
applied
sciences

Article

A Parallel Approach for Frequent Subgraph Mining
in a Single Large Graph Using Spark

Fengcai Qiao 1,*,† ID , Xin Zhang 1,†, Pei Li 1,†, Zhaoyun Ding 1,†, Shanshan Jia 2,† and
Hui Wang 1,†

1 College of Engineering System, National University of Defense Technology, Changsha 410073,
Hunan, China; ijunzhanggm@gmail.com (X.Z.); peili@nudt.edu.cn (P.L.); zyding@nudt.edu.cn (Z.D.);
huiwang@nudt.edu.cn (H.W.)

2 Digital Media Center, Hunan Education Publishing House, Changsha 410073, Hunan, China;
wandou_2007@163.com

* Correspondence: fcqiao@nudt.edu.cn; Tel.: +86-0731-84574331
† Current address: No.109, Deya Road, Changsha 410073, Hunan, China.

Received: 3 January 2018; Accepted: 31 January 2018; Published: 2 February 2018

Abstract: Frequent subgraph mining (FSM) plays an important role in graph mining, attracting a great
deal of attention in many areas, such as bioinformatics, web data mining and social networks. In this
paper, we propose SSIGRAM (Spark based Single Graph Mining), a Spark based parallel frequent
subgraph mining algorithm in a single large graph. Aiming to approach the two computational
challenges of FSM, we conduct the subgraph extension and support evaluation parallel across all
the distributed cluster worker nodes. In addition, we also employ a heuristic search strategy and
three novel optimizations: load balancing, pre-search pruning and top-down pruning in the support
evaluation process, which significantly improve the performance. Extensive experiments with four
different real-world datasets demonstrate that the proposed algorithm outperforms the existing
GRAMI (Graph Mining) algorithm by an order of magnitude for all datasets and can work with
a lower support threshold.

Keywords: frequent subgraph mining; parallel, algorithm; constraint satisfaction problem; Spark

1. Introduction

Many relationships among objects in a variety of applications such as chemical, bioinformatics,
computer vision, social networks, text retrieval and web analysis can be represented in the form of
graphs. Frequent subgraph mining (FSM) is a well-studied problem in the graph mining area which
boosts many real-world application scenarios such as retail suggestion engines [1], protein–protein
interaction networks [2], relationship prediction [3], intrusion detection [4], event prediction [5],
text sentiment analysis [6], image classification [7], etc. For example, mining frequent subgraphs from
a massive event interaction graph [8] can help to find recurring interaction patterns between people or
organizations which may be of interest to social scientists.

There are two broad categories of frequent subgraph mining: (i) graph transaction-based FSM; and
(ii) single graph-based FSM [9]. In graph transaction-based FSM, the input data comprise a collection
of small-size or medium-size graphs called transactions, i.e., a graph database. In single graph-based
FSM, the input data comprise one very large graph. The FSM task is to enumerate all subgraphs with
support above the minimum support threshold. Graph transaction-based FSM uses transaction-based
counting support while single graph-based FSM adopts occurrence-based counting. Mining frequent
subgraphs in a single graph is more complicated and computationally demanding because multiple
instances of identical subgraphs may overlap. In this paper, we focus on frequent subgraph mining in
a single large graph.

Appl. Sci. 2018, 8, 230; doi:10.3390/app8020230 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2947-3074
http://dx.doi.org/10.3390/app8020230
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 230 2 of 18

The “bottleneck” for frequent subgraph mining algorithms on a single large graph is the
computational complexity incurred by the two core operations: (i) efficient generation of all subgraphs
with various size; and (ii) subgraph isomorphism evaluation (support evaluation), i.e., determining
whether a graph is an exact match of another one. Let N and n be the number of vertexes of input
graph G and subgraph S, respectively. Typically, the complexity of subgraph generation is O(2N2

) and
support evaluation is O(Nn). Thus, the total complexity of an FSM algorithm is O(2N2 · Nn), which is
exponential in terms of problem size. In recent years, numerous algorithms for single graph-based
FSM have been proposed. Nevertheless, most of them are sequential algorithms that require much
time to mine large datasets, including SiGraM (Single Graph Mining) [10], GERM (Graph Evolution
Rule Miner) [11] and GRAMI (Graph Mining) [12]. Meanwhile, researchers have also used parallel
and distributed computing techniques to accelerate the computation, in which two parallel computing
frameworks are mainly used: Map-Reduce [13–18] and MPI (Message Passing Interface) [19].
The existing MapReduce implementations of parallel FSM algorithms are all based on Hadoop [20] and
are designed for graph transaction and not for a single graph, often reaching IO (Input and Output)
bottlenecks because they have to spend a lot of time moving the data/processes in and out of the
disk during iteration of the algorithms. Besides, some of these algorithms cannot support mining via
subgraph extension [14,15]. That is to say, users must provide the size of subgraph as input. In addition,
although the MPI based methods, such as DistGraph [19], usually have a good performance, it is
geared towards tightly interconnected HPC (High Performance Computing) machines, which are
less available for most people. In addition, for MPI-based algorithms, it is hard to combine multiple
machine learning or data mining algorithms into a single pipeline from distributed data storage to
feature selection and training, which is common for machine learning. Fault tolerance is also left to the
application developer.

In this paper, we propose a parallel frequent subgraph mining algorithm in a single large graph
using Apache Spark framework, called SSIGRAM. The Spark [21] is an in-memory MapReduce-like
general-purpose distributed computation platform which provides a high-level interface for users to
build applications. Unlike previous MapReduce frameworks such as Hadoop, Spark mainly stores
intermediate data in memory, effectively reducing the number of disk input/output operations.
In addition, a benefits of the “ML (Machine Learning) Pipelines” design [22] in Spark is that we can
not only mine frequent subgraphs efficiently but also easily combine the mining process seamlessly
with other machine learning algorithms like classification, clustering or recommendation.

Aiming at the two computational challenges of FSM, we conduct the subgraph extension
and support evaluation across all the distributed cluster worker nodes. For subgraph extension,
our approach generates all subgraphs in parallel through FFSM-Join (Fast Frequent Subgraph Mining)
and FFSM-Extend proposed by Huan et al. [23], which is an efficient solution for candidate subgraphs
enumeration. When computing subgraph support, we adopt the constraint satisfaction problem (CSP)
model proposed in [12] as the support evaluation method. The CSP support satisfies the downward
closure property (DCP), also known as anti-monotonic (or Apriori property), which means that
a subgraph g is frequent if and only if all of its subgraphs are frequent. As a result, we employ a breadth
first search (BFS) strategy in our SSIGRAM algorithm. At each iteration, the generated subgraphs
are distributed to every executor across the Spark cluster for solving the CSP. Then, the infrequent
subgraphs are removed while the remaining frequent subgraphs are passed to the next iteration for
candidate subgraph generation.

