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Abstract: This study presents theoretical investigations on the effectiveness criteria for piezoelectric
energy harvesters (PEHs) under volume constraints. Firstly, the importance of the volume
consideration is investigated. The powers of different PEHs of variant volumes are investigated
under the same resonance frequency. It is found that the power output is strongly dependent on the
volume of the transducer. Secondly, the impact of the mechanical damping, the electrical damping,
the volume of motion, the normalized power to the volume, and the applied load resistance on the
power output are investigated. The investigations are analyzed to find the optimized conditions of
the applied load and the excitation frequency in order to optimize the power output under volume
constraints. The proposed procedure for estimating the effectiveness is to compare the performance
of the proposed PEHs to a rectangular-shaped PEH of the same volume. An optimized structure
for a rectangular-shaped PEH to be used as the reference is investigated. The power output under
the optimized conditions is derived. In order to estimate the effectiveness of the proposed PEHs,
the average power over a band of frequencies from the proposed structure must be compared to the
average power over the same band of frequencies from the optimized reference harvester.

Keywords: piezoelectric energy harvesters; optimized structure; effectiveness criteria; optimized
applied load and excitation frequency; optimized power output

1. Introduction

There have been many vibration energy harvesters proposed in the literature, either as only
a single transducer or as a transducer with an additional structure to increase the operation frequency
band, as reviewed in [1,2]. A highly flexible P(VDF-TrFE) (poly(vinylidenefluoride-co-trifluoroethylen))
film-based energy harvesting device on a PDMS (polydimethylsiloxane) substrate was introduced
in [3]. The fabricated device powered a set of 27 light-emitting diodes (LEDs) after several minutes of
charging. Some structures of transducers, such as the M-shaped transducer in [4], the zigzag-shaped
in [5], the V-shaped in [6], and the T-shaped in [7], include empty gaps of a considerable volume
compared with the volume of the active material in the ribs of the transducer. An L-shaped energy
harvester was investigated in [8], where it was presented that the frequency range over which energy
can be harvested from such structures was much larger than using a cantilever beam, but the power
density was much lower. The considerable volume of the broadband structure lowers the power
density of the energy harvesters. In [9], the performance of the array energy harvester was investigated
in comparison with a single reference harvester of the same volume as the entire array. It was
presented that the advantage of using the array over the reference harvester was very limited to a small
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additional bandwidth to the detriment of a large drop in the power output. In [10], a parametric
study on piezoelectric energy harvesters considering a constant volume was introduced. In order
to optimize the power output, the geometrical parameters (length, width, thickness, and tip mass)
were recommended to be maximized within the available volume. In [11], the dynamic responses of
a nonlinear vibration energy harvester (a flexible beam moving like an inverted pendulum between
amplitude limiters) had multiple solutions, which correspond to various levels of power output.
There have been a variety of broadband structures, which mostly require additional volume, cost,
and a complicated structure compared with the single transducer. This highlights the necessity of
finding the criteria to distinguish between the proposed structures. Possible metrics to appraise the
proposed vibration energy harvesters will be reviewed in the following two sub-sections under two
main categories: the efficiency and the figure of merit.

1.1. Expressions for Estimating Efficiency

In general, the efficiency η can be defined as the ratio between the harvested power and the
input mechanical power. Richards et al. [12] presented an expression for the efficiency as the ratio
between the power dissipated across the applied load resistor and the power dissipated by the input
voltage across the total impedance of the entire circuit. They considered the Butterworth–van Dyke
model for the circuit. The final presented expression for the efficiency was found to be dependent only
upon the quality factor and the electromechanical coupling coefficient of the system at the resonance
operation condition and an applied load resistance of 1/Cpωn. Shu and Lien [13], Kim et al. [14],
and Yang et al. [15] worked on developing an expression for estimating the efficiency based on the
same concept of the ratio between the output and the input. When unifying the symbols of the variables
in the introduced equations, the derived formula from Kim et al. [14] was found to be very close to what
introduced by Shu and Lien [13], see Table 1. The formula derived by Yang et al. [15] was found to be
exactly the same as the one introduced by Kim et al. [14]. Shafer and Garcia [16] derived an expression
for the average efficiency at the steady state by dividing the average harvested energy by the average
change in the energy state of the system (heat losses + energy lost in damping + harvested energy).
They reported that for the conservative case (heat losses = 0), their formula would be the same as the
one proposed by Shu and Lien [13].

Table 1 displays the reviewed equations introduced for the efficiency. The symbols of the variables
in the displayed equations in the table are edited from than their original sources in order to use the
same symbol for the same variable and hence, to avoid repeatedly defining the variables. This will help
differentiate between the proposed equations for the efficiency. The efficiency in general was found
to be dependent on the mechanical quality factor, the coupling coefficient, the ratio of the excitation
frequency to the resonance frequency, and the ratio of the applied load resistance to the magnitude
of 1/Cpωn.

The efficiency is one factor to appraise between proposed vibration-based generators, but it is
not enough to decide the effectiveness, because other criteria, such as volume, were not included.
The efficiency will not give an accurate evaluation, especially between the broadband energy harvesters,
because the bandwidth was not included. Yang et al. [15] reported that the efficiency, as the ratio
between the output and the input, is not sufficient to decide the effectiveness of piezoelectric energy
harvesters. The input power differs depending on the phase and in general has no uniform definition.
The output power of the vibration energy harvester is dependent on many factors and varies if the
operation is on resonance or off resonance.
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Table 1. Expressions to estimate the efficiency of the energy harvesters.

