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Abstract: This paper proposes a comparison study of energy management methods for a parallel
plug-in hybrid electric vehicle (PHEV). Based on detailed analysis of the vehicle driveline, quadratic
convex functions are presented to describe the nonlinear relationship between engine fuel-rate and
battery charging power at different vehicle speed and driveline power demand. The engine-on power
threshold is estimated by the simulated annealing (SA) algorithm, and the battery power command is
achieved by convex optimization with target of improving fuel economy, compared with the dynamic
programming (DP) based method and the charging depleting–charging sustaining (CD/CS) method.
In addition, the proposed control methods are discussed at different initial battery state of charge
(SOC) values to extend the application. Simulation results validate that the proposed strategy based
on convex optimization can save the fuel consumption and reduce the computation burden obviously.

Keywords: battery power; convex optimization; dynamic programming; engine-on power; plug-in
hybrid electric vehicle; simulated annealing

1. Introduction

Nowadays, plug-in hybrid electric vehicles (PHEVs) representing a positive research direction
due to combination of a certain all electric range (AER) and hybrid drive, exhibit apparent advantages
in environmental protection and petroleum savings over traditional hybrid electric vehicles (HEVs).
Compared with HEVs, PHEVs are equipped with higher capacity energy storage systems that can be
directly charged from the power grid [1,2]. Currently, automotive manufacturers and research institutes
are actively devoted to developing PHEVs and improving controlling performances. For PHEVs,
an appropriate and effective energy management is critical to improve the vehicle’s fuel economy and
reduce emissions.

For the energy management strategy, the main destination is to optimize the fuel economy.
Since there exists some uncertainty for driving cycles, driver’s habits, and weather conditions that
can influence the energy distribution in the PHEV, from this point, it can be said that the energy
management is a stochastic optimization problem. Actually, popular control candidates can be divided
into four types: (1) rule based control method [3–5]; (2) intelligent control methods, including artificial
neural network (ANN) [6,7], fuzzy logic [8,9], model predictive control (MPC) [10,11], and machine
learning algorithm [12,13]; (3) analytic methods [14,15]; and (4) optimization based control method,
including deterministic dynamic programming (DP) [1,16–19], Pontryagin’s Minimum Principle
(PMP) [20,21], quadratic programming (QP) [22,23], and convex optimization [24–26]. These methods’
purpose can include improving the fuel economy, reducing emissions [27,28], prolonging cycling life
of the battery pack [2,29], minimizing the operation cost [30], etc.
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Among these methods, rule-based control methods are simpler and easier to implement,
which have been widely applied in practical application [4,31,32]. It is relatively easy to implement
with fixed control parameters according to experience and prior knowledge. The prevalent rule-based
method is the charge depleting/charge sustaining (CD/CS) method. During the CD mode, the vehicle
is powered by the motor which absorbs the energy from the battery. The CD mode tries to use up the
energy stored in the battery until its state of charge (SOC) decreases to an allowable minimum value.
After that, the vehicle operating mode turns to the CS mode, which is also called the hybrid mode.
In this mode, the vehicle is powered by the motor and engine together and meanwhile the battery SOC
maintains in the vicinity of the low threshold. Due to the complex coupling characteristic of driveline
system of PHEVs, rule-based method may not achieve the optimal power split between the engine
and the motor, even if it is simple and stable.

The intelligent methods and the analytic method have been widely researched in the energy
management of the PHEVs. In Ref. [9], a fuzzy logic energy management strategy of a series-PHEV is
proposed to achieve the power split between the battery and the engine, based on the battery working
state and vehicle power demand, and simultaneously to control the engine working in the economic
region. Nonetheless, the fuzzy logic table and related rules should be defined with care. In Ref. [11],
the power split of a PHEV which is equipped with a semi-active hybrid energy storage system and
an assistance power unit, is regulated by the MPC method; however, it does not consider the engine
ON/OFF power threshold and the trip length. In Ref. [12], a reinforcement learning-based method of
a PHEV is raised, which takes the minimizing electricity consumption, real-time control and different
conditions into account. In Ref. [14], based on modeling the electric driveline loss and applying the
piecewise linear fuel consumption, an analytic method is applied to establish the energy management
strategy to minimize the fuel consumption via finding the engine-on power and the optimal battery
power commands.

