalent consumption minimization strategy (ECMS) [18] are also widely adopted
in EMS of PHEVs. In addition, model predictive control (MPC) [19], is extensively investigated as a
real-time optimization manner applying to EMS of PHEVs. Furthermore, intelligent algorithms such
as simulated annealing (SA) optimization [17], neural network (NN) [20], genetic algorithm (GA) [21]
are also employed for EMS of PHEVs in recent years.

Nowadays, with development of artificial intelligence (AI) technology, reinforcement learning (RL)
is becoming more and more popular in various fields including robotic control, intelligent system, and
energy management of power grids. In [22], a parallel control architecture based on the RL technology
is applied for robotic manipulation, thereby enabling robots to easily adapt to the environment
variation. RL is also introduced in the field of energy management of PHEVs in [23–30]. In [23], the
investigators find that the RL based EMS cannot only guarantee the vehicle dynamic performance, but
also improve the fuel economy, and as a result, can outperform stochastic dynamic program (SDP) in
terms of adaptability and learning ability. In [24], the Kullback–Leibler (KL) divergence technique is
applied to calculate the power transition probability matrices of the RL algorithm to find the optimal
power distribution ratio between the battery and the super-capacitor. Simulation results show that this
kind of control policy cannot only effectively decrease the battery charging frequency and control the
maximum discharging current, but also maximize the energy efficiency to cut down the overall cost
under diverse conditions. In [25], a novel RL based method is proposed combining with the remaining
travel distance estimation, and the controller could continuously search for the optimal strategy and
learn from the previous process. In [26], a RL method called TD (λ)-learning is employed for the HEV,
and simulation results manifest that the RL based policy can improve the fuel economy by 42%. In [27],
a blended real-time control strategy is proposed based on the Q-learning (QL) method to balance the
overall performance and optimality. A bi-level control strategy is proposed in [28], in which the fuzzy
encoding predictor and the KL divergence rate are employed to predict the driver’s power demand
in the higher level, and the lower level is mainly focused on employing the RL algorithm to find the
optimal solution.

Based on the above discussion, it is imperative to further apply the RL technique for energy
management of power-split PHEVs. Hence, the main motivation of the energy management strategy
is to further refine the battery power based on the RL by selecting proper state and action variables.
As a result, the objectives for both optimal fuel economy and battery power restriction can be met at
the same time, thereby prolonging the battery life potentially. For the sake of achieving the target, the
powertrain of a power-split PHEV is modeled and analyzed first. Subsequently, considering that the
proposed method should be applicable in most driving conditions, the Markov chain is adopted to
estimate the transition probability matrix regarding demanded power under different driving cycles.
Finally, the QL algorithm is conducted to develop and finally form the EMS towards reaching the
optimal target. Furthermore, the proposed EMS is compared with the CD/CS strategy to validate the
optimality under different driving cycles by simulations. The rest of this article is structured as follows:
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Section 2 describes the simplified vehicle structure and the fuel consumption model. In Section 3, the
RL based framework is proposed to realize the optimal EMS. In Section 4, corresponding simulations
prove the proposed method is superior to the CD/CS algorithm. Section 5 concludes the article.

2. PHEV Powertrain Model

In this paper, the model under study is a power-split PHEV derived from Autonomie. A typical
power-split PHEV model is the Toyota Prius PHEV. The powertrain structure of the vehicle is shown
in Figure 1, which consists of a 39 ampere-hour (Ah) traction battery pack, a gasoline engine, a final
drive, a planetary transmission and two electric motors, i.e., Motor 1 and Motor 2. The engine, Motor 1
and Motor 2 connect with the planet carrier, the ring gear and the sun gear, respectively. As can be
seen in Figure 1, motor 2 is employed to provide a significant portion of the electric power, and motor
1 is mainly used as a generator. The main parameters are listed in Table 1.
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Figure 1. Power-Split plug-in hybrid electric vehicle (PHEV) powertrain structure.

Table 1. Main parameters of power-split PHEV.