Reference Formula Variables

Richards et al. [12]
Efficiency η1

η1 =
0.5k2

1
1−k2

1
/
(

1
Q +

0.5k2
1

1−k2
1

)
, k2

1 = α2

Cpc+α2

Q: mechanical quality factor
Cp: capacitance
α: coupling coefficient of units
[N/V or C/m]c: stiffness
ω̃: ratio between excitation
frequency and resonance
frequency
ωn: resonance frequency
θ: phase angle
R: applied load resistance
k2 = α2

Cpc
r = CpωnR

Shu and Lien [13]
Efficiency η2

η2 = 2Qrk2

(rω̃+ π
2 )

2
+2Qrk2

Kim et al. [14]
Efficiency η3

η3 = rQk2

1+rQk2+r2ω̃2

Yang et al. [15]
Efficiency η4

η4 = rQk2

1+k2rQ+ω̃2r2

Shafer and Garcia [16]
Average efficiency ηav

ηav = k2ω̃r
(ω̃r+ π

2 )
2

1√
ψ

1
ξ(θ)

ψ =

(
ω̃
Q + 2k2rω̃

(ω̃r+ π
2 )

2

)2
+
(

1− ω̃2 + ω̃k2r
ω̃r+ π

2

)2

ξ(θ)|0<θ≤Π/2 = (Π/2+θ) sin θ+cos θ
2Π

ξ(θ)|Π/2<θ≤Π = (3Π/2−θ) sin θ−cos θ
2Π

1.2. Figures of Merit

Roundy [17] defined a dimensionless figure of merit that was referred to as ‘effectiveness’ to
compare between different designs of vibration energy harvesters. The transmission coefficient λ

was used as another definition of the efficiency η. The transmission coefficient λ was defined as the
output energy per cycle divided by the input energy per cycle. The maximum transmission coefficient
λmax, at which maximum output energy was obtained, was found to be dependent only on the
electromechanical coupling coefficient. The effectiveness figure of merit was dependent on the quality
factor, the system coupling coefficient, the ratio of the actual density of the design to the baseline density,
and the transmission coefficient ratio (λ/λmax). Feng and Hung [18] suggested the square power of the
bandwidth multiplied by the maximum displacement under a given acceleration to appraise between
vibration energy harvesters. The normalized power density (NPD) was suggested by Beeby et al. [19].
The NPD was defined as the power output normalized to the product of the second power of the input
acceleration and the volume of the transducer. Liu et al. [20] mentioned that the power normalized
mass acceleration (PNMA) was not proposed specifically in the literature; nevertheless, it was often
used for appraising an energy harvester. The PNMA was based on the linear harvester’s property
that the power is proportional to the product of the mass and the second power of the ambient
acceleration. Ruan et al. [21] proposed a figure of merit (FoM) that was very close to the NPD but
divided by the quality factor. They estimated the volume of the energy harvester, taking into account
the volume of motion. The volume figure of merit (FoMV) was suggested by Mitcheson et al. [22].
It was based on the power output, the volume, the input acceleration, and the excitation frequency.
The density of gold was taken as a reference. To include the bandwidth, they suggested another
figure of merit (FoMBW), which is simply the FoMV multiplied by the fractional bandwidth (the ratio
between the half-power bandwidth and the excitation frequency). A recent systematic figure of merit
with bandwidth information (SFoMBW) for evaluating wideband vibration energy harvesters was
introduced by Liu et al. [20]. The SFoMBW included the effectiveness, the normalized bandwidth
(bandwidth/central frequency of the bandwidth), the mechanical quality factor, and the effective
density (proof mass/entire volume). The effectiveness was defined as the ability to reach the maximum
available power. Table 2 displays the formulas of the reviewed figures of merit. The symbols of the
variables are edited from their original sources in order to be uniform for all the expressions.



Appl. Sci. 2018, 8, 1075 4 of 18

Table 2. Figures of merit to evaluate between the vibration energy harvesters.

Reference Formula Variables

Roundy [17]
Effectiveness e

e = k2
2Q2 ρe f f

ρ0

λ
λmax

k2
2
∣∣
PZT = d2Y

ε

λmax =
k2

2
4−2k2

2

λ: transmission coefficient at applied load
λmax: maximum transmission coefficient at optimal load
d: piezoelectric strain coefficient
ε: dielectric constant
Y: Young’s Modulus
ρeff: effective mass density (mass per entire volume)
ρ0: baseline material density
γ: ambient acceleration
u0: input displacement
V: volume
Pout: power output
M: proof mass
VΣ: volume including the displacement
Q: mechanical quality factor
ρAu: density of gold
ω: excitation frequency
δω1dB: is the 1 dB power bandwidth
∆f : bandwidth of the generator
fc: center frequency of the bandwidth

Beeby et al. [19]
Normalized power density (NPD)

NPD = Pout
γ2V

Liu et al. [20]
Power normalized mass

acceleration (PNMA)
PNMA = Pout

Mγ2

Ruan et al. [21]
Figure of merit (FoM)

FoM = Pout
γ2V∑

1
Q

Mitcheson et al. [22]
Volume figure of merit (FOMV)

Bandwidth figure of merit
(FoMBW)

FoMV = Pout
1
16 u0ρAuV4/3ω3

FoMBW = FoMV
δω1dB

ω

Liu et al. [20]
Systematic figure of merit with

bandwidth (SFoMBW)
SFoMBW = EHW

∆ f
fc

Qρe f f

The ultimate goal of vibration energy harvesting is to produce a standalone generator. Therefore,
generating the maximum possible power from the available volume is a necessity. In this study,
important criteria for the effectiveness of piezoelectric energy harvesters will be theoretically
investigated in order to help develop an expression to appraise the different structures proposed
for piezoelectric energy harvesters.

2. Discussion about the Importance of Volume Consideration

In order to investigate the importance of volume consideration, the outcome of four piezoelectric
energy harvesters (PEHs) of different volumes were investigated (see Figure 1a). The PEHs A, B, C,
and D are in the form of the bimorph piezoelectric cantilever displayed in Figure 1b, where l is the
free length, h is the total thickness, and b is the width. The piezoelectric layer has a thickness of hp and
a total length of lc. The density of the piezoelectric layers and the modulus of elasticity are ρp and Ep,
respectively. The non-piezoelectric layer has a thickness of hs, a density of ρs, and a modulus of elasticity
of Es. The ratio between the thickness of the middle layer and the thickness of the piezoelectric layer is
hsp, where hsp = hs/hp. A tip mass of mt is attached at the end of the beam. The mass ratio between the tip
mass and the mass of the entire beam is β, where β = mt/(ρslbhs + 2ρplbhp). The transversal displacement
at the tip at any time t is given by x(t) for an input displacement of u(t).Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 18 
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Figure 1. (a) The piezoelectric energy harvesters (PEHs) under investigation (b) Cantilevered bimorph
piezoelectric energy harvester.

The material properties displayed in Table 3 are assumed for all the PEHs, where sE
11 is the elastic

compliance under constant electric field (Ep equals 1/sE
11 at the short circuit condition (resonance)),
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εT
33 is the permittivity of the piezoelectric material at a constant stress, and d31 is the piezoelectric

charge constant. The mechanical damping ratio is assumed to be 0.01.

Table 3. Material properties of the bimorph piezoelectric energy harvesters.