Generally, optimization-based control methods include PMP, QP, DP, and convex optimization [6].
The PMP algorithm is applied to achieve the energy management adaptively for the GM Chevrolet
Volt [33]. Nevertheless, a complex Hamilton function and the local optimum solution need to be
solved and determined. In Ref. [22], the energy management strategy is optimized by the QP
algorithm to reduce the engine fuel consumption, whereas this algorithm does not consider the
influence of the initial SOC variation. In Ref. [17], the DP based energy management strategy is
constructed, which considered the discretization resolution of the relevant variables and the boundary
constraint of their feasible regions. Currently, convex optimization has been substantially applied to
energy management optimization of traditional HEVs and PHEVs [24,34–36]. In Ref. [34], a convex
programming-based power management strategy of a PHEV, which covers expenditures of electricity
charged from the grid, fuel consumed during on-road driving, and battery aging. In Ref. [36], a novel
convex modeling approach is presented which allows for battery sized and energy management of
a plug-in hybrid powertrain based on a semidefinite program. However, some fixed control parameters,
such as the engine-on power, cannot be estimated by the convex optimization [37]. In order to calculate
these variables, randomized heuristic searching algorithm are applied, such as genetic algorithm (GA),
simulated annealing (SA). Compared with GA algorithm, the SA algorithm is simpler and with higher
efficiency, which can search the optimal solution more quickly. Due to these merits, the SA algorithm
has been applied in the research of energy management for HEVs and PHEVs [22,38,39].

Compared with the optimization-based method, the optimal control parameters of analytic
method and rule-based energy management strategy for PHEV can be obtained difficultly. Even the
intelligent based method for PHEV has been widely applied, nevertheless, the intelligent based
control method is complex and difficult to find the optimal solutions. The optimization-based method
can obtain the global optimal solutions, improve the vehicle’s control performance and engine fuel
economy. Motivated by these, we plan to compare the performance among different methods. In this
paper, there typical methods including the CD/CS method, the DP method, and an intelligent method,
i.e., SA combing with the convex optimization are employed to compare the fuel economy for a parallel
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PHEV. As shown in Figure 1, the parallel PHEV can be powered by the engine and motor together.
Since the gearbox can select the gear ratio according to the power and speed demand from the driveline,
there exist two degrees of freedom in the vehicle, which increases certain complexity to decouple
the powertrain dynamics. In order to simplify the problem, an automated gear shift rule strategy is
adopted considering the vehicle speed. By this manner, the degrees of freedom changes from two to
one and the problem becomes easier to solve. In this paper, the optimization purpose is to minimize
the fuel consumption in a certain trip. Based on analysis of the energy flow and the vehicle working
modes, the vehicle driveline system is simplified and translated into a series of quadratic equations,
which can effectively express the relationship between the engine fuel rate and the battery power
at different power demand and velocity. The SA algorithm is implemented to search the optimal
engine-on power, in which the optimal sequence of battery power is optimized simultaneously by CP.
With considering the referred discussions, the optimal engine-on power is quickly searched by the SA
algorithm and then the battery power command is calculated by convex optimization algorithm based
on the interior point method. Highway Fuel Economy Driving Schedule (HWFET), New European
Driving Cycle (NEDC), and Urban Dynamometer Driving Schedule (UDDS) are selected as test cycles
to verify the performance of the proposed algorithm. The CD/CS method and DP are adopted as the
benchmark for comparison, and the extended study regarding different initial SOC is also proposed.
It is necessary to mention that the proposed algorithm can be easily extended to series connected
PHEVs and power-split PHEVs. Thus, it can potentially become a universal control algorithm solution
for PHEVs.
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Figure 1. Powertrain structure of a parallel plug-in hybrid electric vehicle.

The remainder of this paper is structured as follows: Section 2 describes the vehicle model and
the model simplification process; Section 3 presents the theory of convex optimization algorithm and
the optimization method; Section 4 compares the proposed method with the CD/CS strategy and the
DP strategy; and Section 5 concludes the proposed method in the paper.

2. Vehicle Model Analysis and Simplification

As shown in Figure 1, the vehicle driveline system consists of an engine, a battery pack, a clutch,
an electric motor, a five-speed gearbox, etc. Compared with the traditional vehicles, two degrees of
freedom exist in the PHEV [2]. The main parameters of the PHEV are shown in Table 1. The total vehicle
mass is 1720 kg and the maximum engine power and motor power are 65 kW and 70 kW, respectively.

Table 1. Vehicle parameters.

