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Featured Application: control strategy of motor drive system for electric vehicles

Abstract: A drive system with an open-end winding permanent magnet synchronous motor
(OW-PMSM) fed by a dual inverter and powered by two independent power sources is suitable
for electric vehicles. By using an energy conversion device as primary power source and an energy
storage element as secondary power source, this configuration can not only lower the DC-bus voltage
and extend the driving range, but also handle the power sharing between two power sources without
a DC/DC (direct current to direct current) converter. Based on a drive system model with voltage
vector distribution, this paper proposes a desired power sharing calculation method and three
different voltage vector distribution methods. By their selection strategy the optimal voltage vector
distribution method can be selected according to the operating conditions. On the basis of the integral
synthesizing of the desired voltage vector, the proposed voltage vector distribution method can
reduce the inverter switching frequency while making the primary power source follow its desired
output power. Simulation results confirm the validity of the proposed methods, which improve
the primary power source’s energy efficiency by regulating its output power and lessen inverter
switching loss by reducing the switching frequency. This system also provides an approach to the
energy management function of electric vehicles.

Keywords: electric vehicle; open-end winding; dual inverter; voltage vector distribution; power
sharing; energy management

1. Introduction

Permanent Magnet Synchronous Motor (PMSM) has been widely used as drive motor on electric
vehicles for its high power density, outstanding low-speed torque output and high efficiency [1–5].
However, the back EMF (electromotive force) increases rapidly along with motor speed due to the
uncontrollable constant magnetic field of the permanent magnet, which means a higher DC-bus (direct
current) voltage and a high-level flux-weakening control are required [6–8]. Furthermore, limited
by the restricted energy of power battery with present technology, an extra energy source is often
required to reach an acceptable driving range. Usually a DC/DC converter is needed to acquire power
distribution and energy management function between the two power sources, which increases system
complexity and brings additional losses [9,10].

The above problems can be perfectly solved by using an open-end winding permanent magnet
Synchronous Motor (OW-PMSM) fed by two inverters, as shown in Figure 1. Each inverter is
powered by an independent power source, and the two power sources are electrically isolated. This
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configuration inherently eliminates common-mode currents and can make the two sources virtually
cascaded by proper control of dual inverter. Thus, the motor can obtain a higher voltage without
increasing DC-bus voltage, resulting in an easier flux-weakening control and a higher top speed [11–14].
By using dual inverter, the actual number of motor phase voltage level is increased. For example, dual
two-level inverter operates in three-level mode with equal DC-bus voltages, and operates in four-level
mode when the dc voltages are in 2:1 ratio [15]. Moreover, the power flow between the two sources
can be transferred through the motor controllably, making the system free of DC/DC converter [15,16].
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If we define power source1 as primary power source, power source2 as secondary power source,
one of the most popular scheme is using a power battery as primary power source, and a floating
capacitor as secondary power source. Due to the low internal resistance and high-rate discharge
capability, the capacitor often acts as a power buffer, providing the reactive power consumed by the
load, and smoothening power output of primary power source by absorbing instantaneous power
fluctuation [16–20]. Joon Sung Park et al. proposed a dual inverter strategy for this scheme. By setting
inverter2 to take care of reactive voltage and controlling active power flow, the torque and power level
of high speed was enhanced, and the voltage of the capacitor was well regulated [20]. A hybrid PWM
(pulse-width modulation) based flux-weakening control strategy for this scheme was proposed by
Dan Sun et al. A double vector based PWM, utilizing one active vector and one optimal zero vector in
a switching period, was applied to inverter1, resulting in the decreasing of switching frequency as
well as switching loss. The flux-weakening control strategy also fully utilized the DC-bus voltage and
widened motor operating range [21].

However, because of the low energy capacity, using a capacitor as secondary power source usually
could not satisfy the requirements of most driving conditions for electric vehicle. Thus, the scheme
including some type of energy conversion device, such as an engine generator or fuel cell as primary
power source, some type of energy storage element, such as a battery or super capacitor as secondary
power source comes into fashion [15,22]. Brian A. Welchko proposed three methods to achieve the
combined motor control and energy management functions for this scheme, which are unity power
factor control, voltage quadrature control, and optimum inverter utilization control [15]. By choosing
the proper method, the energy flow in secondary energy source, the available system voltage to load
when secondary energy source is not outputting active power, or the power flow to load can be
maximized, respectively. A modulation strategy was proposed by Domenico Casadei et al., able to
regulate the power sharing between the power sources by means of a special switching sequence
for dual inverter. In addition, the limit of power sharing ratio was determined as a function of the
modulation index [23]. However, the proposed strategy could only split the voltage vector linearly so
that the modulation ranges of two inverters are underutilized.

In our previous work, we proposed a multi-level current hysteresis modulation algorithm, able
to set major power source and switch it at any moment, which could accomplish power distribution
between two power sources [24]. However, the proposed methods could only distribute the power
between two power sources in a fixed ratio according to the major power source at each working point
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of the motor. To control the power flow appropriately, the major power source must be switched many
times in a working cycle, just like a PWM controller.

Aiming at electric vehicles with an OW-PMSM driving and powered by two power sources,
in this paper, a voltage vector-synthesizing model based on the midpoint voltage, and the power
sharing principle are discussed. Then a power sharing calculation method is proposed to acquire the
present desired power of primary power source. After that, three voltage vector distribution methods
are introduced. The selection strategy of these three methods is then proposed to select the optimal
method. On the basis of the integral synthesizing of the desired voltage vector, lowering the inverter
switching frequency while making the output power of primary power source follow the desired value
with specified accuracy can be achieved. At last a complete simulation of the drive system is executed
to verify the control methods proposed.

In particular, the coordination transformations among static three-phase coordinate, static
two-phase coordinate and rotary two-phase coordinate in this paper are equivalent power conversions.

2. Operating Principle

The control methods proposed by this paper is based on voltage vector generated by dual inverter,
so in this section the mathematical system model is built, which provides theoretical support for the
voltage vector distribution methods. In addition, the principle of the power sharing and power flow
between two power sources are illuminated to support the proposed control methods.