Piezoelectric Layers Non-Piezoelectric Layer

Mechanical data
sE

11 = 14.2 × 10−12 m2/N,
ρp = 8.1 × 1003 kg/m3

Es = 2 × 1011 N/m2,
ρs = 8 × 1003 kg/m3

Piezoelectric data d31 = 315 × 10−12 C/N,
εT

33 = 3.98 × 10−08 F/m

The PEHs A, B, C, and D have different geometrical parameters (dimensions and tip masses).
However, it is taken into account that the geometrical parameters are tuned in order for all the PEHs
have their first eigenfrequency at 154.8 Hz. The geometrical parameters for the PEHs are displayed
in Table 4.

Table 4. Geometrical parameters of the PEHs.

l [mm] b [mm] h [mm] hsp [mm/mm] β [g/g]

A 40 9 1.5 0.5/0.5 1
B 40 9 0.66 0.22/0.22 0
C 40 4.5 0.66 0.22/0.22 0
D 20 4.5 0.11 0.037/0.037 0

The two governing equations of the PEHs according to [23] are as follows:

meq
..
x(t) + dm

.
x(t) + ceqx(t) + αvp(t) = Feq, (1)

α
.
x(t)− Cp

.
vp(t) =

vp(t)
R

, (2)

where ceq is the equivalent stiffness of the beam, meq is the equivalent mass of both the beam and
the tip mass, dm is the mechanical damping coefficient, R is the applied load resistance, vp is the
output voltage, α is the equivalent coupling factor [N/V or C/m], and Cp is the capacitance of the two
piezoelectric layers.

The transfer function between the input displacement and the output displacement of the bimorph
piezoelectric energy harvester is obtained as expressed by Equation (3a). At excitation frequency around
the first eigenfrequency, the transfer function is obtained as expressed by Equation (3b). The power output
of the bimorph piezoelectric energy harvester are obtained by Equation (4), as derived in [10].

Hxu =
x(t)
u(t)

=

(
0.375 + β

0.2357 + β

)
1

1−
(ωn

Ω
)2 − α2Cp

meq(
1

R2 +C2
pΩ2)
− 2ζ

(ωn
Ω
)

j− α2

meqΩR( 1
R2 +C2

pΩ2)
j
, (3a)

Hxu|Ω=ωn
=

(
0.375 + β

0.2357 + β

)
−1

−α2Cp

meq(
1

R2 +C2
pω2

n)
+ 2ζm j + α2

meqωnR( 1
R2 +C2

pω2
n)

j
, (3b)

P =
α2Ω2u2

(
0.375+β

0.2357+β

)2

(
1
R + C2

pΩ2R
)((

1−
(ωn

Ω
)2 − α2Cp

meq(
1

R2 +C2
pΩ2)

)2
+

(
2ζm

(ωn
Ω
)
+ α2

meqΩR( 1
R2 +C2

pΩ2)

)2
) , (4)

where ζm is the mechanical damping ratio, ωn is the resonance frequency, and Ω is the
excitation frequency.
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There are three significant applied load resistances as investigated in [10]. Each of the three
load resistances provides the maximum power capability at a corresponding excitation frequency,
as displayed in Table 5. The optimal load resistance at resonance frequency (Rop_res) and at anti
resonance frequency (Rop_anti) provide the same maximum power output at constant input acceleration.
The applied load resistance of Rd results in the maximum electrical damping to the circuit. It is worth
mentioning that the maximum power output occurs at ωd not ωn when the applied load is Rd.

Table 5. Significant applied load resistances and corresponding frequencies for maximum power.

Resistance Frequency

Rop_res =
2ζmωnmeq√

α4+4ζ2
mω4

nm2
eqC2

p
ωn =

√
ceq
meq

Rop_anti =

√
α4+4ζ2

mm2
eqω2

nC2
pω2

anti

2ζmmeqωnC2
pω2

anti

ωanti =
√

ω2
n + α2

meqCp

Rd = 1
Cpωd

ωd =
√

ω2
n + α2

2meqCp

The electrical damping due to the effect of the piezoelectric energy harvesting can be represented
as de, where de = 2ζemeqωn and ζe is the electrical damping ratio. The equation of motion of the beam
can be rewritten as the following:

meq
..
x(t) + (dm + de)

.
x(t) + ceqx(t) = Feq. (5)

By taking the Laplace transform and replacing the excitation frequency by the resonance frequency
in Equation (5), the transfer function Hxu at resonance is obtained in terms of the mass ratio between
the tip mass and the mass of the beam, the electrical damping ratio, and the mechanical damping ratio,
as expressed by Equation (6).

Hxu|Ω=ωn
=

(
0.375 + β

0.2357 + β

)
−1

2(ζm + ζe)j
. (6)

By equating Equation (3b) with Equation (6), the electrical damping ratio as a function of the system
parameters is obtained as follows:

ζe =
α2

2meqωn

(
1
R + CpΩj

) . (7)

Figure 2 displays the impact of the applied load resistance normalized to Rd on the electrical
damping ratio. The properties of the PEH considered for the investigation are imported from Table 3.
The damping ratio is assumed to be 0.01 (as measured experimentally in [10]). The free length is
39.11 mm. The maximum electrical damping occurs at R/Rd = 1 (which means R = Rd).

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 18 

0.375 1
.

0.2357 2( )n
xu

m e

H
j



  

  
  

  
 (6) 

By equating Equation (3b) with Equation (6), the electrical damping ratio as a function of the 

system parameters is obtained as follows:  

2

.
1

2
e

eq n pm C j
R







 

  
 

 
(7) 

Figure 2 displays the impact of the applied load resistance normalized to Rd on the electrical 

damping ratio. The properties of the PEH considered for the investigation are imported from Table 

3. The damping ratio is assumed to be 0.01 (as measured experimentally in [10]). The free length is 

39.11 mm. The maximum electrical damping occurs at R/Rd = 1 (which means R = Rd). 

 

Figure 2. The impact of the applied load R normalized to Rd on the electrical damping ratio ζe. 

For investigating the power output of the PEHs A, B, C, and D, the applied load resistance is the 

corresponding optimal load resistance Rop_res for each of them at resonance operation condition and is 

1.86 kΩ, 0.811 kΩ, 1.62 kΩ, and 0.811 kΩ, respectively. The PEHs are assumed to be excited by a 

constant input displacement of 0.8 µm. Figure 3 displays the power output of the four piezoelectric 

energy harvesters. The PEH A, with the largest geometrical parameters, supplies the highest power 

output. The power output of B, with no tip mass and a reduced thickness, supplies a much lower 

power output than A. The power output of C is half of the power output of B (C has the same 

geometrical parameters as “B” but half of its width). The power output of D is much less than other 

PEHs. Despite the fact that the four PEHs are tuned to the same resonance frequency, there is a 

significant difference in the maximum power output between them. This highlights the importance 

of volume consideration for a better estimation of the effectiveness of the developed structures and 

the broadband techniques, which require a considerable volume compared to the volume of the 

transducer. 