In practice, the support evaluation is more complicated than subgraph extension and will cost
most time during the mining process. As a result, besides parallel mining, our SSIGRAM algorithm
also employs a heuristic search strategy and three novel optimizations: load balancing, pre-search
pruning and top-down pruning in the support counting process, which significantly improve the
performance. Noteworthily, SSIGRAM can also be applied to directed graphs, weighted subgraph
mining or uncertain graph mining with slight modifications introduced in [24,25]. In summary,
our main contributions to the frequent subgraph mining in a single large graph are three-pronged:

Appl. Sci. 2018, 8, 230 3 of 18

• First, we propose SSIGRAM, a novel parallel frequent subgraph mining algorithm in a single large
graph using Spark, which is different from the Hadoop MapReduce based and MPI based parallel
algorithms. SSIGRAM can also easily combine with the bottom Hadoop distributed storage data
and other machine learning algorithms.

• Second, we conduct in parallel subgraph extension and support counting, respectively, aiming
at the two core steps with high computational complexity in frequent subgraph mining.
In addition, we provide a heuristic search strategy and three optimizations for the support
computing operation.

• Third, extensive experimental performance evaluations are conducted with four real-world
graphs. The proposed SSIGRAM algorithm outperforms the GRAMI method by at least one order
of magnitude with the same memory allocated.

The paper is organized as follows. The problem formalization is provided in Section 2. Our SSIGRAM
algorithm and its optimizations are presented in Section 3. In Section 4, extensive experiments to evaluate
the performance of the proposed algorithm are conducted and analyzed. The work is summarized and
conclusions are drawn in Section 5.

2. Formalism

A graph G = (V, E) is defined to be a set of vertexes (nodes) V which are interconnected by a set
of edges (links) E ⊆ V × V [26]. A labelled graph also consists of a labeling function L besides V
and E that assigns labels to V and E. Usually, the graphs used in FSM are assumed to be labelled
simple graphs, i.e., un-weighted and un-directed labeled graphs with no loops and no multiple links
between any two distinct nodes [27]. To simplify the presentation, our SSIGRAM is illustrated with
an undirected graph with a single label for each node and edge. Nevertheless, as mentioned above,
the SSIGRAM can also be extended to support either directed or weighted graphs. In the following,
a number of widely used definitions used later in this paper are introduced.

Definition 1. (Labelled Graph): A labelled graph can be represented as G = (V, E, LV , LE, ϕ), where V is
a set of vertexes, E ⊆ V ×V a set of edges. LV and LE are sets of vertex and edge labels respectively. ϕ is a label
function that defines the mappings V → LV and E→ LE.

Definition 2. (Subgraph): Given two graphs G1 = (V1, E1, LV1 , LE1 , ϕ1) and G2 = (V2, E2, LV2 , LE2 , ϕ2),
G1 is a subgraph of G2, if and only if (i) V1 ⊆ V2, and ∀v ∈ V1, ϕ1(v) = ϕ2(v); (ii) E1 ⊆ E2, and ∀(u, v) ∈ E1,
ϕ1(u, v) = ϕ2(u, v). G2 is also called a supergraph of G1.

Definition 3. (Subgraph Isomorphism): Let G1 = (V1, E1, LV1 , LE1 , ϕ1) be a subgraph of G. G1 is subgraph
isomorphic to graph G, if and only if there exists another subgraph G2 = (V2, E2, LV2 , LE2 , ϕ2) ⊆ G and a
bijection f : V1 → V2 satisfying: (i) ∀u ∈ V1, ϕ1(u) = ϕ2(f (u)); (ii) ∀(u, v) ∈ E1 ⇐⇒ (f (u), f (v)) ∈ E2;
and (iii) ∀(u, v) ∈ E1, ϕ1(u, v) = ϕ2(f (u), f (v)). G2 is also called an embedding of G1 in G.

For example, Figure 1a illustrates a labelled graph of event interaction graph. Node labels
represent the event actor’s type (e.g., GOV: government) in CAMEO (Conflict And Mediation Event
Observations) codes [28] and edge labels represent the event type [28] between the two actors.

Figure 1b,c shows two subgraphs of Figure 1a. Figure 1b (v1
3
− v2

9
− v3) has three isomorphisms

with respect to graph (a): u2
3
− u4

9
− u5, u6

3
− u5

9
− u4 and u7

3
− u8

9
− u10.

Definition 4. (Frequent Subgraph in Single Graph): Given a labelled single graph G and a minimum
support threshold τ, the frequent subgraph mining problem is defined as finding all subgraphs Gi in G,

Sup(Gi, G) ≥ τ, ∀Gi ∈ S,

Appl. Sci. 2018, 8, 230 4 of 18

where S denotes the set of subgraphs in G with support greater or equal to τ.

For a subgraph G1 and input graph G, the straightforward way to compute the support of G1

in graph G is to count all its isomorphisms of G1 in G [29]. Unfortunately, such a method does not
satisfy the downward closure property (DCP) since there are cases where a subgraph appears fewer
times than its supergraph. For example, in Figure 1a, the single node graph REF (Refugee) appears

three times, while its supergraph REF
3
−GOV appears four times. Without the DCP, the search space

cannot be pruned and the exhaustive search is unavoidable [30]. To address this issue, we employ the
minimum image (MNI) based support which is anti-monotonic introduced in [31].

MED

GOV

REF

GOV GOV

GOV GOV

REF

REF

MED

(a) An event interaction graph

REF

GOV GOV

GOV

REF

MED

3

3
3

19
9

3

9

3

9

19

3

9

19

3 3

(b) Subgraph

(c) Subgraph

Figure 1. (a) An event interaction graph; nodes represent the event actors (labelled with their type code)
and edges represent the event (labelled with event type code); and (b,c) two subgraphs of (a) (MED:
Media, REF: Refugee, GOV: Government).

Definition 5. (MNI Support): For a subgraph G1, let ∑(S) = {φ1, φ2, ..., φm} denote the set of all
isomorphisms/embeddings of G1 in the input graph G. The MNI support of a subgraph G1 in G is based on the
number of unique nodes in the input graph G that a node of the subgraph G1 = (V1, E1) is mapped to, which is
defined as:

SupMNI(G1, G) = min
v∈V1
{|Φ(v)|},

where Φ(v) is the set of unique mappings for each v ∈ V1, denoted as

Φ(v) =
|∑(S)|⋃

i=1

φi(v).

Figure 2 illustrates the four isomorphisms of a subgraph G1 ≡ A-B-C-A in the input graph.
For example, one of the isomorphisms is φ = {u1, u4, u6, u8}, shown in the second column in Figure 2c.
There are four isomorphisms for the subgraph G1 in Figure 2b. Therefore, the set of unique mappings
for the vertex v1 is {u1, u2, u8}. The number of unique mappings over all the subgraph vertices
{v1, v2, v3, v4} are 3, 3, 2 and 2, respectively. Thus, the MNI support of G1 is SupMNI(G1, G) =

min{3, 3, 2, 2} = 2.