Type Parallel PHEV Value

Vehicle mass 1720 kg
Drive type Front wheel drive

Engine Maximum power 65 kW
Maximum speed 6000 rpm

Motor
Rated power 30 kW
Peak power 70 kW
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2.1. Engine Model

As shown in Figure 1, the engine fuel consumption of the parallel PHEV as the target function of
this paper can be calculated,

F =
∫ ttotal

0
m f dt (1)

where F is the engine fuel consumption, ttotal is the PHEV running time in a certain driving trip, m f is
the engine fuel rate. By proper assumption and simplification, m f can be determined,

m f = f (Teng, weng, eon) (2)

where Teng and weng are the engine torque and engine speed. eon is the engine on command. Here we
introduce an engine on/off threshold Peng_threshold, when the driveline power is more than Peng_threshold,
the engine will be turned on, or else the engine will be turned off [26],{

eon = 1 P0 ≥ Peng_threshold
eon = 0 P0 < Peng_threshold

(3)

where eon = 1 represents the engine state is ON, and eon = 0 means it is OFF. Under a certain drive
cycle, the control sequences of the engine state need to be gained and imposed into the control system.

2.2. Electric Machine and Gearbox Unit

A five-speed gearbox is equipped in the parallel PHEV, and the gear ratios equal with 2.563, 1.522,
1.022, 0.727 and 0.52, respectively. In order to simplify the problem, an automated shift rule strategy
is adopted considering the vehicle speed and the acceleration. The detailed gear shifting algorithm
and the related rules are shown in Figure 2. The gear number up-shifting and down-shifting can be
determined based on the shifting speed, chassis acceleration and the current gear number.
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Figure 2. Gear shifting strategy.

Based on the vehicle speed w0, and the vehicle acceleration and the driveline power demand P0,
the power Pgb_in and speed of gearbox input wk

gb_in can be correspondingly determined,
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Pgb_in = P0/η(wk
gb_in, Tgb) (4)

wk
gb_in =

w0 × f f d_ratio

r_wheel
× f k

gb_ratio (5)

where η(wgb, Tgb) and r_wheel state the efficiency of the gearbox and the radius of the wheel, f f d_ratio
is the final driveline ratio equaling with 4.4380, k denotes the numbers of the five-speed gearbox,
and f k

gb_ratio denotes the gear ratio.
As shown in Figure 1, the torque between the engine and the motor is distributed by a torque

converter. Due to the fact that the battery and the motor are connected together, the motor torque Tmot,
the motor speed wmot and Peng can be calculated,

wmot = wk
gb_in × fmot_ratio (6)

Tmot = fmot(Pbat, wmot) (7)

Peng = (Pmot + Pgb_in) · ηconv (8)

where ηconv denotes the efficiency of the torque convertor, fmot_ratio is the motor drive ratio, Pmot

denotes the motor power and equal the product of Tmot and wmot. In this paper, the accessory power,
equaling with 200 W, is considered in Pbat. The constraint conditions boundary of motor torque can be
shown as,

Tmot_min ≤ Tmot ≤ Tmot_max (9)

where Tmot_min and Tmot_max denote the minimum and maximum values of the motor torque. As
shown in Figure 1, weng and Teng can be determined,

weng = wmoteon (10)

Teng = feng(Peng, weng) (11)

From the above descriptions, we can conclude that m f can be calculated by w0, P0, eon and Pbat,

m f = f (Teng, weng, eon) = f (w0, P0, Pbat, eon) (12)

2.3. Battery Pack Model

A simplified battery model, shown in Figure 3, contains an internal resistor, an open circuit
voltage (OCV) source connected in series topology to characterize the battery dynamic and static
performance. The simplified model has been widely adopted in developing the energy management
strategy without influencing the model precision [2]. The detailed battery parameters are listed in
Table 2. It can be found that the capacity is 37 Ah and the nominal voltage is 259.2 V.
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Table 2. Battery parameters. SOC: state of charge.