 

Figure 3. Power output of the four PEHs with different geometries, tuned to the same resonance. 

Figure 2. The impact of the applied load R normalized to Rd on the electrical damping ratio ζe.



Appl. Sci. 2018, 8, 1075 7 of 18

For investigating the power output of the PEHs A, B, C, and D, the applied load resistance is
the corresponding optimal load resistance Rop_res for each of them at resonance operation condition
and is 1.86 kΩ, 0.811 kΩ, 1.62 kΩ, and 0.811 kΩ, respectively. The PEHs are assumed to be excited by
a constant input displacement of 0.8 µm. Figure 3 displays the power output of the four piezoelectric
energy harvesters. The PEH A, with the largest geometrical parameters, supplies the highest power
output. The power output of B, with no tip mass and a reduced thickness, supplies a much lower power
output than A. The power output of C is half of the power output of B (C has the same geometrical
parameters as “B” but half of its width). The power output of D is much less than other PEHs.
Despite the fact that the four PEHs are tuned to the same resonance frequency, there is a significant
difference in the maximum power output between them. This highlights the importance of volume
consideration for a better estimation of the effectiveness of the developed structures and the broadband
techniques, which require a considerable volume compared to the volume of the transducer.
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For a more accurate estimation of the effectiveness of PEHs, the total occupied volume must
be considered, including the volume of motion, not only the volume of the transducer. The tip
displacement is an important factor to investigate in order to calculate the volume of motion.

3. Tip Displacement

The volume of motion of a cantilever vibrating around the first eigenfrequency is calculated
as the surface area multiplied by twice the transversal displacement at the tip. Figure 4a,b display
the impact of the applied load resistance and the excitation frequency on the power output and the
tip displacement, respectively (ζm is 0.01 as experimentally measured in [10]). The maximum tip
displacement occurs at resonance frequency (ωn) with a zero applied load resistance (no electrical
damping at all). An increase in the applied load results in a decrease in the tip displacement.
The minimum tip displacement is found to occur at an applied load of Rd and an excitation frequency
of ωd. An applied load larger than Rd and an excitation frequency larger than ωd result in the tip
displacement increasing again. The empirical maximum tip displacement is considered at resonance
and the optimal load resistance Rop_res, because the zero applied load resistance of the maximum
possible tip displacement means that there is no applied application.

The maximum tip displacement xmax can be calculated by multiplying the input displacement by
the magnitude of the transfer function Hxu at resonance, as displayed by Equation (8). The minimum
tip displacement is referred to as xmin and can be calculated as displayed by Equation (9).

xmax = u|Hxu|Ω=ωn ,Rop_res
, (8)

xmin = u|Hxu|Ω=ωd ,Rd
. (9)
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Figure 4. The impact of the applied load resistance and excitation frequency on (a) the output power
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4. Normalized Power to the Volume

In order to improve the effectiveness of PEHs, the maximum possible power per unit volume must
be generated. For this purpose, the normalized power to the volume is studied. First, the normalized
power to the volume of the beam is investigated. The volume of the beam is Vb = lbh. Then, the impact
of the volume of the tip mass is investigated. The resonance frequency is kept constant by increasing
the total thickness simultaneously with the tip mass. The volume of the tip mass is Vmt = lmtbmthmt,
where lmt is the length of the tip mass, bmt is the width of the tip mass, and hmt is the thickness of the
tip mass. Finally, the normalized power to the total occupied volume is investigated by taking into
account the volume of motion. The volume of motion is expressed as Vmotion = 2lbx, where x is the tip
displacement (xmax and xmin are considered for the investigation). The properties of the PEH B from
Figure 1 are considered for these.

Figure 5 displays the normalized power to the volume of the beam (NPVb) at two operating
conditions: the corresponding Rop_res at excitation frequency of ωn and the corresponding Rd at
excitation frequency of ωd. The resonance frequency is kept constant at 155 Hz, while the width is
varied. The total thickness is simultaneously varied with the free length (no tip mass). For a given
material and the same mass ratio between the tip mass and the mass of the beam, the normalized
power to the volume of the beam is constant at the corresponding Rd and ωd or the corresponding
Rop and ωn.
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to 9.62 cm for the corresponding total thickness varies from h = 0.08 to 0.38 cm, respectively, constant mass
ratio at β = 0, mechanical damping ratio of ζm = 0.01, and input displacement of u = 0.8 µm).

The normalized power to the volume of the beam and the tip mass (NPVb+mt) is investigated.
The volume of the tip mass varies according to the density of its material, and accordingly, the normalized
power NPVb+mt varies depending on the density of the tip mass (ρmt). The investigations include variant
densities of the tip mass. The resonance frequency is kept constant at 155 Hz by varying the total thickness
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simultaneously with the mass ratio between the tip mass and the mass of the beam. The free length is
constant at 8.49 cm. The investigations will consider two operating conditions: the corresponding Rop and
ωn and the corresponding Rd and ωd.

Figure 6 displays the NPVb+mt. If the density of the tip mass is less than the average density of
the bimorph piezoelectric cantilever (average density ρav = (2hpρp + ρshs)/(2hp + hs)), an increase in the
tip mass results in a decrease in the NPVb+mt, despite the fact that the resonance frequency is being
kept constant and the total thickness is simultaneously increasing with the increase of the mass ratio.
If the density of the tip mass is in the range of the average density, the NPVb+mt increases very slightly
with a large increase in the tip mass and simultaneously in the total thickness. If the density of the tip
mass is much greater than the average density, a simultaneous increase in the tip mass with the total
thickness results in an increase in the NPVb+mt.

A simultaneous increase in the length and the thickness optimizes the power output under
volume constraints compared with a simultaneous increase in the mass ratio and the thickness when
the tip mass is made out of a less dense material. Even if the tip mass is made out of a material of
a density in the range of the average density of the beam, the advantage of an increase in the tip mass
is not significant. Hence, in order to optimize the PEHs under a constant volume, the tip mass must be
made out of highly dense materials.
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Rop_res and ωn (b) the corresponding Rd and ωd (fn constant at 155 Hz, free length is 9.62 cm, mass ratio
β varies from 0 to 0.52 for the corresponding total thickness varies from 0.382 to 0.682 cm, respectively,
ζm = 0.01, and u = 0.8 µm).