Parts Parameters Value

Vehicle Mass 1801 kg
Battery Rated capacity 39 Ah

Motor 1
Peak power 50 kW
Rated power 25 kW

Motor 2
Peak power 30 kW
Rated power 15 kW

Engine Rated power 57 kW

Planetary gear set Sun gear 30
Ring gear 78

2.1. Energy Management Problem

This paper focuses on minimizing the total fuel consumption. Hence, the fuel index β can be
established as,

β = minFtotal = min
∫ T

0
Fratedt (1)

where Ftotal is the total fuel consumption, Frate donotes the fuel rate. T is the total driving time. For the
sake of calculating the fuel rate by appropriate simplification, Frate can be determined as,

Frate = f (Teng, ωeng) (2)
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where ωeng, Teng denote the speed and the torque of engine, respectively. To minimize the fuel
consumption, the relationship between the vehicle power request and the fuel consumption needs to
be analyzed in detail.

2.2. Power Request Model

Given a certain driving cycle, the power required to drive the vehicle powertrain can be
calculated as,

Preq = (Ff + Fw + Fi)v (3)

where Preq is the vehicle request power, Ff , Fw, and Fi represent the resistance derived from the road,
air drag and vehicle inertial, respectively. v denotes the driving velocity. The resistances, that merely
associated with vehicle and environment parameters, can be expressed as,

Ff = mg f
Fw = Cd Av2/21.15
Fi = δmg

(4)

where m is the total mass, f denotes the road resistance coefficient, g is the gravity coefficient, A is the
frontal area of the vehicle, Cd is the aerodynamic drag coefficient, and δ is the rotational mass coefficient.
As shown in Figure 1, the power flow equations can be formulated to describe the corresponding
power flow, as: 

Preq = Pf inal · η f inal
Pf inal = (Pmot1 + Pmot2 + Peng) · ηgear

Pbat = (Pmot1/ηc1 + Pmot2/ηc2) + Pacc

Peng = feng(Teng, ωeng)

(5)

where Pf inal is the driveline power, Pmot1, Pmot2, and Peng are the output power of motor 1, motor 2 and
engine, respectively. Pacc denotes the power of electric accessories and is assumed to be a constant
value, i.e., 220 W. ηgear, η f inal and ηc are the transmission efficiency factor of gear, final drive and
electric convertor, respectively. As seen in Figure 1, the planetary gear set works as the coupling device
that connects the engine and the motors, and the corresponding dynamic equations are expressed
as follows: 

ωeng = 1
1+igear

ωmot2 +
igear

1+igear
ωmot1

Teng = −(1 + igear)Tmot2 = − 1+igear
igear

Tmot1

ωring = ωmot1 = v
rwhl

r f inal

(6)

where igear is the transmission ratio of the planetary gear, ωmot1, ωmot2, and ωring are the speed of
motor 1, motor 2 and ring gear, respectively; Tmot1 and Tmot2 are the torque of two motors; rwhl denotes
the radius of the wheel and r f inal is the final driveline ratio. In this article, we choose to ignore the
inertial of planet gear, sun gear and ring gear for ease of managing the energy distribution.

Based on the above descriptions, the instantaneous fuel consumption Frate can be redefined as:

Frate = f (Teng, ωeng) = f (Pbat, Preq, v) (7)

Now we can find that Frate can be directly determined by Pbat, thus it is necessary to model the
battery and analyze its power relationship.

2.3. Battery Model

To analyze the power relationship of the battery, a simplified battery model is presented here,
which consists of an internal resistor and an open circuit voltage source, and the corresponding
calculation equations of the battery model can be described as:
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
Pbat = OCV · ibat − ibat

2Rint

ibat =
OCV−

√
OCV2−4RintPbat

2Rint

SOC = SOCinit − 1
Cbat

∫ t
0 ibatdt

(8)

where OCV denotes the battery open circuit voltage, ibat is the battery current, Rint is the battery
internal resistance, Cbat is the battery capacity, SOC is the battery SOC and SOCinit is its initial value.
Detailed battery parameters varying with SOC are shown in Figure 2. It can be found that Rint
decreases from 0.1403 ohm to 0.09 ohm and OCV ranges from 165 V to 219.7 V.
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Figure 2. OCV and Rint variation with state of charge (SOC).