2.1. System Modeling

First, we will introduce the concept of mid-point voltage. By equally dividing primary power
source and secondary power source into two parts according to their voltages, we can acquire virtual
mid-points m and n. Voltage difference between each inverter leg’s output and corresponding
mid-point is mid-point phase voltage, and voltage difference between mid-points of the two power
sources is mid-point voltage difference. As shown in Figure 2, Vdc1 and Vdc2 are the DC-bus voltages of
primary power source and secondary power source respectively. uAm, uBm and uCm are the mid-point
phase voltages of inverter1. uXn, uYn and uZn are the mid-point phase voltages of inverter2. umn is the
mid-point voltage difference between the two power sources.
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The phase voltages of OW-PMSM are affected by both inverters’ switching states. Based on
Kirchhoff’s law, the phase voltages of OW-PMSM are determined by Equation (1):

uAX = uAm − uXn + umn

uBY = uBm − uYn + umn

uCZ = uCm − uZn + umn

(1)
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In motor stator plane, the stator voltage vector of OW-PMSM
⇀
us is synthesized by the three phase

voltages as follow:
⇀
us =

√
2
3
(uAXej0 + uBYej 2π

3 + uCZej 4π
3 ) (2)

where ej0, ej 2π
3 and ej 4π

3 are spatial operators, pointing the directions of the three phases’ axes

respectively.
√

2
3 is the coefficient of equivalent power conversions. Similarly, the output voltage

vector of the two inverters
⇀

us1 and
⇀

us2 expressed by mid-point phase voltages are given as:
⇀

us1 =
√

2
3 (uAmej0 + uBmej 2π

3 + uCmej 4π
3 )

⇀
us2 =

√
2
3 (uXnej0 + uYnej 2π

3 + uZnej 4π
3 )

(3)

This indicates
⇀

us1 and
⇀

us2 are only determined by switching states of the corresponding inverter,
and not affected by the other side. Thus,

⇀
us1 and

⇀
us2 can be generated by two independent space vector

pulse width modulation (SVPWM) controllers.
Substituting Equations (1) and (3) into (2) results in an expression for

⇀
us in terms of

⇀
us1 and

⇀
us2,

shown by Equation (4):

⇀
us =

⇀
us1 −

⇀
us2 +

√
2
3

umn(ej0 + ej 2π
3 + ej 4π

3 ) =
⇀

us1 −
⇀

us2 (4)

Because the two power sources are electrically isolated, the mid-point voltage difference umn is
floating and varying along with the switching states of dual inverter. However, when synthesizing
the motor stator voltage vector

⇀
us, the floating umn is eliminated as shown in Equation (4). That is

because the three phase voltages contain identical component of umn, which just counteract each other
in motor stator plane. In essence, when the loads of three phase windings are completely symmetrical,
the synthesized motor stator voltage vector should be free of zero-sequence component, which means
the following equation holds:

uAX + uBY + uCZ = 0 (5)

By substituting (1) into (5), the value of umn can be obtained.

2.2. Principle of Power Flow

From Equation (4), we know that
⇀
us can be synthesized by

⇀
us1 and

⇀
us2, where

⇀
us1 and

⇀
us2 are

generated by two independent SVPWM controllers separately. Thus, when
⇀
us is determined and Vdc1,

Vdc2 are measured, the feasible region of voltage vector distribution can be obtained. As shown in
Figure 3, O1 is the origin of vector

⇀
us and O2 is the end of

⇀
us. Two hexagons indicating the modulation

range of the two inverters can be acquired. Hexagon A1B1C1D1E1F1 centering on O1, having a side

length of
√

2
3 Vdc1, gives the modulation range of inverter1. In the same way, hexagon A2B2C2D2E2F2

centering on O2 with a side length of
√

2
3 Vdc2, gives the modulation range of inverter2. Vector

⇀
us1

starts at O1 and has to end within the range of hexagon A1B1C1D1E1F1, similarly vector
⇀

us2 starts at
O2 and has to end within the range of hexagon A2B2C2D2E2F2. According to Equation (4), the end
of

⇀
us1 and the end of

⇀
us2 must coincide at one point, assuming it is I. The overlapping region of the

two hexagons A2B2GD1E1H corresponds to the feasible region of I, which also indicates the feasible
region of voltage vector distribution.
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If the motor stator currents iAX , iBX and iCX are measured, the stator current vector of OW-PMSM
⇀
is can be obtained as follow:

⇀
is =

√
2
3
(iAXej0 + iBYej 2π

3 + iCZej 4π
3 ) (6)

Then the power sharing of dual inverter can be determined as shown in Equation (7): Pinv1 =
⇀

us1 ·
⇀
is

Pinv2 =
⇀

us2 ·
⇀
−is = −

⇀
us2 ·

⇀
is

(7)

where Pinv1 and Pinv2 are the output power of inverter1 and inverter2 respectively, positive value
means the corresponding inverter is outputting active power and vice versa. It is important to notice
the minus sign in the expression of Pinv2. That is because the defined motor phase current polarities

are flowing from inverter1 to inverter2, thus the direction of vector
⇀
is on inverter2’s point of view

is opposite to inverter1’s. In Figure 3, Pinv1 can be obtained from vector dot product of
⇀

us1 and
⇀
is at

point O1, similarly Pinv2 can be obtained from vector dot product of
⇀

us2 and
⇀
−is at point O2. Taking

inverter1 for example, we have Pinv1 =
⇀

us1 ·
⇀
is = |

⇀
is ||O1 J|, where |O1 J| is the projection of

⇀
us1 on the

direction of
⇀
is . Thus all the available

⇀
us1 having the same projection |O1 J| obtain the same value of

Pinv1, which is indicated by line l1 through point J and orthogonal to
⇀
is . That means all the

⇀
us1 starting

at O1 and ending on line l1 gain the same Pinv1 at current
⇀
is . Assuming we want the output power

of inverter1 limited to the range of Pinv1 ± ∆P, we can draw two lines parallel to line l1 and having a
distance of ∆P

|
⇀
is |

to l1 on different side. Those are line l2 through point K and line l3 through point L,

where |KJ| = |LJ| = ∆P

|
⇀
is |

. Thus in prevailing circumstance, the feasible region of point I, also known as

the feasible region of voltage vector distribution, is the intersection set of area A2B2GD1E1H and the
area between line l2 and line l3.
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3. Desired Power Sharing Calculation Method

Because an energy conversion device is used as primary power source, we must take its traits
for consideration. One is the efficiency characteristic. For example, an engine generator has a best
efficiency point and a maximum efficiency curve, operating on which makes the engine under the best
economy. The other is the lagging characteristic in response. For example, there is a time lag between
opening the throttle and the increasing of engine’s output power, or between increasing the hydrogen
supply and power uprating of fuel cell. Since the secondary power source is an energy storage device
and it does not need additional controls, we set it as a power buffer, to compensate the lacking power
or absorb the redundant power outputted by primary power source.