Figure 7 displays the normalized power to the total occupied volume NPVTotal (of the beam,
the tip mass and the motion). The density of the tip mass is assumed to be 20 g/cm3 as the densest
materials currently are in this range. At a very low input excitation level (u = 0.8 µm), the NPVTotal at
the corresponding Rop and ωn is larger than that at the corresponding Rd and ωd, while at a relatively
larger input excitation level (u = 180 µm), the NPVTotal at the corresponding Rd and ωd is larger than
that at the corresponding Rop and ωn. Although the generator at Rop and ωn supplies higher power
output than at Rd and ωd, it does not necessarily mean the maximum generated power from a constant
predefined volume if the volume of motion is taken into account. The minimum tip displacement,
as investigated before, occurs at an applied load resistance of Rd and an excitation frequency of
ωd. In all investigations, the normalized power (NPVb, NPVb+mt, or NPVTotal) is constant at variant
widths if other geometrical parameters (the free length, the total thickness, and the mass ratio) are
kept constant.
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Figure 7. Normalized power to the total occupied volume (beam, tip mass, and motion) at input
displacement of (a) u = 0.8 µm (b) u = 180 µm (fn constant at 155 Hz, free length of 9.62 cm, mass ratio varies
from 0 to 0.52 for the corresponding total thickness from 0.382 to 0.682 cm, respectively, and ζm = 0.01).

5. Mechanical Quality Factor

The mechanical quality factor Qm (Qm = 1/2 ζm) is important to investigate. An increase in Qm

results in an increase in the tip displacement, which means an increase in the volume of motion.
The second issue is that the half-power bandwidth is dependent on Qm. The investigations are carried
out considering the properties of the PEH A in Figure 1. Two operating conditions are considered
for the investigations: the corresponding Rop_res and ωn (Rop_res is dependent on ζm), and Rd and
ωd (Rd is independent on ζm). Figure 8a displays the impact of the quality factor on the transfer
function between the tip displacement and the input displacement. At the corresponding optimal
load resistance Rop_res, the transfer function Hxu is directly proportional to Qm. At an applied load of
Rd, the increase in the transfer function is very slight for a large increase in Qm. Figure 8b displays
the impact of the quality factor on the power output. At the corresponding Rop, the power output is
directly proportional to Qm. At an applied load resistance of Rd, the increase in the power output is
very slight for a large increase in Qm.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 18 
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Figure 8. The impact of the quality factor on (a) the transfer function and (b) the power output at input
excitation level of u = 0.8 µm.

The power output at different quality factors is shown in Figure 9. At the corresponding Rop_res,
a decrease in Qm to the half causes a reduction in the power output to the half. For this significant drop
in the power output, there is a small increase in the half-power bandwidth. At an applied load of Rd,
the decrease in the power output due to a decrease in Qm is less than the decrease of the power output
at the corresponding Rop. At Rd, there is no increase in the half-power bandwidth for a decrease in
Qm. At low mechanical damping ratios, the power peak is sharp at Rop_res and ωn, while at Rd and ωd
the peak of the power output is not as sharp as at Rop_res and ωn. The power output at Rd and ωd is
more consistent.
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6. Discussion about the Applied Load Resistance

The maximum power is generated at an excitation frequency that equals the resonance frequency
and at an applied load resistance that equals the magnitude of the internal impedance [10].
By replacing the excitation frequency with the resonance frequency in the equation of the power
output (Equation (4)), the power output at resonance is obtained as follows:

P|Ω=ωn
=

α2ω2
nu2
(
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0.2357+β
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 . (10)

By replacing the applied load R in Equation (10) by the optimal load resistance Rop_res,
the maximum power is obtained as expressed by Equation (11). In this equation, the maximum
power (power output at ωn and the corresponding Rop_res) is independent of the mechanical damping
ratio (ζm). This can be explained by the fact that ζm is implicitly included in the optimal load resistance
where Rop_res = f (ζm). By multiplying the maximum power by Rop_res, the magnitude of PmaxRop_res,
which equals the square power of the output voltage, is independent of the mechanical damping ratio
at the corresponding Rop_res.

Pmax =
m2

eqω4
nu2

4α2

(
0.375 + β

0.2357 + β

)2 1
Rop_res

. (11)

Figure 10 displays the impact of the load resistance on the power output at resonance. Different
mechanical damping ratios are considered for the investigation. An increase in the mechanical
damping ratio results in an increase in the optimal load resistance and a decrease in the maximum
power by the same magnitude so that the magnitude of PmaxRop_res is constant at different mechanical
damping ratios.

The magnitude of Rop_res equals the magnitude of the internal impedance of the PEH and is
therefore dependent on multiple parameters, such as the mechanical damping, the mass, the coupling
factor, the material properties, the geometrical parameters, and the resonance frequency. At very low
mechanical damping, the Rop_res will accordingly be very low. During the use of the PEH in the real
environment, the mechanical damping may differ, and the applied load will thus no longer be optimal.
If the excitation frequency is deviated from the resonance frequency, the internal impedance will differ,
and accordingly, the pervious optimal load resistance at resonance will no longer be the optimal load
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for the new conditions. This means that applying a load resistance of Rop_res limits the applicability of
the proposed piezoelectric energy harvester.
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Figure 10. Output power at different mechanical damping ratios [Rop_resPmax = (810 Ω × 8.28 µW) =
(1670 Ω × 4.1 µW) = (3350 Ω × 2.05 µW)].

The Rd is obtained by multiplying (1/Cp) by (1/ωd). The change in the value (1/ωd) is negligible
in comparison with the value (1/Cp). This means that the value of Rd is less sensitive to the excitation
frequency than the value of Rop_res. An applied load resistance of Rd is of more robustness than Rop_res,
especially for a wide band of excitation frequencies and broadband piezoelectric energy harvesters.
The maximum harvested power when the applied load is Rd and the excitation frequency is ωd is
obtained as expressed by Equation (12) by substituting Rd and ωd in Equation (4) of the power output.