Type Parameter

Battery type Lithium-ion battery
Parallel number 1
Serial number 72

Minimum SOC 0.2
Maximum SOC 1

Initial SOC 0.9
Termination SOC 0.3

Capacity 37 Ah
Nominal voltage 259.2 V

The OCV and the internal resistance with respect to the battery SOC are shown in Figure 3. It can
be observed that the OCV ranges from 216 V to 288 V. According to the acquired parameters and
Figure 4 [40,41], the battery power Pbat can be calculated,

Pbat = Uocvi − i2R0 (13)

where Uocv and R0 state the battery OCV and internal resistance, respectively. Now, the battery current
i and SOC can be calculated,

i =
Uocv −

√
U2

ocv − 4R0Pbat
2R0

(14)

SOC(t + 1) = SOC(t)− i × ∆t
Cbat

(15)

where SOC0 denotes the initial battery SOC, ∆t and Cbat are the time interval and the battery capacity,
respectively. It is noteworthy that, the above-mentioned specifications regarding battery and gearbox
are derived from an existing vehicle model in the simulation software Autonomie.
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2.4. Quadratic Static Equation

Based on the above discussion, Pbat can finally determine m f with knowing w0 and P0. In addition,
according to (13)–(15), the battery SOC can be calculated based on Pbat. Thus, Pbat can be treated as
the control variable and the connection bridge to realize the power split between the engine and the
battery. Due to the complex structure and coupling characteristics, the fuel rate can be simplified and
can be herein considered as a series of quadratic equations with respect to battery power Pbat, as

m f =

{
a2(w0, P0) · P2

bat + a1(w0, P0) · Pbat + a0(w0, P0) P0 ≥ Peng_threshold
0 P0 < Peng_threshold

(16)

where a2(w0, P0), a1(w0, P0) and a0(w0, P0) are fitting coefficients, which can be determined by w0

and P0.
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Figure 5 compares the engine fuel rate calculated by the quadratic equations with that looked
up in the engine map, proving the proposed method can accurately describe the fuel rate variation.
Hence, the fuel rate can be alternatively described by the quadratic equations efficiently. In terms of
knowing the driving cycle, the vehicle speed and driveline power demand can be determined. Thus
from (16), we can find that two control variables, i.e., Pbat and eon, need to be calculated to achieve the
energy management. As shown in Figure 6, a2(w0, P0) is always more than zero. Then, the proposed
method can be translated into a typical convex problem when the engine is on, which can be solved via
the interior point method. Additionally, as shown in (16), the engine fuel rate can be also influenced
by the engine on/off command. Here, an engine on/off threshold Peng_threshold stated in (3) needs to
be determined properly to generate the proper engine on/off command and the simulated annealing
algorithm is employed to estimate it.
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Next step, the interior point method and simulated annealing method are applied together to find
the effective solutions for the battery power and engine ON/OFF commands, respectively.

3. Optimization Methods

As presented in (16), the total cost function of this paper can be expressed as,

min F =
∫ ttotal

0 (a2(w0, Po) · P2
bat(t) + a1(w0, P0) · Pbat(t) + a0(w0, P0))eon(t)dt (17)
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Based on analysis of the vehicle model, related boundary constraints can be summarized,
Peng_on_min < Peng_on ≤ Peng_on_max

Pbat_min(t) ≤ Pbat(t) ≤ Pbat_max(t)
0 ≤ ∆SOC ≤ 0.7
Tmot_min ≤ Tmot ≤ Tmot_max

(18)

where Peng_on_max is the upper limit of engine-on power threshold, which is equal to the maximum
output power of engine, Peng_on_min is the lower limit of engine-on power threshold, Pbat_min and
Pbat_max denote the minimum and maximum values of the battery power commands. ∆SOC denotes
the range of the battery SOC variation, which is also called the depth of discharge (DOD). In this paper,
the ending SOC is set to 0.3, the minimum SOC is 0.2 and thus ∆SOC belongs to [0, 0.7].

In premise of knowing the driveline power requirements, the engine-on power threshold is
solved by the SA algorithm, and the battery power command is calculated by the convex optimization
algorithm when the engine is on, as shown in Figure 7. Compared with other optimal algorithms,
the SA algorithm is faster and more efficient in solving such global optimization problems with
boundary constraints. The calculation process can be described as follows. The first step is to acquire
the information of the vehicle including speed, driving range and driveline power demand. Based
on the sum of the whole power demand and the maximum battery supplied energy, a decision can
be made that if the driving range is less than the AER, the vehicle is under pure EV mode, or else
the vehicle is under the HEV mode. If the vehicle works under the HEV mode, an initial engine-on
power can be supplied by the SA algorithm. Then, based on the setting constraints, the interior point
method will be applied to calculate the battery power thereby realizing the power split between the
engine and the battery. Now the fuel consumption based on (17) can be calculated. After that, the SA
will be iterated to generate a new engine-on power, and accordingly the battery powers and the total
fuel consumption will be updated and compared with the previous calculations. The algorithms
will continue to iterate until reaching the termination conditions. Finally, the algorithm outputs the
engine-on power and the corresponding battery power commands.
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In (18), the lower bound and upper bound on the engine ON/OFF threshold are set to Peng_on_min