From the above analysis, we can find that if the battery power is predetermined, the energy
distribution strategy inside the vehicle can be achieved. By this manner, the control strategy
distributions can be ascertained by the battery power. In order to ensure safety of all components and
consider their power limitations and performance extension, some constraint conditions are imposed:

Pbat_min ≤ Pbat ≤ Pbat_max
Pmot1_min ≤ Pmot1 ≤ Pmot1_max

Pmot2_min ≤ Pmot2 ≤ Pmot2_max

Peng_min ≤ Peng ≤ Peng_max

Preq_min ≤ Preq ≤ Preq_max

SOCmin ≤ SOC ≤ SOCmax

(9)

where parameters with subscripts min and max mean their corresponding minimum and maximum
values, respectively. In the next step, the RL based strategy is introduced to achieve the energy
management of the PHEV.

3. Reinforcement Learning for Energy Management

To apply the RL for energy management of PHEVs, we need to build the vehicle power transition
probability model first.

3.1. Transition Probablity Model

Markov chain model is a discrete time and state stochastic process with Markov property, of
which the state is a sequence with multiple finite random variables. In this process, the selection of the
next state is related to the current state and the current action, and does not show any relationship with
the previous historical state. In addition, the change of state is independent of time, but is transferred
by probability. According to the finite-state Markov chain driver model introduced in [31], the actual
driving cycle can be considered as the stochastic Markov chain. The request power is treated as a
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stochastic variable and can be modeled by the Markov chain. To obtain the transition probability
matrix, several standard driving cycles shown in Figure 3 are recorded and analyzed to estimate the
transition probability matrix of the demanded power. The selected driving cycles not only include
urban, suburban and highway driving conditions, but also involve some intense speed profiles, of
which the velocity scale, the acceleration and deceleration frequency can cover most of the driving
conditions. According to speed profiles of partially selected driving cycles depicted in Figure 3, the
transition probability of the demand power can be calculated based on the maximum likelihood
estimation, as: 

ps,s′ =
ns,s′
ns

ns =
K
∑

k=1
ps,s′k

(10)

where ns,s′ represents the counted number transiting from s to s′, and ns is the total number for all
transitions of s. ps,s′ means the transition probability of the driver’s power demand transferred from
the current moment to the next moment at each velocity state.
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Figure 3. Drive cycle curves: (a) Cycle505 and JC08 cycles; (b) Highway Fuel Economy Test (HWFET) 
and IM240 cycles; (c) LA92 and REP05 cycles; and (d) New European Driving Cycle (NEDC) and SC03 
cycles. 

According to calculation based on the Markov chain, the transition probability matrix for vehicle 
speed of 30 km/h and 80 km/h are shown in Figure 4. It can be found that the request power scope is 
from −40 kW to 40 kW at speed of 30 km/h and the request power scope is from −80 kW to 80 kW at 
speed of 80 km/h. The transition probability is limited within 0.1 to 0.7, and most of the distribution 
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Figure 3. Drive cycle curves: (a) Cycle505 and JC08 cycles; (b) Highway Fuel Economy Test (HWFET)
and IM240 cycles; (c) LA92 and REP05 cycles; and (d) New European Driving Cycle (NEDC) and
SC03 cycles.

According to calculation based on the Markov chain, the transition probability matrix for vehicle
speed of 30 km/h and 80 km/h are shown in Figure 4. It can be found that the request power scope is
from −40 kW to 40 kW at speed of 30 km/h and the request power scope is from −80 kW to 80 kW at
speed of 80 km/h. The transition probability is limited within 0.1 to 0.7, and most of the distribution
is concentrated on a diagonal. In addition, it can be clearly seen from Figure 4 that the transiting
probability of power request moving from the current state to the next state with different speed values
is obviously different.
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Figure 4. The transition probability map. (a) The transition probability map at V = 30 km/h; (b) The
transition probability map at V = 80 km/h.