P|Rd ,ωd
=

2α2m2
eqω5

du2Cp

(α2 + 4ζmωnωdmeqCp)
2

(
0.375 + β

0.2357 + β

)2
. (12)

7. Optimized Rectangular-Shaped Piezoelectric Energy Harvester

The major proposed structure geometry for PEHs is the uniform, cross-sectional, rectangular-shaped beam,
especially in the studies that conducted experimental investigations [24–26]. The uniform rectangular-shaped
cantilever is easy to model and to manufacture, in addition to being easy to apply. The rectangular-shaped
piezoelectric energy harvester is selected in this study to be the reference for evaluating the effectiveness of PEHs.

In the investigations on the normalized power to the total occupied volume, the volume of the
tip mass was considered as only the volume occupied by its material. However, there can be other
unused volume according to the position of the tip mass on the beam, as displayed in Figure 11.
This volume is relatively large compared to the volume of the transducer, which is the main part for
converting vibration energy to electrical energy. If this volume is taken into account, the normalized
power to the total occupied will be very low. Therefore, this position of the mass above the beam is not
recommended for the optimized structure.
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Another possibility is to uniformly distribute the tip mass along the surface area of the beam so
that its volume is lbbbhmt. But, this position will not also optimize the structure, because instead of
fixing a uniformly distributed mass above the beam, this distributed mass can be added to the middle
layer, which will increase the total thickness of the beam and improve the power output. Therefore,
the uniformly distributed mass on the surface of the beam does not optimize the structure under
volume constraints. For these reasons, the optimized structure is suggested as displayed in Figure 12.
The width of the tip mass equals the width of the beam in order to avoid occupying additional volume
in the 2-direction. The thickness of the tip mass equals the thickness of the beam in order to avoid
occupying additional volume in the 3-direction.
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The ratio of the length of the tip mass to the length of the beam is determined according to some
assumptions regarding the material of the middle layer and the piezoelectric layers. Most piezoelectric
ceramics are of a density in the range of 8 g/cm3. According to [10], in order to optimize the power
output, highly dense materials are recommended for the middle layer. Copper and steel are suggested
for the middle layer, as they are relatively highly dense materials. Hence, the density of the middle
layer is approximately 8.3 g/cm3. Accordingly, the average density of the beam (the middle layer and
the two piezoelectric layers) is approximately 8 g/cm3. In order to optimize the power output under
a predefined volume, the tip mass must be made out of a very highly dense material, much higher
than the average density. The densest materials currently known are in the range of 20 g/cm3 (which is
approximately 2.5 times the average density of the beam). Under these assumptions, and according to
the suggested optimized structure in Figure 12, the mass ratio is suggested to be 2.5. The tip mass,
if the mass ratio is 2.5, occupies approximately the same volume as the beam. This means that half of
the beam is a bimorph piezoelectric transducer and the other half is the tip mass (l = lb + lmt).

According to the previous investigation, the parameters of the optimized rectangular-shaped
geometry are as follows: ρmt = 20 g/cm3, bmt = bb, hmt = hb, lmt = lb, and β = 2.5. A high mechanical
quality factor is recommended for improving the power output. However, a very high-quality factor
of more than 100 will not significantly influence the normalized power to the total occupied volume.
This is due to the increase in the transversal displacement and accordingly, the volume of motion.
The mechanical quality factor is suggested to be 100 for the optimized structure so that the mechanical
damping ratio is ζm = 0.005.

For optimization of the power output, it is recommended that the piezoelectric energy harvester be
applied to a load resistance in the range of Rd and an excitation frequency of ωd. For values of the mass
ratio around or larger than 2.5, the magnitude of [(0.375 + β)/(0.2357 + β)]2 tends to approximately
equal 1. By substituting the mass ratio of β = 2.5 in Equation (11), the power output at Rd and ωd is
obtained as expressed by Equation (13a), which can be rearranged to Equation (13b). The power output
at these conditions is directly proportional to the square power of the coupling factor and inversely
proportional to the capacitance. The optimized PEH is simple and has many possible applications.
For example, the optimized PEH can be considered for the designed and fabricated PEH in [27] and
the PEHs fabricated in [21].
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P|Rd ,ωd ,β=2.5 '
2α2ω4

du2

ωdCp

(
4ζmωn +

α2

meqωdCp

)2 , (13a)
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α2ω2
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ωn
ωd
− ω2

n
ω2

d

)2 . (13b)

Because the volume of motion is important to consider for optimization of the power normalized to
the total occupied volume, an expression for the transfer function at Rd and ωd is derived. The transfer
function between a mass ratio of β = 2.5, an applied load resistance of Rd, and an excitation frequency
of ωd is obtained as follows:

|Hxu|Rd ,ωd ,β=2.5 '
1(

1 + 2ζm
ωn
ωd
− ω2

n
ω2

d

) . (14)

8. Developing a Methodology to Evaluate the Effectiveness of Piezoelectric Energy Harvesters

The effectiveness of PEHs can be defined as the ability to reach the maximum available power
according to Liu et al. [20]. The investigations showed how important the volume criterion is in
piezoelectric energy harvesters. Hence, the effectiveness must be estimated based on the entire volume
occupied by the proposed structure not only the volume of the transducer. The bandwidth of PEHs is
first discussed. Then, a procedure on how to estimate the effectiveness is suggested.

For broadband piezoelectric energy harvesters, the average power as a term is more convenient
than the maximum power due to the variation in the power output at different excitation frequencies.
For a linear transducer, the average power for a harmonic excitation frequency varying from Ωmin to
Ωmax can be expressed according to [20] by Equation (15).

Pav|linear =
1

Ωmax −Ωmin

Ωmax∫
Ωmin

P(Ω)dΩ , (15)

where Ωmin and Ωmax are the minimum and the maximum frequencies in the bandwidth of the
PEH, respectively.

The bandwidth of vibration energy harvesters can be defined as the band of frequencies over
which a specific, steady level of power can be supplied to a certain value/range of the applied load
resistance. This means that, for the same energy harvester, there are infinite values of bandwidth
and a corresponding average power for each bandwidth. It can be seen in Figure 13 that the average
power over the bandwidth BW1 is less than the peak power but larger than the average power over
the bandwidth BW2. Multiplying the bandwidth BW1 by its corresponding average power gives
a different result than multiplying BW3 by its corresponding average power, although they are of the
same PEH. Hence, multiplying the power by the bandwidth in one formula will not give an accurate
estimation of the effectiveness.
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Figure 13. Different bandwidths at different power levels.