and Peng_on_max. Since the SA algorithm is insensitive to the initial value, the initial engine-on power
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threshold Peng_on_initial is determined randomly as the initial point between 10 kW and 15 kW and
a sufficiently large initial temperature T is randomly selected based on the initial point. After each
iteration, an updated state P∗

eng_on_update is generated, and the temperature increment ∆T is calculated
comparing with the initial iteration.

∆T = F(P∗
eng_on_update)− F(Peng_on_initial) (19)

where F denotes the cost function. If ∆T < 0, P∗
eng_on_update is accepted as the updated current

solution. If ∆T > 0, P∗
eng_on_initial is accepted as the initial current solution with the probability

exp(−∆T/T). Then, the battery power is programmed by the convex optimization algorithm combined
with P∗

eng_on_update, and the cost consumption function is calculated. The temperature value decreases
gradually until reaching the termination condition. Finally, the current solution can be achieved. In this
paper, the SA algorithm is performed by MATLAB (2014a, Mathworks, Natick, MA, USA) [22]. In this
paper, the number of iterations of the SA algorithm is set to 40, the terminated tolerance is 0.001,
and the simulation step is 1 s.

As shown in Figure 8, the calculation process of SA algorithm under nine NEDC cycles is
presented. It can be observed that the SA algorithm converges to a minimum value of the cost
function after 14th iterations, and stops after 40 generations. The global optimal result can be
found after 15 iterations. Next step, simulations will be conducted to verify the fuel savings of
the proposed algorithm.
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4. Simulation Validation and Results Analysis

In this paper, the whole simulation is carried out under MATLAB and Autonomie. MATLAB is
a mathematical calculation software for numerical analysis, matrix operation, algorithm development,
etc. Autonomie, developed by the Argonne National Laboratory, is an intelligent vehicle simulation
software based on MATLAB and Simulink [22,23].

In order to compare the optimization results, the default CD/CS strategy and the DP algorithm
are applied as the benchmark. In the CD mode, the parallel PHEV is driven by the battery when the
engine is off. In the CS mode, the engine will be turned on when the driveline power demand is more
than the engine-on power threshold and the parallel PHEV is driven by the engine and the battery
together. The engine will be turned on when the battery maximum power cannot satisfy the driveline
power demand [1,6]. When the engine is on, the engine power should also consider the battery balance
control, which means that if the battery SOC is lower than the pre-set value, the battery needs to be
charged. The detailed CD/CS strategy can be formulated,
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Pbat =



Po SOC ≥ 36%
min(25317.8, Po) 33% ≤ SOC < 36%
min(25317.8 · (SOC − 0.3)/0.03, Po) 30% ≤ SOC < 33%
max(−30717.3 · (SOC − 0.3)/0.03, Po) Po < 0, 27% ≤ SOC < 30%
max(−30717.3 · (SOC − 0.3)/0.03, Po − Peng_max) Po > 0, 27% ≤ SOC < 30%
max(−30717.3, Po) Po < 0, SOC < 27%
max(−30717.3, Po − Peng_max) Po > 0, SOC < 27%

(20)

where Peng_max indexes the maximum power of engine. Based on (20), the battery power is calculated
according to the current SOC. In the CD mode, the vehicle is only powered by the battery if the battery
SOC is more than 0.36. In the CS mode, the engine is turned on and the battery is charged to hold the
SOC near 0.3. In order to verify the control performances more widely, different initial SOC values are
considered. We select the initial SOC of 0.9, 0.8 and 0.7 to verify the controlling performances.

4.1. Simulation with Initial SOC of 0.9

We selected two standard drive cycles, i.e., NEDC and HWFET, to validate the performances of
the proposed algorithm, DP based method and rule-based method. Figures 9 and 10 show their speed
profile and the driveline power, from which we can find that their maximum speeds and maximum
driveline power demand are 120 km/h, 96.40 km/h, 38.3 kW and 33.40 kW, respectively.
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Figure 10. Speed and driveline power demand for the Highway Fuel Economy Driving Schedule (HWFET).