Considering the two traits of the primary power source mentioned above, a desired power sharing
calculation method based on a first order inertial element is proposed, as shown in Figure 4.
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This calculator has two inputs, which are Pmot and Pinv1_opt. Where Pmot is the input power
of OW-PMSM, identical to the summation of two inverters’ output power, and can be determined
as follow:

Pmot =
⇀
us ·

⇀
is (8)

Pinv1_opt is the optimal output power of inverter1, under which the primary power source obtains
maximum efficiency. Pinv1_opt can be set as a constant, corresponding to the best efficiency point; or
set as a variable, corresponding to the maximum efficiency curve, following the changes of its output
power. Then the power deviation of inverter1 ∆Pinv1 can be obtained by subtracting Pinv1_opt from Pmot:

∆Pinv1 = Pmot − Pinv1_opt (9)

∆Pinv1 indicates the difference between the total desired power and the ideal power output
of inverter1. Thus, we use ∆Pinv1 as the input of the first order inertial element, to generate the
compensating power of inverter1. In the frequency domain, we have:

∆P∗inv1(s) =
K

Ts + 1
∆Pinv1(s) (10)

where ∆P∗inv1 is the compensating power of inverter1, K and T are the gain and the time constant
of the inertial element, respectively. In the time domain, ∆P∗inv1 and ∆Pinv1 satisfy the following
differential equation:

T
d
dt

∆P∗inv1(t) + ∆P∗inv1(t) = K∆Pinv1(t) (11)

In a discrete system, the current ∆P∗inv1 can be obtained by Equation (12), where ∆P∗inv1(t) is the
valve of ∆P∗inv1 in current sample step and ∆T is the step size of the system.

∆P∗inv1(t) =
K∆Pinv1(t)− ∆P∗inv1(t− ∆T)

T
∆T + ∆P∗inv1(t− ∆T) (12)

After ∆P∗inv1 is obtained, the desired output power of inverter1 P∗inv1 can be determined:

P∗inv1 = Pinv1_opt + ∆P∗inv1 (13)
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By adjusting K and T, different power sharing characteristics can be achieved. We have K ∈ [0, 1],
and it affects the response amplitude of ∆P∗inv1. The larger K is, the greater amplitude ∆P∗inv1 responds
to ∆Pinv1. For example, when K = 0, we have P∗inv1 = Pinv1_opt at all time, totally regardless of the
influence of ∆Pinv1. In this circumstance, the efficiency of the primary power source is maximized,
but the secondary power source will also take the largest power fluctuation. When K = 1, P∗inv1 is
completely following Pmot except the lag caused by the inertial element. In this circumstance, the power
fluctuation of the primary power source will rise, the operating time in high efficiency area and the
average efficiency will drop, but the secondary power source is not expected to supply any active
power regardless of the influence of the inertial element. The time constant T affects speed and
sensitivity of ∆P∗inv1 responding to ∆Pinv1. The larger T is, the more lag and inertia is in response.

4. Voltage Vector Distribution Method

This section deals with three different voltage vector distribution methods and their selection
strategy. Because all these voltage vector distribution methods need to judge whether the inverter
desired voltage vector is in the modulation range of the corresponding inverter, the judgmental
algorithm will be introduced first.

4.1. Voltage Vector Over Range Judgmental Algorithm

The voltage vector over range judgmental algorithm is derived from the SVPWM strategy. It is
used to calculate the proportions of adjacent basic vector for synthesizing desired voltage vector of a
single inverter [25]. The calculation result can also indicate whether the desired voltage vector is in the
modulation range, which is what we need here.

The desired voltage vector is given in static two-phase coordinate, which are D-axis component u∗D
and Q-axis component u∗Q. As shown in Figure 5a, axis J, K and L are distributed in circular uniform.
The projection of the desired voltage vector on axis J, K and L, defined as j, k and l respectively, can be
obtained by Equation (14): 

j =
u∗Q
2

k =
√

3u∗D
2 − u∗Q

2

l = −
√

3u∗D
2 − u∗Q

2

(14)
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Then the sector number N can be determined as follow:

N = sign(j) + 2sign(k) + 4sign(l) (15)

where sign is the sign function, we have sign(x) = 1 if x > 0, otherwise we have sign(x) = 0. There
are six sectors in total, and the sector number is represented by roman numerals shown in Figure 5a.
The proportion parameters x, y and z can be calculated using u∗D and u∗Q by Equation (16), where Vdc
is the DC-bus voltage of the corresponding inverter.

x =

√
2u∗Q

Vdc

y =
2u∗D+

√
3u∗Q√

6Vdc

z =
−2u∗D+

√
3u∗Q√

6Vdc

(16)

Afterwards, the proportions of adjacent basic vectors to synthesize desired voltage vector, defined
as a and b, can be obtained by distributing the three proportion parameters according to the sector
number, which is shown in Table 1.

Table 1. Relation table for a, b and N.

N 0 1 2 3 4 5 6

a 0 z y −z −x x −y

b 0 y −x x z −y −z

As shown in Figure 5b, taking inverter1 as an example, the desired voltage vector
⇀

u∗s1 lies in
Sector III, and is synthesized by the adjacent basic vectors

⇀
u1 and

⇀
u2. We have:

⇀
u∗s1 = a

⇀
u1 + b

⇀
u2 (17)

a + b ≤ 1 indicates the desired voltage vector is within the range of the hexagon and can be
modulated. Otherwise when a + b > 1, it means the desired voltage vector is out of the modulation
range and cannot be generated integrally.