The power output and the bandwidth are two different factors. All bandwidths and their
corresponding average power from the same energy harvester are options for the user. It depends
firstly on the conditions of the working environment, such as the band within which the excitation
frequency varies, and secondly, on the power requirements for the application; for example, if the
power requirement is very low, an average power sufficient for the application can be generated over
a very wide bandwidth. When proposing a novel PEH, it is important to calculate the average power
and clearly state the band of frequencies over which this power is generated. The evaluation of the
proposed PEHs is based on how effective they are in generating the maximum power when compared
to a single piezoelectric energy harvester of the entire occupied volume (see Figure 14).
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Figure 14. Broadband (BD) energy harvester versus a single reference harvester.

It is suggested that the average power over a band of frequencies (the expected bandwidth) be
compared to the average power output of a solid, single PEH of the same entire volume and over the
same band of frequencies (see Equation (16)).

ee f f =
Pav|Ωmax−Ωmin

Pre f _av

∣∣∣
Ωmax−Ωmin

, (16)

where eeff is the effectiveness of the proposed PEH, Pav is the average power output of the proposed
PEH over a range of frequencies from Ωmin to Ωmax, and Pref_av is the average power output of the
solid, single PEH over the same range of frequencies.

The entire volume of the proposed PEH (referred to as VPEH) must be estimated. The entire volume
occupied by the optimized rectangular-shaped PEH is referred to as Vref and is expressed by Equation (17).

Vre f = (lb + lmt)
(

hb + 2xre f

)
bb, (17)
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where xref is the tip displacement at the conditions of the optimized power output (an applied load
resistance of Rd, excitation frequency of ωd, and a mass ratio of the tip mass to the mass of the beam of
2.5. Under these conditions, an approximation for the tip displacement can be obtained as expressed
by Equation (18). This equation is obtained by multiplying the input displacement by the magnitude
of the transfer function at the conditions of the optimized power output.

xre f = u|Hxu|Rd ,ωd ,β=2.5. (18)

The input excitation, as well as the piezoelectric properties, is assumed to be the same for the
comparison between the reference PEH and the novel PEH under evaluation. As the volume of the
novel PEH is known, the dimensions of the rectangular-shaped reference PEH can be obtained by
taking into account the thin-beam conditions. The rectangular PEH is tuned to the same resonance
frequency as the novel PEH by adjusting the ratio of the thickness of the middle layer and the thickness
of the piezoelectric layers. This ratio does not have a significant influence on the power output if
the resonance frequency and the mass of the beam are excluded, according to investigations in [10].
After obtaining the geometrical parameters of the reference PEH, the maximum possible optimized
power of the entire volume can be obtained. The average power output over a band of frequencies
from Ωmin to Ωmax can be also obtained. The effectiveness of the structure proposed for PEHs can be
determined by comparing its performance to the reference PEH of the same volume.

9. Conclusions

Important issues for the effectiveness of the proposed piezoelectric energy harvesters were
investigated. The volume criterion and the normalized power to volume were investigated. Volume is
a crucial issue in piezoelectric energy harvesters, not only because the PEHs are targeting applications
of relatively low scale, but also because the power output is strongly dependent on the volume of the
transducer. At the end, the major objective in energy harvesting is to generate the maximum possible
power over a wide band of frequencies from a predefined constant volume. One possibility has been
suggested to evaluate the effectiveness of the developed structures for the PEHs by comparing their
performance to a solid, rectangular-shaped PEH of the same entire volume (the reference harvester).

An optimized structure for a rectangular PEH to be used as the reference was introduced.
The optimized conditions of the applied load resistance and excitation frequency were discussed.
The power output under the optimized conditions was derived. The tip displacement was important
for estimating the volume of motion. The transfer function between the tip displacement and the
input displacement was derived under the optimized conditions. Under the same materials and input
excitation, if the reference harvester generates higher power over a wider band of frequencies than
the proposed, novel PEH, the effectiveness of the proposed PEH will be very low and should not be
recommended. In general, it is required to consider the volume for the effectiveness of the proposed
structures in the PEHs. It is important to optimize the structures of the piezoelectric energy harvesters
under volume constraints in order to be more effective.

Author Contributions: N.A. and J.T. conceptualized this research on studying the effectiveness of piezoelectric
energy harvesters under volume constraints. N.A. worked on the methodology, derived the model, developed
the software, carried out the investigations for achieving the objective of the research, and conducted the formal
analysis. J.T. conducted the project administration. Both authors discussed the model derivation and the analysis of
the investigations during this study. The original draft of the manuscript was written by N.A. and reviewed by J.T.

Funding: This research was funded by the Marie Curie program through the ITN ANTARES project, grant number
GA 606817.

Acknowledgments: The authors gratefully acknowledge the European Commission for its support of the Marie Curie
program, including the ITN ANTARES project GA 606817.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.



Appl. Sci. 2018, 8, 1075 17 of 18

References

1. Twiefel, J.; Westermann, H. Survey on broadband techniques for vibration energy harvesting. J. Intell. Mater.
Syst. Struct. 2013, 24, 1291–1302. [CrossRef]

2. Zhu, D.; Tudor, M.J.; Beeby, S.P. Strategies for increasing the operating frequency range of vibration energy
harvesters: A review. Meas. Sci. Technol. 2010, 21, 022001. [CrossRef]

3. Kim, S.; Towfeeq, I.; Dong, Y.; Gorman, S.; Rao, A.; Koley, G. P(VDF-TrFE) Film on PDMS Substrate for
Energy Harvesting Applications. Appl. Sci. 2018, 8, 213. [CrossRef]

4. Leadenham, S.; Erturk, A. M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting:
Harmonic balance analysis and experimental validation. J. Sound Vib. 2014, 333, 6209–6223. [CrossRef]

5. Karami, M.A.; Inman, D.J. Analytical Modeling and Experimental Verification of the Vibrations of the Zigzag
Microstructure for Energy Harvesting. J. Vib. Acoust. 2011, 133, 11002. [CrossRef]

6. El-Hebeary, M.M.R.; Arafa, M.H.; Megahed, S.M. Modeling and experimental verification of multi-modal
vibration energy harvesting from plate structures. Sens. Actuators A Phys. 2013, 193, 35–47. [CrossRef]

7. Siddique, A.R.M.; Mahmud, S.; van Heyst, B. Energy conversion by ‘T-shaped’ cantilever type electromagnetic
vibration based micro power generator from low frequency vibration sources. Energy Convers. Manag. 2017,
133, 399–410. [CrossRef]

