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Abstract: The present work is aimed at studying the determination method and implementation
process of reasonable completion state for the Hunan Road Bridge, which is currently the widest
concrete self-anchored suspension bridge in China. The global finite element model and the cable
analytic program BNLAS were integrated. The synthesis algorithm of completion state determination
was proposed. The contact relationships between the cable and saddles were captured using the
refined FE discretization method. The concrete shrinkage and creep effects during the construction
and operation periods were predicted using the CEB-FIP 90 model and the age-adjusted effective
modulus method. The cable alignments under the free cable state, system transformation condition,
and completion state were obtained. Moreover, the multiple-control method for the whole process
of system transformation was proposed. The multiple parameters included the hanger tensioning
force, exposed amount of hanger anchor cup, and tag line position. A detailed system transformation
procedure was formulated and well preformed in the construction site. In addition, the further
optimization analysis of final hanger force was conducted based on the actual completion state.
The influence on the stress and geometry evolution of girder brought by the final girder alignment was
investigated. The measured results of structural alignment and stress show that the target completion
state was well implemented. The accuracy and efficiency of the proposed multiple-control method
were verified by checking the tag line position of each step. In addition, the optimized final hanger
force and girder lifting amount were obtained, which can provide feedback and reference for the
construction control and service safety of the similar concrete self-anchored suspension bridges.

Keywords: self-anchored suspension bridge; concrete girder; reasonable completion state;
concrete shrinkage and creep; system transformation; multiple control

1. Introduction

Currently, the girder material forms of self-anchored suspension bridges in China are diverse,
including the concrete girder, steel girder, and steel-concrete composite girder. The concrete
self-anchored suspension bridge is becoming more competitive among the city bridges of medium-span
because of the economics of concrete and elegance appearance [1,2]. More than 30 concrete self-anchored
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suspension bridges have been built in China. In addition, the girder width usually increases to 50 m
or more to meet the increasing lane requirements. The concrete shrinkage and creep effects in the
extra-wide girder and towers should be fully considered. Moreover, the reliability of the bridge
is related to important social impacts [3–5]. The determination of a reasonable completion state
and the corresponding control of implementation process are necessary for the structural safety and
service durability.

The accurate cable system analysis is the premise of completion state determination for the
self-anchored suspension bridge. Some analytic programs of cable system have been proposed,
including the BNLAS (SGKZ2000) program developed by Tang [6] and the SSBAP2009 proposed by
Li [7], which are characterized by small computing cost compared with the general finite element
(FE) software [6–16]. However, the influences brought by the concrete shrinkage and creep during
construction and operation periods should be precisely considered by determining the appropriate
pre-displacements of components. Moreover, the convenient and refined method is required to simulate
the changes in the contact relationships between cable and saddles during system transformation.
As for the construction of self-anchored suspension bridge, the tower and girder are first erected.
The cables are anchored on the girder ends. Then, the completion state is achieved by conducting
the system transformation. The schemes of system transformation have been widely investigated
by relying on actual bridge structures [17–21]. Kim [2] proposed the system transformation scheme
of Yong Jong Bridge in Korea based on the reverse nonlinear FE analysis. However, there are few
studies on the refined control methods of hanger tensioning, including the tensioning state control
and judgment criteria, which are also the main factors affecting the accuracy and efficiency of system
transformation. In short, the refined control of system transformation has become a serious issue to be
solved along with the growing construction number of a self-anchored suspension bridge.

In this paper, the ANSYS beam-type FE simulation, cable analytic program BNLAS (SGKZ2000),
and filed monitoring data were integrated. The determination and implementation methods of
a reasonable completion state for the Hunan Road Bridge were studied, which is currently the
widest concrete self-anchored suspension bridge in China. The synthesis algorithm of reasonable
completion state determination was proposed based on the prediction of concrete shrinkage and creep.
The calculation principles of the CEB-FIP 90 model and age-adjusted effective modulus method were
compiled into the FE simulations. Moreover, the multiple-control method for the whole process of
system transformation was proposed. A detailed system transformation procedure was formulated
and performed well in the construction site. In addition, the further optimization analysis of the
completion state was conducted. The optimized target values of hanger forces and girder-lifting
amount were obtained.