4.2. Low Switching Frequency Method

In a SVPWM control period, there are two switch commutations of each inverter leg normally.
Thus, there are six switch commutations of all three legs in a single inverter. When using the dual
inverter configuration, the number of switch commutations is doubled. This can cause considerable
inverter switching loss and lower the inverter efficiency. However, if one inverter is forced to output
only basic voltage vectors or zero vector, there is no switch commutation during the modulation period
because the desired voltage vector does not need to be synthesized by two adjacent basic vectors. Thus,
the switching frequency of this clamped inverter can be lower to zero if the switch commutations at the
junction of modulation periods are ignored. By clamping inverter1 to output only basic voltage vectors
and zero vector, the low switching frequency method can reduce the total inverter switching frequency
by nearly a half, thus the inverter switching loss is significantly reduced. The desired voltage vector of

inverter1
⇀

u∗s1 will be chosen among zero vector and basic voltage vectors lying in the feasible region of
voltage vector distribution mentioned in Section 2.2, the one makes inverter1’s output power closest to
the desired value P∗inv1 will be selected.
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The specific algorithm will be introduced as follow. First, matrix Mus1 with a size of 4 × 7 is
introduced. Each row of Mus1 represents a candidate of voltage vectors, including six basic voltage
vectors and one zero vector. The first two lines of Mus1 are assigned as follow: Mus1(1, :) =

√
2
3 Udc1 ◦ [0, 1, 1

2 ,− 1
2 ,−1,− 1

2 , 1
2 ]

Mus1(2, :) =
√

2
3 Udc1 ◦ [0, 0,

√
3

2 ,
√

3
2 , 0,−

√
3

2 ,−
√

3
2 ]

(18)

where Mus1(n, :) means the nth line of matrix Mus1, and “◦” is the operator of Hadamard product, meaning
the multiplication of each corresponding element of the two participant matrixes. Mus1(1, :) indicates the
D-axis components of each candidate vector, while Mus1(2, :) indicates the Q-axis components. Then
the third line of Mus1 can be calculated, which indicates inverter1’s output power of the corresponding
candidate vector:

Mus1(3, :) = Mus1([1, 2], :)T × [iD, iQ]
T (19)

where iD and iQ are D-axis component and Q-axis component of
⇀
is respectively. The difference between

inverter1’s output power of each candidate vector and the desired value P∗inv1 can be obtained by
Equation (20), assigned to the fourth line of Mus1:

Mus1(4, :) = |Mus1(3, :)− P∗dc1| (20)

Then these power difference values of inverter1 are sorted in ascending sequence. Afterwards the
corresponding candidate vectors are checked respectively in the sorted sequence to verify whether it is
in the feasible region until we get a positive result.

The specific procedure is introduced as follow. First, obtain inverter2’s voltage vector of the

corresponding candidate vector of inverter1 by
⇀

u∗s2 =
⇀

u∗s1 −
⇀
u∗s , which is modified from Equation (4).

Then whether this voltage vector is within the modulation range of inverter2 or not is checked by
voltage vector over range judgmental algorithm introduced in sector 4.1. If the result is positive,
the current candidate vector of inverter1 is valid. Otherwise the next candidate vector in the sorted
sequence will be checked until the voltage vector distribution is confirmed valid.

Then the present candidate vector is assigned to inverter1’s desired voltage vector, denoted by
⇀

u∗s1_LF, where the subscript LF means Low Frequency. The difference between inverter1’s output power

corresponding to
⇀

u∗s1_LF and the desired value P∗inv1 can be obtained from the corresponding element
in Mus1(4, :), recorded as DPinv1_LF, which is necessary in the selection strategy of voltage vector
distribution methods. DPinv1_LF indicates inverter1’s power following deviation of the low switching
frequency method. If all the candidate vectors are verified beyond the feasible region, the flag of low
switching frequency method FLF will be set to 0, meaning the low switching frequency method is
unavailable in current situation; otherwise FLF will be set to 1, indicating the low switching frequency
method is valid.

There are two examples shown in Figure 6. The meanings of lines, points, and vectors are the
same with Figure 3. The numbers next to vertexes of the hexagon centered on O1 indicate the rankings
of the corresponding candidate vectors in the sorted sequence, respectively. In the first situation,
the first candidate vector in the sequence, whose endpoint is closest to line l1, is within the feasible

region, so it is chosen to be
⇀

u∗s1_LF. However, in the second situation, the first two candidate vectors
indicated by dashed lines are both invalid, thus the third candidate vector in the sequence is chosen to

be
⇀

u∗s1_LF, making inverter1’s power following deviation bigger than the first situation.
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4.3. Accurate Power Following Method

Because low switching frequency method only uses basic voltage vectors and zero vector,
the difference of inverter1’s output power between actual and desired value, known as verter1’s
power following deviation, is not minimized. The accurate power following method is proposed to
solve this problem when this deviation of low switching frequency method is beyond the tolerance
range. The principle of this method is simple: to generate inverter1’s desired voltage vector in phase

with
⇀
is , and its amplitude is determined by the desired output power of inverter1, making inverter1’s

power following deviation fully eliminated. The collinearity of
⇀

us1 and
⇀
is could also make inverter1

free of bearing any reactive power.

The specific algorithm will be introduced as follow. First, the amplitude of
⇀
is is obtained using its

D-axis and Q-axis components by Equation (21):

|
⇀
is | =

√
i2D + i2Q (21)

Then the amplitude of inverter1’s desired voltage vector can be determined as follow, which
makes the corresponding output power of inverter1 equal to the desired value P∗inv1.

|
⇀

u∗s1| =
P∗inv1
⇀
|is|

(22)

Therefore,
⇀

u∗s1 can be obtained by Equation (23) to be in phase with
⇀
is :

⇀
u∗s1 =

⇀
is

|
⇀
is |
|
⇀

u∗s1| (23)

Afterwards the voltage vector over range judgmental algorithm is executed to check whether the

current calculated
⇀

u∗s1 is within the modulation range of inverter1. If the result is positive, the current

calculated
⇀

u∗s1 will be assigned to inverter1’s desired voltage vector
⇀

u∗s1_AF, where the subscript AF

means Accurate Following. Otherwise, the current calculated
⇀

u∗s1 need to be shortened to the boundary
of inverter1’s modulation range by the following procedure.