8. Liu, D.; Al-Haik, M.; Zakaria, M.; Hajj, M.R. Piezoelectric energy harvesting using L-shaped structures.
J. Intell. Mater. Syst. Struct. 2017, 29, 1045389X1773092. [CrossRef]

9. Aboulfotoh, N.; Twiefel, J. A Study on Bandwidth and Performance Limitations of Array Vibration Harvester
Configurations. Energy Harvest. Syst. 2017, 4, 47–56. [CrossRef]

10. Aboulfotoh, N.; Twiefel, J. On developing an optimal design procedure for a bimorph piezoelectric cantilever
energy harvester under a predefined volume. Mech. Syst. Signal Process. 2018, 106, 1–12. [CrossRef]

11. Wolszczak, P.; Łygas, K.; Litak, G. Dynamics identification of a piezoelectric vibrational energy harvester by
image analysis with a high speed camera. Mech. Syst. Signal Process. 2018, 107, 43–52. [CrossRef]

12. Richards, C.D.; Anderson, M.J.; Bahr, D.F.; Richards, R.F. Efficiency of energy conversion for devices
containing a piezoelectric component. J. Micromech. Microeng. 2004, 14, 717–721. [CrossRef]

13. Shu, Y.C.; Lien, I.C. Efficiency of energy conversion for a piezoelectric power harvesting system. J. Micromech. Microeng.
2006, 16, 2429–2438. [CrossRef]

14. Kim, M.; Dugundji, J.; Wardle, B.L. Efficiency of piezoelectric mechanical vibration energy harvesting.
Smart Mater. Struct. 2015, 24, 55006. [CrossRef]

15. Yang, Z.; Erturk, A.; Zu, J. On the efficiency of piezoelectric energy harvesters. Extrem. Mech. Lett. 2017, 15,
26–37. [CrossRef]

16. Shafer, M.W.; Garcia, E. The Power and Efficiency Limits of Piezoelectric Energy Harvesting. J. Vib. Acoust.
2017, 136, 021007. [CrossRef]

17. Roundy, S. On the Effectiveness of Vibration-based Energy Harvesting. J. Intell. Mater. Syst. Struct. 2005,
16, 809–823. [CrossRef]

18. Feng, G.; Hung, J. Optimal FOM Designed Piezoelectric Microgenerator with Energy Harvesting in a Wide
Vibration Bandwidth. In Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered
and Molecular Systems, Bangkok, Thailand, 16–19 January 2007; pp. 511–514.

19. Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A micro electromagnetic
generator for vibration energy harvesting. Micromach. Microeng. 2007, 17, 1257–1265. [CrossRef]

20. Liu, W.Q.; Badel, A.; Formosa, F.; Wu, Y.P. A new figure of merit for wideband vibration energy harvesters.
Smart Mater. Struct. 2015, 24, 125012. [CrossRef]

21. Ruan, J.J.; Lockhart, R.A.; Janphuang, P.; Quintero, A.V.; Briand, D.; de Rooij, N. An automatic test bench for
complete characterization of vibration-energy harvesters. IEEE Trans. Instrum. Meas. 2013, 62, 2966–2973.
[CrossRef]

22. Mitcheson, B.P.D.; Yeatman, E.M.; Rao, G.K.; Holmes, A.S.; Green, T.C. Energy Harvesting From Human and
Machine Motion for Wireless Electronic Devices. Proc. IEEE 2008, 96, 1457–1486. [CrossRef]

23. Hagood, N.; Chung, W.; von Flotow, A. Modelling of Piezoelectric Actuator Dynamics for Active Structural
Control. J. Intell. Mater. Syst. Struct. 1990, 1, 327–354. [CrossRef]

24. Kim, H.S.; Kim, J.J.; Kim, J.J. A Review of Piezoelectric Energy Harvesting Based on Vibration. Int. J. Precis.
Eng. Manuf. 2011, 12, 1129–1141. [CrossRef]

http://dx.doi.org/10.1177/1045389X13476149
http://dx.doi.org/10.1088/0957-0233/21/2/022001
http://dx.doi.org/10.3390/app8020213
http://dx.doi.org/10.1016/j.jsv.2014.06.046
http://dx.doi.org/10.1115/1.4002783
http://dx.doi.org/10.1016/j.sna.2013.01.006
http://dx.doi.org/10.1016/j.enconman.2016.10.059
http://dx.doi.org/10.1177/1045389X17730926
http://dx.doi.org/10.1515/ehs-2016-0018
http://dx.doi.org/10.1016/j.ymssp.2017.12.030
http://dx.doi.org/10.1016/j.ymssp.2018.01.024
http://dx.doi.org/10.1088/0960-1317/14/5/009
http://dx.doi.org/10.1088/0960-1317/16/11/026
http://dx.doi.org/10.1088/0964-1726/24/5/055006
http://dx.doi.org/10.1016/j.eml.2017.05.002
http://dx.doi.org/10.1115/1.4025996
http://dx.doi.org/10.1177/1045389X05054042
http://dx.doi.org/10.1088/0960-1317/17/7/007
http://dx.doi.org/10.1088/0964-1726/24/12/125012
http://dx.doi.org/10.1109/TIM.2013.2265452
http://dx.doi.org/10.1109/JPROC.2008.927494
http://dx.doi.org/10.1177/1045389X9000100305
http://dx.doi.org/10.1007/s12541-011-0151-3


Appl. Sci. 2018, 8, 1075 18 of 18

25. Elvin, N.; Erturk, A. Advances in Energy Harvesting Methods; Springer Science & Business Media: New York,
NY, USA, 2013.

26. Bowen, C.R.; Topolov, V.Y.; Kim, H.A. Modern Piezoelectric Energy-Harvesting Materials; Springer International
Publishing: Cham, Switzerland, 2016.

27. Kim, M.; Dugundji, J.; Wardle, B.L. Optimal Design of Piezoelectric Materials and Devices for Energy
Harvesting. J. Korean Phys. Soc. 2013, 62, 1689–1695. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3938/jkps.62.1689
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Expressions for Estimating Efficiency 
	Figures of Merit 

	Discussion about the Importance of Volume Consideration 
	Tip Displacement 
	Normalized Power to the Volume 
	Mechanical Quality Factor 
	Discussion about the Applied Load Resistance 
	Optimized Rectangular-Shaped Piezoelectric Energy Harvester 
	Developing a Methodology to Evaluate the Effectiveness of Piezoelectric Energy Harvesters 
	Conclusions 
	References