3.2. Reinforcement Learning Algorithm

RL, as a significant machine learning method, can conduct repeated explorations in which
the agent takes a series of actions in its environment to maximize its designated benefits.
The agent-environment interaction for RL is illustrated in Figure 5.
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Figure 5. The agent-environment interaction.

The agent-environment interaction can be regarded as a Markov decision process, and the RL
mainly focuses on solving the Markov decision process based on a series of iteration. In this paper, the
state variable s ∈ S includes the power request, SOC and the vehicle speed and the action variable
a ∈ A is the battery power. The reward function r, which evaluates the current action, is defined as the
immediate fuel consumption of the engine.

The object function could be written as the total reward for the finite future at each state, which
can be described as:

V∗(s) = E

(
∞

∑
t=0

γtrt

)
(11)
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where γ ∈ [0, 1] is the discount factor to guarantee convergence of the agent during the learning
process. Since any state is different and each state is unique, the object function can be reformulated as:

V∗(s) = min
a∈A

(r(s, a) + γ ∑
s′∈S

psa,s′V
∗(s′)) (12)

where psa,s′ indicates the transition probability of state variables that change from s to s′ based on
action a, and r(s, a) indicates the reward of applying action a to transfer from s to s′.

The optimal control strategy is determined by Bellman’s principle:

π∗(s) = argmin
a

(r(s, a) + γ ∑
s′∈S

psa,s′V
∗(s′)) (13)

As a popular candidate of RL algorithms, the QL algorithm is simple and easy to implement [32],
and has been widely employed to solve the optimal value function of MDP. The QL algorithm can
obtain a strategy to maximize the sum of expected discounted rewards by directly optimizing an
iterated value function Q. According to the updated Q value, the agent needs to examine every action in
each iteration to make sure that the learning process can converge. In terms of these merits, we employ
the QL algorithm as the kernel algorithm to train, learn and finally achieve the energy management of
PHEVs. In the QL algorithm, the Q value, i.e., the state-action value, can be written as:

Q∗(s, a) = r(s, a) + γ ∑
s′∈S

psa,s′ min
a

Q∗(s′, a′) (14)

Furthermore, the updated rule of Q value can be described as:

Q(s, a)← Q(s, a) + η(r + γmin
a′

Q(s′, a′)−Q(s, a)) (15)

where η ∈ [0, 1] is a decaying factor.
According to the above discussion, the proposed method consists of a simplified vehicle model, a

transition probability matrix, a reward matrix and the QL control strategy, where the reward matrix is
computed via the simplified vehicle model and the control strategy is calculated according to the power
transition matrix, the reward matrix and the QL algorithm feedback. Table 2 lists the pseudocode
of the QL algorithm, and it can clearly illustrate the iterative process of QL algorithm. The optimal
control strategy is derived through the iterative process shown in Table 2. Figure 6 summarized the
detailed procedures of QL in Matlab [19]. First, the QL algorithm and the MDP as well as the related
parameters are combined and discretized. Then, the power transition matrix is calculated based on the
driver model. Based on the discrete variables and the simplified PHEV model, the reward matrix R is
calculated. After iteration, the QL algorithm can be applied successfully to find the optimal energy
management solution.

Table 2. The pseudocode of Q–Learning (QL) algorithm.

The QL Algorithm Framework

1. Arbitrarily initialize Q(s,a), S
2. Repeat each step

3. According to the Q(s,a) (ε-greedy policy), choose A
4. Take action A, observe R, S′

5. Update the Q(s,a), S← s′

6. Until S is terminal
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Figure 6. Procedures of the QL calculation.

The optimal control strategy based on the RL algorithm is shown in Figure 7. The battery power
ranges from −12 kW to 12 kW, the required power range is limited within −45 kW to 45 kW, and
the SOC ranges from 0.3 to 0.9. It can be found that the optimal battery power can be determined by
state variables, i.e., the required power, SOC and the vehicle speed. Figure 8 shows the convergence
process of the QL algorithm, where the mean discrepancy is applied to measure the difference of the Q
values. We can find that with increase of the iterations, the mean discrepancy gradually decreases to 0.
From this point, the effectiveness and convergence of the QL algorithm can be proved.
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Figure 7. Optimal control strategy based on RL algorithm with different speeds. (a) The optimal control
action variable at V = 20 km/h; (b) The optimal control action variable at V = 40 km/h; (c) The optimal
control action variable at V = 60 km/h; and (d) The optimal control action variable at V = 80 km/h.
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4. Simulation and Result