We define the proportions of adjacent basic vectors for synthesizing the current calculated
⇀

u∗s1
as a′1 and b′1, which are the results from the voltage vector over range judgmental algorithm, and we
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have a′1 + b′1 > 1 so the current calculated
⇀

u∗s1 is beyond the modulation range. To make a1 + b1 = 1,
we have:  a1 =

a′1
a′1+b′1

b1 =
b′1

a′1+b′1

(24)

where a1 and b1 are the proportions of adjacent basic vectors for the shortened
⇀

u∗s1, which is on the

boundary of inverter1’s modulation range. Then the amplitude of this shortened
⇀

u∗s1 can be obtained
by Equation (25):

|u∗s1| =
√

2
3

Udc1
√

1− a1b1 (25)

Afterwards, the shortened
⇀

u∗s1 can be obtained by using Equation (23) again. Then the shortened
⇀

u∗s1 can be assigned to
⇀

u∗s1_AF. In addition, the difference between inverter1’s output power

corresponding to
⇀

u∗s1_AF and the desired value P∗inv1, denoted by DPinv1_AF, needs to be calculated by
Equation (26), which is necessary in the selection strategy of voltage vector distribution methods.

DPinv1_AF = |
⇀

u∗s1_AF ·
⇀
is − P∗inv1| (26)

Finally, obtain
⇀

u∗s2 by
⇀

u∗s2 =
⇀

u∗s1 −
⇀
u∗s from Equation (4). Then check whether it is within the

modulation range of inverter2. If not, the flag of accurate power following method FAF will be set to 0,
meaning the accurate power following method is unavailable in current situation; otherwise FAF will

be set to 1, indicating the calculated
⇀

u∗s1_AF is valid.

There are two examples shown in Figure 7. In the first situation, line l1 intersects
⇀
is ’s extension line

inside inverter1’s modulation range, so inverter1’s power following deviation DPinv1_AF is completely

eliminated. However, in the second situation, the intersection point of line l1 and
⇀
is ’s extension

line is beyond inverter1’s modulation range. Thus,
⇀

u∗s1 must be shortened to the boundary of this

hexagon. Unfortunately, after being shortened,
⇀

u∗s1 is also not in the feasible range of voltage vector

distribution because the corresponding
⇀

u∗s2 is out of inverter2’s modulation range. Thus, in this
situation, the accurate power following method is unavailable.Appl. Sci. 2018, 8, x 12 of 25 
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4.4. Linear Partition Method

From Equation (4) we know, when the output voltage vectors of two inverters are 180◦ out of
phase, meaning

⇀
us1 and

⇀
us2 are collinear but in the opposite direction, the synthesized

⇀
us has the

maximum amplitude. Thus, if we assign
⇀

u∗s1 and
⇀

u∗s2 by linearly partition
⇀
us in the proper position,

the possibility of
⇀

u∗s1 and
⇀

u∗s2 in the feasible region can be maximized. This is the strategy of the linear
partition method. If both the two methods above have failed to distribute the voltage vectors efficiently,
the linear partition method is the last chance. Even if it fails to generate the desired stator voltage

vector
⇀
u∗s integrally with the limitation of two inverters’ DC-bus voltages, in which situation the two

hexagons centered on O1 and O2 have no overlapping region, the linear partition method can provide

a
⇀
us having the same direction and the nearest amplitude with

⇀
u∗s .

The specific algorithm will be introduced as follow. First, the amplitude of
⇀
u∗s is calculated using

its D-axis and Q-axis components as follow:

|
⇀
u∗s | =

√
u∗2D + u∗2Q (27)

Then the desired amplitude of
⇀

u∗s1 can be obtained by Equation (28), making the corresponding
output power of inverter1 follows P∗inv1 accurately.

|
⇀

u∗s1| =
P∗inv1
⇀
u∗s ·

⇀
is

|
⇀
u∗s | (28)

Similar to Equation (23),
⇀

u∗s1 can be obtained as follow to be in phase with
⇀
u∗s :

⇀
u∗s1 =

⇀
u∗s

|
⇀
u∗s |
|
⇀

u∗s1| (29)

Then the voltage vector over range judgmental algorithm is executed to check whether the current

calculated
⇀

u∗s1 is within the modulation range of inverter1. If the answer is negative, the current

calculated
⇀

u∗s1 need to be shortened to the boundary of inverter1’s modulation range by the procedure
introduced in sector 4.3, that is using Equations (24), (25) and (29) in turn.

Afterwards, obtain
⇀

u∗s2 by
⇀

u∗s2 =
⇀

u∗s1 −
⇀
u∗s , which is modified from Equation (4). Then check

whether
⇀

u∗s2 is within the modulation range of inverter2. If positive, the latest calculated
⇀

u∗s1 will be

assigned to inverter1’s desired voltage vector
⇀

u∗s1_LP, where the subscript LP means Linear Partition.

Otherwise, the current calculated
⇀

u∗s2 need to be shortened to the boundary of inverter2’s modulation

range by the same way with
⇀

u∗s1. After
⇀

u∗s2 is shortened, we need to recalculate the corresponding
⇀

u∗s1

by
⇀

u∗s1 =
⇀
u∗s +

⇀
u∗s2, and check whether it is within the modulation range again. If not, shorten it to the

boundary of its modulation range. Finally the recalculated
⇀

u∗s1 can be assigned to
⇀

u∗s1_LP. Similarly,

the difference between inverter1’s output power corresponding to
⇀

u∗s1_LP and the desired value P∗inv1,
denoted by DPinv1_LP, needs to be calculated for voltage vector distribution method selection strategy.
Equation (26) is also suitable for this occasion.

There are four examples shown in Figure 8. In the first situation, line l1 intersects
⇀
u∗s right inside

the feasible range of voltage vector distribution, thus the first calculated
⇀

u∗s1 is valid. Under this
circumstance the output power of inverter1 follows P∗inv1 accurately. In the second situation, P∗inv1 is

too big so line l1 is completely out of inverter1’s modulation range. Thus,
⇀

u∗s1 has to be shortened to the
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boundary of the hexagon centered on O1. In the third situation, the first calculated
⇀

u∗s1, which makes the
output power of inverter1 equals to P∗inv1, is out of feasible range of voltage vector distribution because

the corresponding
⇀

u∗s2 is beyond its modulation range. Thus, after
⇀

u∗s2 is shortened to the hexagon

centered on O2,
⇀

u∗s1 is recalculated to compensate the shortage. In the fourth situation, the amplitude

of
⇀
u∗s is too big so that the two hexagons centered on O1 and O2 have no overlapping region. Thus,

⇀
u∗s1 and

⇀
u∗s2 both reached their maximum amplitude collinearly with

⇀
u∗s in the opposite direction to

synthesize
⇀
us, which is the best available result.
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4.5. Voltage Vector Distribution Method Selection Strategy

Each of these three voltage vector distribution methods introduced above has worked out a result
to distribute voltage vectors generated by dual inverter to synthesize the desired stator voltage vector
of OW-PMSM. The voltage vector distribution method selection strategy deals with the results from
these voltage vector distribution methods by selecting the optimal one as the final result of voltage
vector distribution.