Definition 6. (Adjacency Matrix): The adjacency matrix of a graph Gi with n vertexes is defined as a n× n
matrix M, in which every diagonal entry corresponds to a distinct vertex in Gi and is filled with the label of
this vertex and every off-diagonal (for an undirected graph, the upper triangle is always a mirror of the lower

Appl. Sci. 2018, 8, 230 5 of 18

triangle) entry in the lower triangle part corresponds to a pair of vertices in Gi and is filled with the label of the
edge between the two vertices and zero if there is no edge.

Definition 7. (Maximal Proper Submatrix): For a m×m matrix A, a n× n matrix B is the maximal proper
submatrix of A, iff B is obtained by removing the last nonzero entry from A. For example, the last non-zero
entry of M2 in Figure 3 is y in the bottom row.

Definition 8. (Canonical Adjacency Matrix): Let matrix M denote the adjacency matrix of graph Gi.
Code(M) represents the code of M, which is defined as the sequence formed by concatenating lower triangular
entries of M (including entries on the diagonal) from left to right and top to bottom, respectively. The canonical
adjacency matrix (CAM) of graph Gi is the one that produces the maximal code, using lexicographic order [23].
Obviously, a CAM’s maximal proper submatrix is also a CAM.

Figure 3 shows three adjacency matrices M1, M2, M3 for the graph G1 on the left. After applying the
standard lexicographic order, we have Code(M1) : aybyxb0y0c00y0d > Code(M2) : aybyxb00yd0y00c >
Code(M3) : bxby0d0y0cyy00a. In fact, M1 is the canonical adjacency matrix of G1.

A A

B

B

B

A

C

C

A

A

B

C

(a) Input graph (b) Subgraph (c) Four isomorphisms
(columns)

(d)Unique mappings
(rows)

Figure 2. Minimum image (MNI) support of a subgraph G1 ≡ A-B-C-A in a single graph G with eight
vertexes and three vertex labels.

a

b b

c d

a

y b

y x b

0 y 0 c

0 0 y 0 d

y y

y y

x

a

y b

y x b

0 0 y d

0 y 0 0 c

b

x b

y 0 d

0 y 0 c

y y 0 0 a

Figure 3. Three adjacency matrices M1, M2, and M3 for the graph G1.

Definition 9. (Suboptimal CAM): Given a graph G, a suboptimal canonical adjacency matrix (suboptimal
CAM) of G is an adjacency matrix M of G such that its maximal proper submatrix N is the CAM of the
graph that N represents. [23]. A CAM is also a suboptimal CAM. A proper suboptimal CAM is denoted as
a suboptimal CAM that is not the CAM of the graph it represents.

3. The SSIGRAM Approach

This section first elaborates upon the framework of the proposed algorithm, before describing
the detailed procedure of parallel subgraph extension, parallel support evaluation and three
optimization strategies.

Appl. Sci. 2018, 8, 230 6 of 18

3.1. Framework

Figure 4 illustrates the proposed framework of our SSIGRAM approach. It mainly contains two
major components: parallel subgraph extension and parallel support evaluation. The green notations
are main Spark RDD (a resilient distributed dataset (RDD) is the core abstraction of Spark, which is
a fault-tolerant collection of elements that can be operated on in parallel) transformations or actions
used during the algorithm pipeline, e.g., map, join, etc. We will discuss details of the framework below.

group by

map

broadcast

HDFS read

Frequent Edge

RDD

FFSM RDD
Initialize frequent
edge CAMs

Parent Subgraph

RDD

map

New Subgraph

RDD

Extended Edge

RDD

join

Old Subgraph RDD

clone

pre-search
pruning

join

Candidate Subgraph

RDD

Frequent Subgraph

RDD

flatmap

No frequent
subgraphs or reach

max iteration?

no

Frequnent
Subgraph Result

End

HDFS write

yes

append

Parallel Subgraph Extension

Parallel Support Evaluation

k edges(k-1) edges

load

balancing

Input graph

top-down

pruning

Figure 4. Framework of the SSIGRAM(Spark based Single Graph Mining) approach. Green notations
on the right side are main Spark resilient distributed dataset (RDD) transformations or actions used
during the algorithm pipeline. Abbreviations: CAM (Canonical Adjacency Matrix), HDFS (Hadoop
Distributed File System), FFSM (Fast Frequent Subgraph Mining).

3.2. Parallel Subgraph Extension

Our approach employs a breadth first search (BFS) strategy that generates all subgraphs in parallel
through FFSM-Join and FFSM-Extend proposed in [23]. Similarly, we organize all the suboptimal CAMs
of subgraphs in a graph G into a rooted tree, that follows the rules: (i) The root of the tree is an empty
matrix. (ii) Each node in the tree is a distinct subgraph of G, represented by its suboptimal CAM that is
either a CAM or a proper suboptimal CAM. (iii) For a given non-root node (with suboptimal CAM M),
its parent is the graph represented by the maximal proper submatrix of M. The completeness of the
suboptimal CAM tree is guaranteed by the Theorem 1. For the formal proof, we refer to the appendix
in [23].

Appl. Sci. 2018, 8, 230 7 of 18

Theorem 1. For a graph G, let Ck−1 and Ck be sets of the suboptimal CAMs of all the subgraphs with (k− 1)
edges and k edges (k ≥ 2). Every member of set Ck can be enumerated unambiguously either by joining two
members of set Ck−1 or by extending a member in Ck−1.

Algorithm 1 shows how the subgraph extension process is conducted in parallel. Actually,
the extension process is implemented in parallel at the parent subgraph scale (Lines 6–15), which means
that each group of subgraphs with the same parent will be sent to an executor for extension in the Spark
cluster. The FFSM operator is provided by [32], which implements the FFSM-Join and FFSM-Extend.
After extension, all of the extended results are collected to the driver node (Line 16) from the cluster.
Because of the extension on more than one executors at the same time, the indexes of the new generated
subgraphs from different executors may be duplicated. As a result, the subgraph indexes are reassigned
at the end (Line 17).

To perform a parallel subgraph extension, Line 11 and Line 13 conduct the joining and extension
of CAM across all Spark executors. The overall complexity is O(n2 · m) where n is the number of
nodes in subgraph and m number of edges. A complete graph with n vertices consists of n(n− 1)/2
edges. Thus, the final complexity is O(m2).

Algorithm 1 Parallel Subgraph Extension.

Input: frequent subgraphs Sk−1, broadcasted FFSM operator FFSMRDD, Spark context sc
Output: new generated Sk that extend Sk−1

1: function PARAGENSUBGRAPHS(Sk−1,FFSMRDD,sc)
2: Sk ← ∅
3: FFSMOperator ← FFSMRDD
4: PGraphSk−1 ← Sk−1, group by parents
5: PGraphRDDSk−1 ← sc.parallelize(PGraphSk−1)
6: Sk ← PGraphRDDSk−1 .map{
7: St ← ∅
8: Clist ← child subgraphs of present parent
9: for si in Clist do

10: for sj in Clist do
11: St ← St ∪ FFSMOperator.join(si, sj)
12: end for
13: St ← St ∪ FFSMOperator.extend(si)
14: end for
15: return St
16: }.collect
17: reassign subgraph indexes in Sk
18: return Sk
19: end function

3.3. Parallel Support Evaluation

Our SSIGRAM approach employs the CSP model [12] as the subgraph support evaluation strategy.
The constraint satisfaction problem (CSP) is an efficient method for finding subgraph isomorphisms
(Definition 3), which is illustrated as follows:

Definition 10. (CSP Model): Let G1 = (V1, E1, LV1 , LE1 , ϕ1) be a subgraph of a graph G =

(V, E, LV , LE, ϕ). Finding isomorphisms of G1 in G is a CSP(X ,D, C) where:
1. X is an ordered set of variables which contains a variable xv for each node v ∈ V1.
2. D is the set of domains for each variable xv ∈ X . Each domain is a subset of V.
3. Set C contains the following constraint rules:

• ∀xv, xv′ ∈ X , xv 6= xv′ .
• ∀xv ∈ X and the corresponding v ∈ V1, ϕ(xv) = ϕ1(v).