In this article, simulations are conducted based on the Autonomie and Matlab/Simulink. New
European Driving Cycle (NEDC), Highway Fuel Economy Test (HWFET) and Urban Dynamometer
Driving Schedule (UDDS), shown in Figure 9, are employed to verify the proposed strategy.
The selected driving cycles can represent most of the driving pattern under different driving conditions.
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To compare the performance of the proposed method, the charge depletion/charge sustaining
(CD/CS) algorithm is introduced as a benchmark, which is widely employed in actual applications.
In addition, the ECMS is also employed to compare the performance of the proposed algorithm. For the
CD/DS algorithm, the power distribution of the vehicle can be easily achieved by setting a series of
control parameters without any pre-known information of driving conditions. During the CD stage,
except for some specific situation, the engine generally remains shut down, and the tractive power is
mainly provided by the battery until the SOC drops to a specified lower threshold (e.g., 30%). Then,
the vehicle is powered by both the engine and the battery to remain SOC near the specified value
under the CS stage. The detailed CD/CS control scheme can be described [12] as:
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Pbat =



Preq SOC > 36%
min(27804.9, Preq) 33% ≤ SOC ≤ 36%
min(27804.9 · (SOC− 0.3)/0.03, Preq) 30% ≤ SOC ≤ 33%
max(−28157.5 · (SOC− 0.3)/0.03, Preq) Preq < 0, 27% ≤ SOC ≤ 30%
max(−28157.5 · (SOC− 0.3)/0.03, Preq − Peng_max) Preq > 0, 27% ≤ SOC ≤ 30%
max(−28157.5, Preq) Preq < 0, SOC < 27%
max(−28157.5, Preq − Peng_max) Preq > 0, SOC < 27%

(16)

where Peng_max represents the maximum power of engine.
The ECMS algorithm, as a classical real-time optimization algorithm, transfers the electric

consumption of the battery to the equivalent fuel consumption and then tries to minimize the fuel
consumption. During each time constant, the vehicle power request is distributed to the battery and
the engine according to the minimum principle. By this way, the whole fuel consumption can be
reduced and the fuel economy can be improved simultaneously. A typical solution of the ECMS can be
formulated based on the Hamilton function, as:

H(x(t), u(t), λ(t), t) = Frate_eng(u(t), t)+λ · f (x(t), u(t), t) (17)

where λ is an equivalent factor that can be adjusted dynamically or can be fixed as a constant value. x(t)
and u(t) are state variables and control variables, respectively. In this paper, x(t) includes the battery
SOC, the vehicle power demand, and the vehicle speed. Similar to before, u(t) is the battery power.
By solving (17), the optimal solution can be found and the final fuel consumption can be obtained.

In simulation validation, three standard cycles are selected to splice multifarious and verifiable
conditions. Cycle 1 is consisted of two NEDC cycles, one UDDS cycle and two HWFET cycles, Cycle 2
is comprised of two UDDS cycles, two NEDC cycles and two HWFET cycles, and Cycles 3 and 4
includes five and six HWFET cycles. Cycles 5 and 6 are consisted of six and seven UDDS cycles,
respectively. The fuel consumption results with the SOC correction [33] are listed in Table 3. It can be
found that compared with the CD/CS scheme, the RL based control strategy can effectively reduce
the fuel consumption by 10.1%, 9.31%, 4.84%, 4.49%, 5.95% and 5.13% under different driving cycles.
Compared with the ECMS, the RL algorithm can gain similar fuel consumption savings. Thus, the
validity of RL based algorithm can be proved. More intuitively, Figure 10 shows the battery power
comparison with respect to the proposed algorithm, the ECMS and the CD/CS scheme. The power
range of the battery based on the RL algorithm is from −12 kW to 12 kW, while the battery power
based on the CD/CS algorithm ranges from −30 kW to 5 kW. It can be recognized that the EMS based
on the RL algorithm is capable of controlling the range of the battery power variation smaller than that
of the CD/CS method, and the RL method can restrict the maximum battery discharge power. Here
we can conclude that the EMS based on the RL control strategy can protect the battery and extend the
battery life to some extent.