The general idea of this selection strategy is expounded as follow. We have three evaluation
indexes, which are the accurate synthesizing of desired stator voltage vector, the following of inverter1’s
desired output power in acceptable accuracy, and the reduction of inverter switching frequency, ranked
from highest priority to lowest. In other words, by priority, first we need to ensure the voltage vector
distribution result can generate the desired stator voltage vector or as integrally as possible. Based on
that, we try to make inverter1’s output power follow the desired value in a specific tolerance range.
After these two conditions are met, we can think about lowering the inverter switching frequency.
The best situation is these three conditions are all satisfied. Otherwise, we discard the reduction of
inverter switching frequency. Then we give up the accurate power following of inverter1. At least the
synthesizing of desired voltage vector has to be ensured.

For the second condition mentioned above, we need to define the inverter1’s maximum power
following deviation, denoted by DPinv1_max. If inverter1’s output power is within the range of
[P∗inv1 − DPinv1_max, P∗inv1 + DPinv1_max], we consider inverter1’s output power is following the desired
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value within tolerance range. DPinv1_max can be adjusted according to the control requirements of the
primary power source.

The specific algorithm of this selection strategy will be introduced as follow. First, the flag of
low switching frequency method FLF is checked. If FLF = 1, meaning the low switching frequency
method is available, the selection will be made between the low switching frequency method and
the accurate power following method. Then three conditions are checked, which are FAF = 0,
DPinv1_LF ≤ DPinv1_AF, and DPinv1_LF ≤ DPinv1_max. If anyone of these conditions is met, indicating
the low switching frequency method meets inverter1’s accurate power following condition or has
a better performance in inverter1’s power following, the low switching frequency method will be
selected. If all these three conditions are not met, the accurate power following method will be selected.
However, if FLF = 0, meaning the low switching frequency method is invalid in current situation,
the selection will have to be made between the accurate power following method and the linear
partition method. When FAF = 1 and DPinv1_AF ≤ DPinv1_LP are both met, indicating the accurate
power following method is available and performs better in inverter1’s power following, the accurate
power following method will be selected. Otherwise, the linear partition method will be selected to
synthesize the desired stator voltage vector as integrally as possible. The flowchart of the voltage
vector distribution method selection strategy is shown in Figure 9.Appl. Sci. 2018, 8, x 15 of 25 
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5. Drive System Simulation

In this sector the overall configuration of the proposed system is summarized and the simulation
results of the proposed methods are analyzed.

5.1. Overall Configuration

The overall configuration of the proposed system is shown in Figure 10. It consists of two parts,
which are the drive system circuit and the drive system controller. The drive system circuit has the same
structure as the system shown in Figure 1, equipped with current sensors measuring the phase currents
of OW-PMSM, and voltage sensors measuring DC-bus voltages of dual inverter. The capacitors C1 and
C2 are used to filter the voltage fluctuation of the power sources and provide reactive power needed.



Appl. Sci. 2018, 8, 254 15 of 24
Appl. Sci. 2018, 8, x 16 of 25 

A

V

SVPWM
modulator

voltage
vector

distributor

current
regulator

 ABC
           dq

desired
power

caculator

+-

torque
regulator

 dq
         DQ 

2dcV

rθ

, ,A B Ci i i

GatesL

GatesR

*
eT

1_inv optP

* *,d qi i

,d qi iΔ Δ

,d qi i, ,A B Ci i i

rθ

* *,d qu u
rθ

* *,D Qu u

motP
*

1invP

,d qi i

1dcV
2dcV

* *
1 1,D Qu u

* *
2 2,D Qu u

1dcV

primary
power source

C1

A A

V

secondary
power source

C2

inverter2

inverter1

OW-
PMSM

drive 
system 
circuit

drive 
system 

controller

SVPWM
modulator

 
Figure 10. Overall configuration of the proposed system. 

5.2. Simulation Results 

To validate to proposed control methods, we ran a simulation of the OW-PMSM drive system 
on Matlab/Simulink platform. The basic parameters of the drive system circuit are shown in Table 2 
and the controller parameters are shown in Table 3. It is important to note that an extra motor speed 
controller, which is actual a PI controller, was used to generate the desired torque *

eT  inputted to the 
torque regulator mentioned above to make the motor speed follow the preset value. This motor speed 
controller is not necessary in an electric vehicle and not shown in Figure 10. 

Table 2. Parameters of the drive system circuit. OW-PMSM: open-end winding permanent magnet 
synchronous motor.  

Modules Items Parameters 

Solver 
Solve type Discrete 

Time step sT /s 5 × 10−7 

OW-PMSM 

Motor type 
Interior open-end 
winding PMSM 

Number of pole pairs 0p  4 
Stator resistance sR /Ω 0.1 

Fundamental amplitude and third harmonic amplitude 
of permanent magnet flux linkage [ψ f , 3ψ f ]/Wb [0.2, 0.01] 

d-axis and q-axis inductance [ dL , qL ]/F [0.0012, 0.0015] 
Zero sequence inductance 0L /F 0.0003 

Rotational inertia of rotor mJ /kg m−2 0.011 
Cullen and viscous resistance coefficient [0.001, 0.0005] 

Inverter 
devices 

On-resistance onR /Ω 0.01 
Forward voltage drop fV /V 0.8 

Figure 10. Overall configuration of the proposed system.

In the drive system controller, the desired torque T∗e and the optimal output power of inverter1

Pinv1_opt are inputted from vehicle control unit. In torque regulator, the desired stator current
⇀
i∗s

is calculated by MTPA (maximum torque per ampere) method in constant torque region and CBE
(constant back EMF) method in flux weakening region [26,27]. Then the desired stator voltage vector
⇀
u∗s is generated by the current regulator, which is actual a PI controller. The desired power sharing
calculation method introduced in sector 3 is executed in the desired power calculator, outputting
desired output power of inverter1 P∗inv1. Afterwards, the voltage vector distribution method expounded
in sector 4 is carried out in the voltage vector distributor. After the desired stator voltage vector is

partitioned, the desired voltage vectors of inverter1 and inverter2, known as
⇀

u∗s1 and
⇀

u∗s2, are sent to
the corresponding SVPWM modulators respectively. Where GatesL and GatesR are the gate control
signals for inverter1 and inverter2 respectively.