Appl. Sci. 2018, 8, 230 8 of 18

• ∀xv, xv′ ∈ X and the corresponding v, v′ ∈ V1, ϕ(xv, xv′) = ϕ1(v, v′).

For example, the CSP model of a subgraph in Figure 1b under graph Figure 1a is:
X : {xv1 , xv2 , xv3},

D : {{u1, u2, ..., u10}, {u1, u2, ..., u10}, {u1, u2, ..., u10}},
C : {xv1 6= xv2 6= xv3 ,

ϕ(v1) = REF, ϕ(v2) = GOV, ϕ(v3) = GOV,
ϕ(v1, v2) = 3, ϕ(v2, v3) = 9}


Theorem 2 [12] describes the relation between subgraph isomorphism and the CSP model.

Intuitively, the CSP model is similar to a template, in which each variable in X is a slot. A solution is
a correct slot fitting which assigns a different node of G to each node of G1, such that the labels of the
corresponding nodes and edges match. For instance, a solution to the CSP of the above example is the
assignment (xv1 , xv2 , xv3) = (u2, u4, u5). If there exists a solution that assigns a node u to variable xv,
then this assignment is valid. xv1 = u2 is a valid assignment while xv1 = u1 is invalid in this example.

Theorem 2. A solution of the subgraph G1 to graph G CSP corresponds to a subgraph isomorphism of G1

to G.

Theorem 3. Let (X ,D, C) be the subgraph CSP of G1 under graph G. The MNI support of G1 in G satisfying:

SupMNI(G1, G) ≥ τ ⇐⇒ ∀xv ∈ X , ASSvalid(xv) ≥ τ.

where ASSvalid(xv) is the total count of valid assignments of variable xv.

According to Theorem 3 [12], we can consider the CSP of subgraph G1 to graph G and check
the count of valid assignments of each variable. If there exist τ or more valid assignments for every
variable, in other words, at least τ nodes in each domain D1, ..., Dn for the corresponding variables
xv1 , ..., xvn , then subgraph G1 is frequent under the MNI support. Thus, the main idea of the heuristic
search strategy is elaborated as: if any variable domain remains with less than τ candidates during the
search process, then the subgraph cannot be frequent.

3.4. Optimizing Support Evaluation

After subgraph extension, all the new generated subgraphs are sent to the next procedure for
support evaluation. As mentioned in the Introduction, support evaluation is an NP-hard problem
which takes O(Nn) time. The complexity is exponential if we brutally search all the valid assignments.

Owing to the iterative and incremental design of RDD and the join transformation in Spark,
we save the CSP domain data of every generated subgraph. As the two green labels join shown
in Figure 4, the first join operation combines the new generated subgraphs and frequent edges to
get the extended edges, while the second join combines new generated subgraphs and extended
edges to generate the search space, i.e., the CSP domain data. In addition, to speed up the support
evaluation process, we also propose three optimizations, namely, load balancing, pre-search pruning
and top-down pruning, the execution order of which is illustrated on the headpiece of Figure 4.

3.4.1. Load Balancing

The support evaluation process is implemented in parallel at subgraph scale, which means that
each subgraph will be sent to an executor in the Spark cluster for support evaluation. The search
space is highly dependent on the subgraph’s CSP domain size. Nevertheless, new subgraphs may
have different domain sizes which result in the phenomenon that some executors may finish searching

Appl. Sci. 2018, 8, 230 9 of 18

fast while others are very slow. The final execution time of the whole cluster depends upon the last
finished executor.

To overcome this unbalance, generally, the subgraphs distributed to various executors must have
roughly the same domain sizes. Algorithm 2 illustrates the detailed process. Because the domain of
the present subgraph is incrementally generated from the parent subgraph’s domain of last iteration,
we save the domain sizes of all subgraphs in each iteration. Then, according to the saved domain sizes
of parent subgraphs, new generated subgraphs are re-ordered and partitioned to different executors
(Lines 6–9).

Let n be the number of nodes of subgraph S, i.e., the domain size. Load balancing can be done in
O(n) time.

Algorithm 2 Load Balancing

Input: RDD of subgraph set SRDD, Spark cluster parallelism n, Spark context sc
Output: SRDDbalance: balanced RDD of subgraph set

1: function LOADBALANCING(SRDD,n,sc)
2: Sbalance ← ∅
3: S← SRDD
4: sort S in descending domain size order
5: initialize n empty partitions
6: for s in S do
7: Sbalance(p)←smallest partition
8: add s to partition Sbalance(p)
9: end for

10: SRDDrp ← sc.parallelize(Sbalance, n)
11: return SRDDbalance
12: end function

3.4.2. Pre-Search Pruning

Because the input single large graph we consider is an undirected labeled graph, if a node and its
neighbors have the same node label and edges between them also have the same label, it will bring
redundant search space. This phenomenon can be common in graphs, especially when the graphs have
few node labels and edge labels. For example, in Figure 5, G is the input graph and G1 a subgraph.
The CSP search space of G1 is illustrated at the bottom. The assignments in dashed lines are added to
the search space when iteratively building the CSP domain data of G1 whereas they are redundant
space violating the first rule in Definition 10. Here, u1 is assigned twice to v1 and v3 ({u1, u2, u1},
{u1, u3, u1}, {u1, u4, u1}). If this redundant search space is pruned before calculating the actual support,
the search speed will be much accelerated.

Let N and n be the number of nodes of input graph G and subgraph S. Pre-search pruning will
search for redundant space for every node of S between its neighbors in G, the complexity of which is
O(n · N3).

3.4.3. Top-Down Pruning

Either FFSM-Join operation or FFSM-Extend operation add an edge to the parent subgraph
at a time when generating new subgraphs and constructing the suboptimal CAM tree. Therefore,
as the parent subgraph at upside of suboptimal CAM tree is a substructure of its child subgraph,
those assignments that were pruned from the domains of the parent, can also not be valid assignments
for any of its children [12]. For instance, Figure 6a shows a part of a subgraph generation tree, which is
constructed from G1 which is extended to G2 and G3 and last, G4 via G3. The marked nodes in
different colors represent the pruned assignments from the top to bottom. Invalid assignments from
parent subgraphs are pruned from all their child subgraphs. Thus, the search space is reduced a lot.
Take subgraph G4 in Figure 6 as an example, when considering variable xv1 , the search space has a size

Appl. Sci. 2018, 8, 230 10 of 18

of 3× 2× 3× 2 = 36 combinations, while without top-down pruning the respective search space size
is 5× 3× 5× 4 = 300 combinations.