Based on the proposed algorithm, the optimal engine-on power threshold can be calculated by
the SA algorithm. After calculation, the optimal engine-on power thresholds are 15.54 kW, 15.15 kW,
and 13.52 kW when seven to nine standard NEDC drive cycles are simulated, and 13.25 kW, 13.05 kW,
12.65 kW and 12.50 kW when six to nine standard HWFET drive cycles are simulated.
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Figure 11 shows the battery power commands, the engine output power, the driveline power
demand and the engine on/off commands based on the proposed method when eight NEDC cycles are
applied. It is clearly observed that the convex optimization-based method can start the engine more
frequently, since it considers the global optimization of the battery and engine efficiency. Therefore,
the DP based method is optimal and the convex optimization-based method is sub-optimal. For the
existence of electrical accessories and energy loss, the battery power is higher than the driveline
power demand when the engine is off. Figure 12 compares the SOC trajectory when different control
methods are applied. Obviously, the battery SOC decreases more slowly when the proposed algorithm
is applied due to its capability of the global optimization. Figure 13 compares the comparison of
engine-efficiency points by DP and the proposed method, respectively, from which we can observe
that the work efficiency by DP is superior than that by the proposed method and the CD/CS method.
In addition, there are also less low efficiency points by the proposed method compared to those by
CD/CS method. Actually, the purpose of the proposed algorithm is to increase the opportunity of
the engine working in the high efficiency region and thus to improve the fuel economy. As shown in
Figure 13, the convex optimization-based method increases the operating chances of engine working
near the best operating line.
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In order to compare the fuel consumption, a linearly corrected method is applied to ensure the
ending SOC with the same value when applying different strategies [2]. Table 3 list the final fuel
consumption F, the terminal SOC and the rate of reducing fuel consumption at different cycles. It can be
found that the proposed strategy can reduce the fuel consumption by 9.31%, 8.26%, 8.49% when seven
to nine NEDC cycles are simulated, and 8.40%, 7.10%, 6.83%, 6.45% when six to nine HWFET cycles
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are simulated. As shown in Table 3, the fuel savings achieved with the convex optimization-based
method are approximate to the DP based method for the HWFET and NEDC driving conditions.
In addition, the fuel savings based on the proposed method are currently less than that based on the
DP method. As shown in Table 4, the computation time of the DP based method is obviously longer
than that of convex optimization-based method, based on a laptop computer of an i7 processor and
4 Gigabyte RAM. Thus, it justifies the effectiveness of reducing the fuel consumption based on the
proposed method.
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Figure 13. (a) Engine efficiency comparison between the convex programming-based strategy and
the strategy based on DP; (b) Engine efficiency comparison between charging depleting–charging
sustaining (CD/CS) strategy and the convex programming-based method.

Table 3. Results comparison with standard initial SOC. CD/CS: charging depleting–charging
sustaining; DP: dynamic programming; HWFET: Highway Fuel Economy Driving Schedule; NEDC:
New European Driving Cycle.

Drive Cycle
CD/CS Algorithm DP Algorithm Convex Algorithm

F (kg) Ending
SOC F (kg) Ending

SOC
Savings

(%) F (kg) Ending
SOC

Savings
(%)

9 HWFET 3.7004 0.2767 3.4980 0.3031 6.82 3.5030 0.2986 6.45
8 HWFET 3.1666 0.2767 2.9817 0.3027 7.39 2.9934 0.2995 6.83
7 HWFET 2.6328 0.2767 2.4719 0.3022 7.94 2.4768 0.2930 7.10
6 HWFET 2.0990 0.2767 1.9655 0.3017 8.62 1.9656 0.2994 8.40
9 NEDC 1.9803 0.2923 1.8449 0.3115 8.67 1.8486 0.3116 8.49
8 NEDC 1.6325 0.2923 1.4687 0.2772 8.29 1.5187 0.3034 8.26
7 NEDC 1.2847 0.2923 1.2059 0.3103 9.91 1.1910 0.3060 9.31

Table 4. Computation time comparison with standard initial SOC.