5.2. Simulation Results

To validate to proposed control methods, we ran a simulation of the OW-PMSM drive system
on Matlab/Simulink platform. The basic parameters of the drive system circuit are shown in Table 2
and the controller parameters are shown in Table 3. It is important to note that an extra motor speed
controller, which is actual a PI controller, was used to generate the desired torque T∗e inputted to the
torque regulator mentioned above to make the motor speed follow the preset value. This motor speed
controller is not necessary in an electric vehicle and not shown in Figure 10.



Appl. Sci. 2018, 8, 254 16 of 24

Table 2. Parameters of the drive system circuit. OW-PMSM: open-end winding permanent magnet
synchronous motor.

Modules Items Parameters

Solver
Solve type Discrete

Time step Ts/s 5 × 10−7

OW-PMSM

Motor type Interior open-end winding PMSM

Number of pole pairs p0 4

Stator resistance Rs/Ω 0.1

Fundamental amplitude and third harmonic amplitude
of permanent magnet flux linkage [ψ f , ψ f 3]/Wb [0.2, 0.01]

d-axis and q-axis inductance [Ld,Lq]/F [0.0012, 0.0015]

Zero sequence inductance L0/F 0.0003

Rotational inertia of rotor Jm/kg m−2 0.011

Cullen and viscous resistance coefficient [0.001, 0.0005]

Inverter devices

On-resistance Ron/Ω 0.01

Forward voltage drop Vf /V 0.8

Current fall time and tailing time [Tf ,Tt]/s [1, 1.5] × 10−6

Current capacity of each phase imax/A 160

Power Sources DC-bus voltages of primary and secondary power
source [Vdc1,Vdc2]/V [300, 200]

Table 3. Parameters of the drive system controller. SVPWM: space vector pulse width modulation.

Modules Items Parameters

Motor speed controller
Sampling time Ts_SC/s 1 × 10−4

Proportionality coefficient PSC 0.2
Integral coefficient ISC 2

Torque regulator Sampling time Ts_TR/s 1 × 10−4

Voltage saturation coefficient ku 0.95

Current regulator
Sampling time Ts_CR/s 1 × 10−4

Proportionality coefficient PCR 2
Integral coefficient ICR 120

Desired power calculator
Sampling time Ts_PC/s 1 × 10−4

Gain of the inertial element KPC 0.5
Time constant of the inertial element TPC/s 0.05

Voltage vector distributor Sampling time Ts_VD/s 1 × 10−4

Maximum power difference of inverter1 DPinv1_max/kW 3

SVPWM modulator
Sampling time Ts_SVM/s 1 × 10−4

Control period Tc_SVM/s 1 × 10−4

This simulation’s duration was 0.9 s. The expected motor speed linearly increased from 0 to
6000 r/min in 0–0.3 s and stayed at 6000 r/min till 0.6 s. Then the speed linearly dropped to 0 in
0.6–0.9 s. The load torque jumped from 0 to 60 N·m at 0.05 s and remained until simulation finished.

Curves of motor’s expected and actual rotational speed are shown in Figure 11a, curves of motor’s
desired torque, electromagnetic torque, and load torque are shown in Figure 11b.
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We can observe from Figure 11a that the motor rotary speed could smoothly and swiftly follow
the preset value and only had a slight fluctuation at 0.05 s when the load torque jumped. Figure 11b
also indicates that motor’s electromagnetic torque followed the desired torque well, the amplitude its
fluctuation was limited within 3 N·m under dual inverter’s modulation by SVPWM strategy with an
operating frequency of 10 kHz. The torque’s fluctuation was reduced by about 50% compared to the
multi-level current hysteresis modulation we proposed in [24].

Local curves of phase A’s voltage and current are shown in Figure 12a,b respectively, with a time
range of 0.5–0.51 s.

Theoretically, there are five levels in motor’s phase voltage of a single inverter system under
SVPWM strategy. In a dual inverter system, if the two DC-bus voltages are equal, there are nine
levels in motor’s phase voltage. Furthermore, there are even more phase voltage levels with unequal
DC-bus voltages. These additional levels made the waveform of phase A’s voltage shown in Figure 12a
more close to the sine wave, compared to a single inverter system. Figure 12b also shows the current
ripple was reduced significantly, compared to the system under the multi-level current hysteresis
modulation [24].

In addition, we made a harmonic analysis of phase A’s voltage in the time range of 0.35–0.55 s,
while the motor was working in a steady state at the speed of 6000 r/min. The result is shown in
Figure 13.
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From Figure 13 we can see, the proportion of the harmonic components are very low and
mainly concentrate around 25th harmonic and its multiples. The components around 50th harmonic
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are relatively large, with amplitudes above 10% of the fundamental amplitude. Considering the
fundamental frequency is 400 Hz (rotor rotate speed multiplies number of pole-pairs), the frequency
of the 50th harmonic is 20 kHz, which is just twice as the SVPWM control frequency.

Curves in regard to inverter1’s output power following effect, and curves of two inverters’ output
power are shown in Figure 14a,b respectively.Appl. Sci. 2018, 8, x 20 of 25 
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From Figure 14a we can see, while inverter1’s optimal output power Pinv1_opt was fixed at
20 kW as a constant, the desired output power P∗inv1 had some fluctuations to approach the motor
input power shown in Figure 13b, which relieved the power outputting stress on inverter2. Due
to the inertial element in the desired power calculator, the curve of P∗inv1 never went too far from
Pinv1_opt and had a moderate fluctuation, which had a positive effect on the primary power source’s
efficiency performance. The tolerance range of inverter1’s power following, which is determined by
[P∗inv1 − DPinv1_max, P∗inv1 + DPinv1_max], is indicated by the dashed lines. Within this range, inverter1’s
output power was considered following P∗inv1 accurately enough, thus the low switching frequency
method was selected in priority to reduce inverter1’s switching frequency. Most of the time, inverter1’s
actual output power stayed in the tolerance range as expected. However, in first 0.05 s and after the
motor speed started going down, inverter1’s actual output power couldn’t follow P∗inv1 well. Because
during these periods, motor’s load torque was too low to demand a stator current vector with an
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enough amplitude for the power distribution in a big ratio or power transfer between the two power
sources. The stator current is the medium of power transfer through the motor, thus a stator current
vector with a considerable amplitude is necessary for the power distribution in a wide range or power
transfer between the two power sources. In other words, the range of power distribution ratio or
power transfer between the two power sources is limited by the amplitude of motor’s stator current
vector, which is also determined by motor’s load torque. This limitation was discussed in [23], but it’s
not completely suitable for the circumstance here.