Top-down pruning iterates for every node in S and for every value in each domain. Thus,
the overall complexity is O(m · N).

GOV GOV
9

GOV
9

GOV GOV
9

GOV
9

GOV

9

REF

3

CSP

Figure 5. Constraint satisfaction problem (CSP) search space of the subgraph G1 with the input graph G.

B

AA

B

AA

B

AA

C

B

AA

C

Subgraph generation tree Corresponding variables and domains

1
v

2
v

3
v

1
v

2
v

3
v

1
v

2
v

3
v

1
v

2
v

3
v

4
v

4
v

1 2 3
 v v vx x x

a1

a2

a3

a4

a5

b1

b2

b3

a1

a2

a3

a4

a5

c1

c2

c3

c4

1 2 3
 v v vx x x

b1

b2

b3

a1

a2

a3

a4

a5

1 2 3 4
 v v v vx x x x

c1

c2

c3

c4

1 2 3 4
 v v v vx x x x

1
G

2
G

3
G

4
G

a1

a2

a3

a4

a5

a1

a2

a3

a4

a5

b1

b2

b3

a1

a2

a3

a4

a5

b1

b2

b3

a1

a2

a3

a4

a5

a1

a2

a3

a4

a5

Invalid assignments for:
1 2 3 4

 G G G G

(a) (b)

Figure 6. (a) The subgraph generation tree; and (b) the corresponding variables and domains. Marked
nodes represent the pruned assignments from top to bottom.

After introducing pre-search pruning and top-down pruning, we give the pseudocode
ISFREQUENT of heuristically checking whether a subgraph s is frequent in Algorithm 3. Pre-search
pruning is conducted at Line 4 to Line 7 while top-down pruning Line 11 to Line 23.

3.5. The SSIGRAM Algorithm

Finally, we show the detail pipeline of the SSIGRAM approach in Algorithm 4. SSIGRAM starts
by loading the input graph using Spark GraphX (Line 2). Then all frequent edges are identified at

Appl. Sci. 2018, 8, 230 11 of 18

Line 4. For each iteration, parallel subgraph extension is conducted at Line 11 and parallel support
evaluation Line 14 to Line 22 in which load balancing, pre-search pruning and top-down pruning are
conducted. The complexity of SSIGRAM is O(n · N · (N2 + n) + n4 + n) based on the above processes.

Algorithm 3 Support Evaluation.

Input: A subgraph s, domain data Ds, threshold τ
Output: true if s is a frequent subgraph of G, false otherwise

1: function ISFREQUENT(s, Ds, τ)
2: for variable v in Ds do
3: get neighbors of v: N(v)← v
4: if N(v).size > 1 then
5: for element u of Ds(v) do
6: remove redundant u
7: end for
8: end for
9: if the size of any domain in Ds is less than τ then

10: return f alse
11: for variable v in Ds do
12: count← 0
13: for element u of Ds(v) do
14: if u is already marked then
15: count++
16: else if a solution that assigns u to v exists then
17: Mark corresponding values in Ds
18: count++
19: else Remove u from v’s domain in Ds
20: if count = τ then
21: Move to next variable v
22: end for
23: end for
24: return true
25: end function

4. Experimental Evaluation

In this section, the performance of the proposed algorithm SSIGRAM is evaluated using four
real-world datasets with different sizes from different domains. Firstly, the experimental setup is
introduced. The performance of SSIGRAM is then evaluated.

4.1. Experimental Setup

Dataset: We experiment on four real graph datasets, whose main characteristics are summarized
in Table 1.

Table 1. Datasets and their characteristics.

Dataset #Node #L(Node) #Edge #L(Edge) Density

DBLP 151,574 7 191,840 17 Medium
Aviation 101,185 6173 133,087 41 Sparse
GDELT 1,515,712 14,816 2,832,692 8 Sparse
Twitter 11,316,811 40 85,331,846 1 Dense

Appl. Sci. 2018, 8, 230 12 of 18

Algorithm 4 The SSIGRAM Algorithm.

Input: A graph G, support threshold τ and Spark context sc, parallelism n
Output: All subgraphs S of G such that SupMNI(S, G) ≥ τ

1: result S← ∅, intermediate subgrah set Srdd ← ∅
2: load Graphrdd from G using sc.GraphX
3: detect connected areas of Graphrdd
4: FreEdgerdd ← Graphrdd
5: FFSM← FreEdgerdd
6: FFSMrdd = sc.broadcast(FFSM)
7: initial frequent subgraphs S1 ← FreEdgerdd
8: Srdd ← S1
9: while Srdd.count > 0 do

10: Sk−1 ← Srdd
11: Sk ←PARAGENSUBGRAPHS(Sk−1, FFSMrdd, sc)
12: NewSubrdd ← Sk
13: OldSubrdd ← NewSubrdd.clone
14: ExtEdgerdd ← NewSubrdd.join(FreEdgerdd)
15: OldSubrdd ←LOADBALANCING(OldSubrdd, n, sc)
16: CandSubrdd ← OldSubrdd.join(ExtEdgerdd)
17: Srdd ← CandSubrdd.flatmap{
18: let current subgraph be s
19: Ds ← s
20: if ISFREQUENT(s, Ds, τ) then
21: return s
22: }.collect
23: S← S ∪ Srdd
24: end while
25: return S

DBLP (http://dblp.uni-trier.de/db/). The DBLP (DataBase systems and Logic Programming)
bibliographic dataset models the co-authorship information and consists of 150 K nodes and nearly 200 K
edges. Vertices represent authors and are labeled with the author’s field of interest. Edges represent
collaboration between two authors and are labeled with the number of co-authored papers.

Aviation (http://ailab.wsu.edu/subdue/). This dataset contains a list of event records extracted
from the aviation safety database. The events are transformed to a graph which consists of 100 K nodes
and 133 K edges. The nodes represent event ids and attribute values. Edges represent attribute names
and the “near_to” relationship between two events.

GDELT (https://bigquery.cloud.google.com/table/gdelt-bq:full.events?pli=1). This dataset is
constructed from part of the raw events exported from the GDELT (Global Data on Events, Location
and Tone) dataset. It consists of 1.5 M nodes and 2.8 M edges. Similar to the Aviation dataset,
nodes represent events and attribute values (and are labeled with event types and actual attribute
values). Edges represents attribute name and the “relate_to” relationship between two events.

Twitter (http://socialcomputing.asu.edu/datasets/Twitter). This graph models the social news of
Twitter and consists of 11M nodes and 85 M edges. Each node represents a Twitter user and each edge
represents an interaction between two users. The original graph does not have labels, so we randomly
added 40 labels to the nodes, the randomization of which follows a Gaussian distribution. In detail,
the mean value was set to 50 and the std-deviance 15. The generated vertex labels less than 0 were all
set to 1.