Drive Cycle CPU Time (s)

DP Algorithm Convex Algorithm

9 HWFET 170.5 3.1
8 HWFET 151.9 2.8
7 HWFET 133.1 2.5
6 HWFET 114.5 2.5
9 NEDC 227.9 7.0
8 NEDC 189.9 5.5
7 NEDC 176.7 4.2

4.2. Simulation with Different Initial SOCs

In actual application, it cannot guarantee the battery is always fully charged when the trip begins.
Here, the proposed method is extended to consider different initial SOC values. The UDDS cycle,
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of which the speed and driveline power are shown in Figure 14, is chosen to verify the proposed
method with different initial SOC values. The maximum speed and maximum driveline power
demand for the UDDS cycle are 91.25 km/h and 41.92 kW, respectively.
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Figure 15 compares the SOC trajectories based on different energy management strategies when
the battery initial SOC is 0.7. It shows that the battery is discharged more slowly when the proposed
algorithm is applied than that when the CD/CS strategy is applied. Table 5 compares the final results,
which show that the proposed method can save fuel consumption by 10.06%, 9.19% when the initial
SOC are 0.7 and 0.8 with the SOC correction. Table 6 compares the CPU operation time based on
different methods with respect to different initial SOC values. Obviously, the computation time based
on convex optimization is obviously less than the DP based method. As shown in Figure 15 and
Table 5, the solution based on the convex optimization method can be still acceptable and thus proving
its feasibility [39].

Appl. Sci. 2018, 8, x 13 of 16 

method with different initial SOC values. The maximum speed and maximum driveline power 
demand for the UDDS cycle are 91.25 km/h and 41.92 kW, respectively. 

 
Figure 14. Speed and driveline power demand for Urban Dynamometer Driving Schedule (UDDS) 
drive cycle. 

Figure 15 compares the SOC trajectories based on different energy management strategies when 
the battery initial SOC is 0.7. It shows that the battery is discharged more slowly when the proposed 
algorithm is applied than that when the CD/CS strategy is applied. Table 5 compares the final results, 
which show that the proposed method can save fuel consumption by 10.06%, 9.19% when the initial 
SOC are 0.7 and 0.8 with the SOC correction. Table 6 compares the CPU operation time based on 
different methods with respect to different initial SOC values. Obviously, the computation time based 
on convex optimization is obviously less than the DP based method. As shown in Figure 15 and  
Table 5, the solution based on the convex optimization method can be still acceptable and thus 
proving its feasibility [39]. 

 
Figure 15. Battery SOC comparisons when the initial SOC is 0.7. 

Table 5. Results comparison with different initial SOC. 

Initial SOC 
CD/CS Algorithm DP Algorithm Convex Algorithm 

F (kg) 
Ending  

SOC F (kg) 
Ending 

SOC 
Savings 

(%) F (kg) 
Ending  

SOC Savings (%) 

0.7 2.1871 0.2859 1.9729 0.2969 10.75 1.9758 0.2905 10.06 
0.8 1.9988 0.2859 1.7842 0.2986 11.93 1.8108 0.2836 9.19 

  

Figure 15. Battery SOC comparisons when the initial SOC is 0.7.

Table 5. Results comparison with different initial SOC.

Initial SOC
CD/CS Algorithm DP Algorithm Convex Algorithm

F (kg) Ending
SOC F (kg) Ending

SOC
Savings

(%) F (kg) Ending
SOC

Savings
(%)

0.7 2.1871 0.2859 1.9729 0.2969 10.75 1.9758 0.2905 10.06
0.8 1.9988 0.2859 1.7842 0.2986 11.93 1.8108 0.2836 9.19
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Table 6. Results comparison with different initial SOC.

Initial SOC Drive Cycle CPU-Time (s)

DP Algorithm Convex Algorithm Optimization

0.8 8 UDDS 269.6 2.7
0.7 8 UDDS 270.1 4.9

5. Conclusions

In order to improve the fuel economy and engine work efficiency, a time efficient energy
management strategy is established for the parallel PHEV based on the convex optimization and the SA
algorithm. By analyzing the dynamics of the driveline system, the convex quadratic function is built
between the engine fuel-rate and the battery power considering requirements of the driveline power
and speed. The fuel optimization problem is transformed and solved by the convex optimization
algorithm based on the interior point method. In order to extend the proposed method, the convex
function is solved at different initial battery SOCs. Compared with the DP based method and the
CD/CS method, the proposed method can calculate the engine-on power and the battery power
command efficiently, bringing improvement of the engine working efficiency and reduction of the
fuel consumption.

Next step work can focus on the hardware-in-loop validation to verify the feasibility of the
proposed algorithm and consideration of the battery performance variation under low temperature
and degradation.
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