Figure 11 shows the SOC curve under different driving cycles. The initial SOC is supposed to
be 90%, and the minimum SOC threshold is 30%. Compared with the results of the CD/CS scheme,
the SOC downward trend based on the RL method is more smoothly. Figure 12 illustrates the
fuel consumption under four driving cycles. According to Figures 11 and 12, we can find that the
optimized control strategy does not take effect completely in the entire cycle, and works before the
battery SOC drops to a certain value. Even so, the proposed algorithm can still effectively reduce the
fuel consumption.

To further discover improvements of the RL based strategy, the engine operating points for both
RL based method and the CD/CS method under four driving cycles are depicted in Figure 13. It can be
obviously found that by implementing the RL based algorithm, the engine working efficiency is higher
than 30% in most cases. Compared with the CD/CS strategy, the proposed method can make the
engine working points more densely in the high efficiency area. Moreover, it can be noticed that based
on the RL based method, the majority of engine working points gather near the optimal operating line,
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not like that by the CD/CS algorithm. Therefore, it can explain that why the fuel consumption based
on the proposed method is less than that based on the CD/CS method.

Table 3. Fuel economy comparison.

Driving Cycle Strategy Ending SOC (%) Fuel Consumption (kg) Saving (%)

Cycle 1
CD/CS 30.57 1.3205 -
ECMS 30.21 1.2061 8.39

RL method 30.45 1.1851 10.1

Cycle 2
CD/CS 30.57 1.7374 -
ECMS 30.21 1.6067 7.15

RL method 30.25 1.5702 9.31

Cycle 3
CD/CS 30.57 1.9951 -
ECMS 30.21 1.8734 5.78

RL method 30.25 1.8930 4.84

Cycle 4
CD/CS 30.57 2.6360 -
ECMS 30.21 2.4819 5.60

RL method 30.25 2.5121 4.49

Cycle 5
CD/CS 30.14 1.2574 -
ECMS 29.31 1.1681 5.91

RL method 29.33 1.1688 5.95

Cycle 6
CD/CS 30.14 1.6551 -
ECMS 2931 1.5488 5.52

RL method 29.32 1.5563 5.13
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Figure 10. Battery power comparison under driving cycles. (a) Cycle 1; (b) Cycle 2; (c) Cycle 3; and (d)
Cycle 6.
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Figure 11. SOC comparison of driving cycles. (a) Cycle 1; (b) Cycle 2; (c) Cycle 3; and (d) Cycle 6.Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 16 
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Figure 12. Fuel consumption results. (a) Cycle 1; (b) Cycle 2; (c) Cycle 3; and (d) Cycle 6.
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Figure 13. Engine hot efficiency results. (a) Cycle 1; (b) Cycle 2; (c) Cycle 3; and (d) Cycle 6.

5. Conclusions

In this paper, the Q-learning RL algorithm has been employed for the energy management
of a power-split PHEV. The mathematical vehicle model is built after detailed powertrain analysis.
By combining Q-learning method with MDP, the RL model of PHEV is constructed and the optimal
result based on RL is obtained where the battery power is optimized. Three standard driving cycles
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are chosen for simulation verification. Simulation results manifest that the proposed RL algorithm
can guarantee a preferable fuel consumption and show more effectiveness than the CD/CS algorithm.
In addition, the proposed algorithm can restrict the battery current within a narrower range, thus
extending the battery life cycle to some extent.

Our next step work will focus on exploring a more stable Markov chain model and more advanced
optimization algorithm. In addition, the proposed algorithm will be further investigated to update the
transition probability matrix of the Markov driver chain in real time, and hardware-in-the-loop
and actual vehicle validation will be conducted to verify the real control performance of the
proposed method.
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