Comparison Method: We compare the proposed SSIGRAM algorithm with the GRAMI [12] and
we use the GRAMI_UNDIRECTED_SUBGRAPHS version of GraMi provided by the authors.

Running Environment: All the experiments with SSIGRAM are conducted on Apache Spark
(version 1.6.1) deployed on Apache Hadoop YARN (version 2.7.1). The total executors is set to 20
with 6 GB memory and 1 core running at 2.4 GHz for each executor. The memory of driver program

http://dblp.uni-trier.de/db/
http://ailab.wsu.edu/subdue/
https://bigquery.cloud.google.com/table/gdelt-bq:full.events?pli=1
http://socialcomputing.asu.edu/datasets/Twitter

Appl. Sci. 2018, 8, 230 13 of 18

is also 6 GB and max results 2 GB. Thus, the total memory allocated from YARN is 128 GB. For the
sake of fairness, GRAMI is conducted on a Linux (Ubuntu 14.04) machine running at 2.4 GHz with
128 GB RAM.

Performance Metrics: The support threshold τ is the key evaluation metric as it determines
whether a subgraph is frequent. Decreasing τ results in an exponential increase in the number of
possible candidates and thus exponential decrease in the performance of the mining algorithms.
For a given time budget, an efficient algorithm should be able to solve mining problems for low τ

values. When τ is given, efficiency is determined by the running time. In addition, we also give
the total subgraphs each algorithm identified under each τ value, proving the correctness of the
SSIGRAM algorithm.

4.2. Experimental Results

Performance: At the top part of Figure 7, we show the performance comparison between
SSIGRAM and GRAMI on DBLP, Aviation, GDELT and Twitter datasets. The number of results
grows exponentially when the support threshold τ decreases. Thus, the running time of all algorithms
also grows exponentially. Our results indicate that SSIGRAM outperforms GRAMI by an order of
magnitude for all datasets. For bigger dataset GDELT and lower τ (9600), GRAMI ran out of memory
and was not able to produce a result. For smaller dataset Aviation and bigger τ (2200, 2300 and 2400),
GRAMI is faster because the resource scheduling of Hadoop YARN in SSIGRAM will cost 10 to 20 s.
Actually, in this circumstance, there is no need to use parallel mining algorithms since GRAMI can give
results within a few seconds. For the Twitter dataset, SSIGRAM is about five times faster than GRAMI

because of the existence of nodes with a big degree. When a subgraph involves such a node, SSIGRAM
will not go to the next iteration until the executor finishes calculating the support of this subgraph.

4000 6000 8000
Support threshold

102

103

Ti
m

e
in

 se
co

nd
s(

lo
g

sc
al

e)

DBLP

1750 2000 2250
Support threshold

101

102

103

Aviation

10000 12000 14000
Support threshold

102

103

104

GDELT

15000 20000 25000
Support threshold

103

104

Twitter
SSIGRAM
GRAMI

4000 6000 8000
Support threshold

102

To
ta

l i
de

nt
ifi

ed
 su

bg
ra

ph
s (

lo
g

sc
al

e)

DBLP

1750 2000 2250
Support threshold

102

103

Aviation

10000 12000 14000
Support threshold

102

103

GDELT

15000 20000 25000
Support threshold

102

Twitter
SSIGRAM
GRAMI

Figure 7. Performance of SSIGRAM and GRAMI on the four different datasets. Abbreviations: DBLP
(DataBase systems and Logic Programming), GDELT (Global Data on Events, Location and Tone).

Appl. Sci. 2018, 8, 230 14 of 18

The bottom part of Figure 7 illustrates the total numbers of identified frequent subgraphs on
each dataset. The identical numbers of frequent subgraphs of SSIGRAM and GRAMI elaborate the
correctness of our SSIGRAM algorithm.

Optimization: Figure 8 demonstrates the effect of the three optimizations discussed above on
the DBLP and GDELT datasets. For both datasets, the SSIGRAM with all optimizations (denoted by
All opts. in Figure 8) definitely performs best. For the DBLP dataset, when τ > 3500, load balancing
is the most effective optimization while as τ becomes bigger, pre-search pruning becomes the most
effective. For the GDELT dataset, the pre-pruning is always the most effective optimization. When no
optimization is involved (denoted by No opt. in Figure 8), the algorithm performs worst. Actually,
the effect of each optimization strategy varies with input graphs and different thresholds.

3000 3500 4000 4500
Support threshold

102

103

Ti
m

e
in

 se
co

nd
s (

lo
g

sc
al

e)

DBLP

11000 11500 12000 12500
Support threshold

102

103

104

GDELT
All opts.
Load balancing
Pre-search pruning
Top-down pruning
No opt.

Figure 8. The effect of each optimization. All opts.: All optimization enabled; Load balancing:
Only load balancing enabled; Pre-pruning: Only pre-search pruning enabled; Top-down prune:
Only top-down pruning enabled; No Opt.: No optimization strategies involved.

0 5 10 15 20
Number of executors

102

103

Ti
m

e
in

 se
co

nd
s (

lo
g

sc
al

e)

Effect of #executors

DBLP(support=4000)
Aviation(support=1600)
GDELT(support=12000)
Twitter(support=15000)

Figure 9. The effect of the number of executors on each dataset.

Parallelism: Finally, to evaluate the effect of the number of executors, we fix the supports of
each dataset and vary the num-executor parameter of the Spark configuration file. According to the
principle of the same allocated memory from YARN, we set num-executors to 20, 15, 10, 5 and 1 with
executor-memory being 6 GB, 8 GB, 12 GB, 24 GB and 120 GB respectively. The results shown in Figure 9
lead to three major observations. First, compared with GRAMI’s performance shown in Figure 7,
the proposed algorithm outperforms the GRAMI algorithm even when only one executor was used.
This is because the complexity of SSGRAMI is less than that of GRAMI (O(n ·Nn−1)), especially when
n is large. Second, the runtime decreases with the increment of parallelism for each dataset overall.
Third, when the num-executor is bigger than 10, the performance improvement is less obvious because

Appl. Sci. 2018, 8, 230 15 of 18

the final performance will be dependent on a few time-consuming subgraphs. Thus, most executors
will wait until these subgraphs are finished. More executors cannot avoid this phenomenon.

5. Conclusions

In this paper, we propose SSIGRAM, a novel parallel frequent subgraph mining algorithm in
a single large graph using Spark, which conducts in parallel subgraph extension and support counting,
respectively, focusing on the two core steps with high computational complexity in frequent subgraph
mining. In addition, we also provide a heuristic search strategy and three optimizations for the support
computing operation. Finally, extensive experimental performance evaluations are conducted with
four graph datasets, showing the effectiveness of the proposed SSIGRAM algorithm.

Currently, the parallel execution is conducted on the scale of every generated subgraph.
When a subgraph involves a node with very big degree, SSIGRAM will not go to next iteration
until the executor finishes calculating the support of this subgraph. In the future, we plan to design
a strategy that decomposes the evaluation task for this type of subgraph to all executors, accelerating
the search speed further.