As shown in Figure 14b, the motor’s input power was determined by motor’s speed demand
and the load torque, and was the summation of the two inverters’ output power. While inverter1’s
output power was controlled to follow P∗inv1, inverter2’s output power was made to compensate the
lacking power or absorb the redundant power. During some periods where inverter1’s output power
was more than motor’s requirement, inverter2’s output power was negative, meaning inverter2 was
absorbing power. In other words, the primary power source was charging the secondary power source
through the motor.

We define the voltage vector distribution mode number to specify the status of voltage vector
distribution. Relations between the mode number and the specific circumstances of voltage vector
distribution are listed in Table 4. And the curve of voltage vector distribution mode number is shown
in Figure 15.

Table 4. Meanings of voltage vector distribution mode number.

Voltage Vector
Distribution Method Specific Circumstance Mode

Number

Low switching
frequency method

The nth candidate vector is selected (the mode number indicates
the ranking of selected vector in the sorted sequence) 1~7

Accurate power
following method

inverter1’s power following deviation DPinv1_AF equals to 0 0

inverter1’s power following deviation DPinv1_AF is not equal to 0 −1

Linear partition
method

inverter1’s power following deviation DPinv1_LP equals to 0 −2

inverter1’s power following deviation DPinv1_LP is not equal to 0,

but
⇀
u∗s can be integrally synthesized

−3

⇀
u∗s cannot be integrally synthesized −4
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As shown in Figure 15, some values of the mode number never appeared, such as −4, 5, 6, and 7.

The absence of −4 is because in this simulation, the amplitude of
⇀
u∗s was not too high and the DC-bus

voltages of the two power sources were enough, thus
⇀
u∗s could always be integrally synthesized. In low

switching frequency method, inverter1’s output power values corresponding to the candidate voltage
vectors ranked behind were not in the tolerance range of inverter1’s power following. Thus the absence
of 5, 6, 7 is mostly decided by this tolerance range. The narrower this range is, the fewer the candidate
voltage vectors can be selected.

The voltage vector distribution of inverter1 and inverter2 in static DQ plane are shown in
Figure 16a,b respectively, with a sampling step of 0.002 s. The curves of inverter switching frequency
and inverter losses are shown in Figure 17a,b respectively.
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From Figure 16 we can see, all the sampled voltage vectors, noted as “×”, were within the
modulation range of the corresponding inverter, indicated by the dashed hexagon, as expected.
However, the distribution characteristics of these voltage vectors are different between inverter1 and
inverter2. In Figure 16a, many sampled voltage vectors overlapped at the circled positions, which
are the vertexes and the center of inverter1’s hexagon, where the candidate voltage vectors of low
switching frequency method are lying. That is because during most of the simulation time, the low
switching frequency method was selected, which can be discovered from Figure 15. For this reason,
the sampled voltage vectors of inverter1 appeared sparser than inverter2’s shown in Figure 16b,
while their amount were actually the same. We can also discover that there was a certain amount of
sampled voltage vectors on the boundary of inverter1’s modulation range. That is because sometimes
inverter1’s output power was hard to stay in its tolerance range, on these occasions inverter1 had to
generate the voltage vector with highest amplitude to make its output power closer to the tolerance
range. Relatively, as Figure 16b shows, the sampled voltage vectors of inverter2 were almost uniformly
distributed due to inverter2’s role of a compensator.

In a large proportion of the simulation time inverter1 was outputting basic voltage vectors and
saturated voltage vectors, of which the switch commutations in a SVPWM period are fewer than regular
voltage vectors. This resulted in the switching frequency of inverter1 much lower than inverter2,
especially in the steady state operation when motor’s speed and electromagnetic torque were not
changing, as shown in Figure 17a. The inverter losses consist of the on-state loss and the switching loss,
in which the on-state loss is only determined by the current through the inverter, while the switching
loss is in direct proportion to the inverter switching frequency. From Figure 17b we can see most of the
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time the switching loss was lower than the on-state loss due to inverter1’s low switching frequency,
resulting in the improvement of inverter efficiency.
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6. Conclusions

This paper, aims at an OW-PMSM drive system fed by dual inverter for electric vehicles, in which
each inverter is powered by an independent power source. The primary power source is an energy
conversion device while the secondary power source consists of an energy storage element. A desired
power sharing calculation method has been proposed. By using a first order inertial element, it could
manage the power sharing between the two power sources to optimize the energy efficiency of the
primary power source. Furthermore, three different voltage vector distribution methods with various
advantages have been proposed, and their selection strategy could select the optimal one according
to the operating conditions. Based on the integral synthesizing of the desired stator voltage vector,
the proposed voltage vector distribution method could reduce the inverter switching frequency while
making the primary power source follow its desired output power. Finally, a simulation of the drive
system on Matlab/Simulink platform has been executed to validate the proposed methods.

The proposed system is suitable for electric vehicles with a single motor driving and powered by
two power sources, so that the power flow can be handled by the dual inverter and OW-PMSM without
a DC/DC converter and the DC voltage is lowered. The desired power sharing calculation method and
voltage vector distribution method could improve the primary power source’s energy efficiency by
regulating its output power and lessen inverter1’s switching loss by reducing its switching frequency,
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respectively. By controlling the optimal output power of inverter1 inputted to the system, they could
also handle the energy management between the two power sources. The proposed methods provide
a theoretical basis and implementation scheme a for dual inverter OW-PMSM drive system with two
isolated power sources in electric vehicles.

Future research will be directed towards finding an energy management method matched with
this system for electric vehicles to maximize the overall efficiency and driving range, and extending
the ranges of power sharing or power transfer between two power sources when the load torque is not
high enough. After solving the existing practical issues, an experimental verification of the proposed
system will also be executed in an electric vehicle.
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