6. Discussion

The proposed algorithm in this paper is applied to FSM on a single large certain graph data,
in which each edge definitely exists. However, uncertain graphs are also common and have practical
importance in the real world, e.g., the telecommunication or electrical networks. In the uncertain graph
model [33], each edge of a graph is associated with a probability to quantify the likelihood that this
edge exists in the graph. Usually the existence of edges is assumed to be independent.

There are also two types of FSM on uncertain graphs: transaction based and single graph based.
Most existing work on FSM on uncertain graphs is developed on transaction settings, i.e., multiple
small/medium uncertain graphs. FSM on uncertain graph transactions under expected semantics
considers a subgraph frequent if its expected support is greater than the threshold. Representative
algorithms include Mining Uncertain Subgraph patterns (MUSE) [34], Weighted MUSE (WMUSE) [35],
Uncertain Graph Index(UGRAP) [36] and Mining Uncertain Subgraph patterns under Probabilistic
semantics (MUSE-P) [37]. They are proposed under expected semantics or the probabilistic semantics.
Here, we mainly discuss the measurement of uncertainty and applications of techniques proposed in
this paper considering single uncertain graph.

The measurement of uncertainty is important when considering an uncertain graph.
Combining labelled graph in Definition 1 in this paper, an uncertain graph is a tuple Gu = (G, P),
where G is the backbone labelled graph, and P : E→ (0, 1] is a probability function that assigns each
edge e with an existence probability, denoted by P(e), e ∈ E. An uncertain graph Gu implies 2|E|

possible graphs in total, each of which is a structure Gu may exist as. The existence probability of Gi

can be computed by the joint probability distribution:

P(Gu ⇒ Gi) = ∏
e∈EGi

P(e) ∏
e∈EG/EGi

(1− P(e)).

Generally speaking, FSM on single uncertain graph can also be divided into two phases:
subgraph extension and support evaluation. The subgraph extension phase is the same as that
for FSM on the backbone graph G. Thus, techniques used in this paper, such as canonical adjacency
matrix for representing subgraphs and the parallel extension for extending subgraphs, can be used in
the single uncertain graph.

The biggest difference lies in the support evaluation phase. The support of a subgraph g in
an uncertain graph Gu is measured by expected support. A straightforward procedure to compute the
expected support is generating all implied graphs, computing and aggregating the support of the
subgraph in every implied graph, and last deriving the expected support, which can be accomplished
by the CSP model used in this paper. Formally, the expected support is a probability distribution over

Appl. Sci. 2018, 8, 230 16 of 18

the support in implied graphs:

eSup(g, Gu) =
2|E|

∑
i=1

P(Gu ⇒ Gi) · Sup(g, Gi),

where Gi is an implied graph of Gu. The support measure Sup can be the MNI support introduced
in Definition 5, which is computed efficiently. Thus, given an uncertain graph Gu = (G, P) and
an expected support threshold τ, FSM on an uncertain graph finds all subgraphs g whose expected
support is no less than the threshold, i.e., G = {g|eSup(g, Gu) ≥ τ ∧ g ⊆ G}.

Furthermore, let Pj(g, Gu) denote the aggregated probability that the support of g in an implied
graph is no less than j:

Pj(g, Gu) = ∑
Gi∈∆j(g)

P(Gu ⇒ Gi),

where ∆j(g) = {Gi|Supg, Gi ≥ j}. The expected support can be reformulated as:

eSup(g, Gu) =
Ms

∑
j=1

Pj(g, Gu),

where Ms is the maximum support of g among all implied graphs of Gu. For the detailed proof, we refer
to [25]. However, it is #P-hard to compute eSup(g, Gu) because of the huge number of implied graphs
(2|E|), which means that it is rather time consuming to draw exact frequent subgraph results even using
the parallel evaluation with Spark platform proposed in this paper. Approximate evaluation with
an error tolerance to allow some false positive frequent subgraphs is a common method. Some special
optimization techniques other than optimizations in this paper must also be designed. Therefore,
the modifications of expected support and some potential optimizations are still problems to be further
studied to make the proposed algorithm be fit to mine frequent subgraphs on single uncertain graph.

Acknowledgments: This work was supported by (i) Hunan Natural Science Foundation of China(2017JJ336):
Research on Individual Influence Prediction Based on Dynamic Time Series in Social Networks; and (ii) The
Subject of Teaching Reform in Hunan: A Research on Education Model on Internet plus Assignments.

Author Contributions: Fengcai Qiao and Hui Wang conceived and designed the experiments; Fengcai Qiao
performed the experiments; Xin Zhang and Pei Li analyzed the data; Zhaoyun Ding contributed
reagents/materials/analysis tools; Fengcai Qiao and Shanshan Jia wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chakrabarti, D.; Faloutsos, C. Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. (CSUR)
2006, 38, 2.

2. Yan, X.; Han, J. gSpan: Graph-based substructure pattern mining. In Proceedings of the 2002 IEEE International
Conference on Data Mining (ICDM 2002), Maebashi City, Japan, 9–12 December 2002; pp. 721–724.

3. Liu, Y.; Xu, S.; Duan, L. Relationship Emergence Prediction in Heterogeneous Networks through Dynamic
Frequent Subgraph Mining. In Proceedings of the 23rd ACM International Conference on Information
and Knowledge Management, Shanghai, China, 3–7 November 2014; ACM: New York, NY, USA, 2014;
pp. 1649–1658.

4. Herrera-Semenets, V.; Gago-Alonso, A. A novel rule generator for intrusion detection based on frequent
subgraph mining. Ingeniare Rev. Chil. Ing. 2017, 25, 226–234.

5. Qiao, F.; Wang, H. Computational Approach to Detecting and Predicting Occupy Protest Events.
In Proceedings of the 2015 International Conference on Identification, Information, and Knowledge in
the Internet of Things (IIKI), Beijing, China, 22–23 October 2015; pp. 94–97.

6. Pak, A.; Paroubek, P. Extracting Sentiment Patterns from Syntactic Graphs. In Social Media Mining and Social
Network Analysis: Emerging Research; IGI Global: Hershey, PA, USA, 2013; pp. 1–18.

Appl. Sci. 2018, 8, 230 17 of 18

7. Choi, C.; Lee, Y.; Yoon, S.E. Discriminative subgraphs for discovering family photos. Comput. Vis. Media
2016, 2, 257–266.

8. Keneshloo, Y.; Cadena, J.; Korkmaz, G.; Ramakrishnan, N. Detecting and forecasting domestic political
crises: A graph-based approach. In Proceedings of the 2014 ACM Conference on Web Science, Bloomington,
IN, USA, 23–26 June 2014; ACM: New York, NY, USA, 2014; pp. 192–196.

9. Jiang, C.; Coenen, F.; Zito, M. A survey of frequent subgraph mining algorithms. Knowl. Eng. Rev. 2013,
28, 75–105.

10. Kuramochi, M.; Karypis, G. Finding Frequent Patterns in a Large Sparse Graph. Data Min. Knowl. Discov.
2005, 11, 243–271.

11. Berlingerio, M.; Bonchi, F.; Bringmann, B.; Gionis, A. Mining graph evolution rules. In Machine Learning and
Knowledge Discovery in Databases; MIT Press: Cambridge, MA, USA, 2009; pp. 115–130.

12. Elseidy, M.; Abdelhamid, E.; Skiadopoulos, S.; Kalnis, P. GraMi: Frequent Subgraph and Pattern Mining in
a Single Large Graph. Proc. VLDB Endow. 2014, 7, 517–528.

13. Wang, K.; Xie, X.; Jin, H.; Yuan, P.; Lu, F.; Ke, X. Frequent Subgraph Mining in Graph Databases Based on
MapReduce. In Advances in Services Computing, Proceedings of the 10th Asia-Pacific Services Computing Conference
(APSCC 2016), Zhangjiajie, China, 16–18 November 2016; Springer: Berlin, Germany, 2016; pp. 464–476.

14. Liu, Y.; Jiang, X.; Chen, H.; Ma, J.; Zhang, X. Mapreduce-based pattern finding algorithm applied in motif
detection for prescription compatibility network. In Advanced Parallel Processing Technologies; Springer
International Publishing AG: Cham, Switzerland, 2009; pp. 341–355.

15. Shahrivari, S.; Jalili, S. Distributed discovery of frequent subgraphs of a network using MapReduce.
Computing 2015, 97, 1101–1120.

16. Aridhi, S.; d’Orazio, L.; Maddouri, M.; Nguifo, E.M. Density-based data partitioning strategy to approximate
large-scale subgraph mining. Inf. Syst. 2015, 48, 213–223.

17. Hill, S.; Srichandan, B.; Sunderraman, R. An iterative mapreduce approach to frequent subgraph mining in
biological datasets. In Proceedings of the ACM Conference on Bioinformatics, Computational Biology and
Biomedicine, Orlando, FL, USA, 7–10 October 2012; ACM: New York, NY, USA, 2012; pp. 661–666.

18. Luo, Y.; Guan, J.; Zhou, S. Towards Efficient Subgraph Search in Cloud Computing Environments. In Database
Systems for Adanced Applications; Springer International Publishing AG: Cham, Switzerland, 2011; pp. 2–13.

19. Talukder, N.; Zaki, M.J. A distributed approach for graph mining in massive networks. Data Min. Knowl. Discov.
2016, 30, 1024–1052.

20. White, T. Hadoop: The Definitive Guide, 1st ed.; O’Reilly Media, Inc.: Newton, MA, USA, 2009.
21. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster Computing with Working

Sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10),
Boston, MA, USA, 22–25 June 2010; USENIX Association: Berkeley, CA, USA, 2010; p. 10.

22. Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.; Amde, M.;
Owen, S.; et al. Mllib: Machine learning in apache spark. J. Mach. Learn. Res. 2016, 17, 1235–1241.

23. Huan, J.; Wang, W.; Prins, J. Efficient mining of frequent subgraphs in the presence of isomorphism.
In Proceedings of the Third IEEE International Conference on Data Mining (ICDM 2003), Melbourne,
FL, USA, 22–22 November 2003; pp. 549–552.

24. Jiang, C. Frequent Subgraph Mining Algorithms on Weighted Graphs. Ph.D. Thesis, University of Liverpool,
Liverpool, UK, 2011.

25. Chen, Y.; Zhao, X.; Lin, X.; Wang, Y. Towards frequent subgraph mining on single large uncertain graphs.
In Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM), Atlantic City, NJ, USA,
14–17 November 2015; pp. 41–50.

26. Gibbons, A. Algorithmic Graph Theory; Cambridge University Press: Cambridge, UK, 1985.
27. West, D.B. Introduction to Graph Theory; Prentice Hall Upper Saddle River: Bergen County, NJ, USA; 2001;

Volume 2.
28. Gerner, D.J.; Schrodt, P.A.; Yilmaz, O.; Abu-Jabr, R. Conflict and Mediation Event Observations (CAMEO):

A New Event Data Framework for the Analysis of Foreign Policy Interactions; International Studies Association:
New Orleans, LA, USA, 2002.

29. He, H.; Singh, A.K. Graphs-at-a-time: Query language and access methods for graph databases. In Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada,
9–12 June 2008; ACM: New York, NY, USA, 2008; pp. 405–418.

Appl. Sci. 2018, 8, 230 18 of 18

30. Fiedler, M.; Borgelt, C. Subgraph support in a single large graph. In Proceedings of the Seventh
IEEE International Conference on Data Mining Workshops (ICDM Workshops 2007), Omaha, NE, USA,
28–31 October 2007; pp. 399–404.

31. Bringmann, B.; Nijssen, S. What is Frequent in a Single Graph? In Proceedings of the 12th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining (PAKDD’08), Osaka, Japan, 20–23 May 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 858–863.

32. Wörlein, M.; Meinl, T.; Fischer, I.; Philippsen, M. A quantitative comparison of the subgraph miners
MoFa, gSpan, FFSM, and Gaston. In Knowledge Discovery in Database: PKDD 2005; Jorge, A., Torgo, L.,
Brazdil, P., Camacho, R., Gama, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2005;
Volume 3721, pp. 392–403.

33. Jin, R.; Liu, L.; Aggarwal, C.C. Discovering highly reliable subgraphs in uncertain graphs. In Proceedings of
the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego,
CA, USA, 21–24 August 2011; ACM: New York, NY, USA, 2011; pp. 992–1000.

34. Zou, Z.; Li, J.; Gao, H.; Zhang, S. Frequent subgraph pattern mining on uncertain graph data.
In Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong,
China, 2–6 November 2009; ACM: New York, NY, USA, 2009; pp. 583–592.

35. Jamil, S.; Khan, A.; Halim, Z.; Baig, A.R. Weighted muse for frequent sub-graph pattern finding in uncertain
dblp data. In Proceedings of the 2011 International Conference on Internet Technology and Applications
(iTAP), Wuhan, China, 16–18 August 2011; pp. 1–6.

36. Papapetrou, O.; Ioannou, E.; Skoutas, D. Efficient discovery of frequent subgraph patterns in uncertain
graph databases. In Proceedings of the 14th International Conference on Extending Database Technology,
Uppsala, Sweden, 21–24 March 2011; ACM: New York, NY, USA, 2011; pp. 355–366.

37. Zou, Z.; Gao, H.; Li, J. Discovering frequent subgraphs over uncertain graph databases under probabilistic
semantics. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, 25–28 July 2010; ACM: New York, NY, USA, 2010; pp. 633–642.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Formalism
	The SSiGraM Approach
	Framework
	Parallel Subgraph Extension
	Parallel Support Evaluation
	Optimizing Support Evaluation
	Load Balancing
	Pre-Search Pruning
	Top-Down Pruning

	The SSiGraM Algorithm

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusions
	Discussion
	References