2. Hunan Road Bridge

The Hunan Road Bridge [22–25] is located in Liaocheng City, Shandong Province in China,
which was opened to traffic on May 1, 2015. The layouts of the bridge are shown in Figures 1 and 2.
The span arrangement is 53 m + 112 m + 53 m = 218 m. The 37 pairs of hangers are numbered as
DS1-N~DS37-N and DS1-S~DS37-S on the north and south sides, respectively. In addition, the hangers
DS1 and DS37 are rigid. The hangers DS8, DS9, DS29, and DS30 belong to the flexible hangers of type
B. The remaining hangers belong to the flexible hangers of type A. The longitudinal and transvers
distances between hangers are 5 m and 31.7 m, respectively. The numbers beginning with CS in
Figure 1 represent the girder cross section located at the towers, girder endpoints, sidespan midpoints,
and the quarter points of mid-span, respectively. The main girder with a width of 52 m is currently the
widest among the concrete self-anchored suspension bridges in China. The longitudinal and transverse
slopes of girder are 2.5% and 1.5%, respectively. The rise-span ratios of mid-span and side-span are
1/5.276 and 1/12.965, respectively. The towers are transversely connected by the crossbeams. The girder
bearings on the crossbeams at the west and east towers are transverse unidirectional sliding bearing
and bi-directional sliding bearing, respectively.
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Figure 1. Global layout of the Hunan Road Bridge (Unit: m). 

  

Figure 2. Cable system and extra-wide girder (Unit: m). 

The detailed cross sections of key components are shown in Figure 3, including the girder, tower, 
hanger, and cable. The cast-in-place prestressed concrete girder is composed of two box beams with 
three cells. The girder height at the road centerline is 2.8 m. The crossbeams are densely arranged in 
a girder with an interval of 5 m corresponding to hangers. The standard cube compressive strengths 
of the concrete materials used in girder and tower are 50 MPa and 40 MPa, respectively. The tensile 
strengths of the steel wires used in prestressed tendon and cable are 1860 MPa and 1670 MPa, 
respectively. 

 
(a) 

 
(b) (c) (d) 

Figure 3. Cross section of key component: (a) half part of girder, (b) tower, (c) hanger, and (d) cable 
(Unit: cm). 
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Figure 1. Global layout of the Hunan Road Bridge (Unit: m).

 3 of 22 

5

218
11253 53

DS1~DS8 DS9~DS29 DS30~DS37
W E

CS2CS1 CS3
CS4 CS5 CS6 CS9CS8

CS7  

Figure 1. Global layout of the Hunan Road Bridge (Unit: m). 

  

Figure 2. Cable system and extra-wide girder (Unit: m). 

The detailed cross sections of key components are shown in Figure 3, including the girder, tower, 
hanger, and cable. The cast-in-place prestressed concrete girder is composed of two box beams with 
three cells. The girder height at the road centerline is 2.8 m. The crossbeams are densely arranged in 
a girder with an interval of 5 m corresponding to hangers. The standard cube compressive strengths 
of the concrete materials used in girder and tower are 50 MPa and 40 MPa, respectively. The tensile 
strengths of the steel wires used in prestressed tendon and cable are 1860 MPa and 1670 MPa, 
respectively. 

 
(a) 

 
(b) (c) (d) 

Figure 3. Cross section of key component: (a) half part of girder, (b) tower, (c) hanger, and (d) cable 
(Unit: cm). 

3. Determination Method of a Reasonable Completion State 

1.5%

52
3.5 5.5 2.5 29

1.5%

3.55.52.5

South cableNorth cable

Hanger centerline Hanger centerline

1.5%
180

28
0

310 30 375 43 30 180 43 30 375 880

20 30 300 43 30 360 43 30 300 30 20

30

20 24

Hanger centerline

Longitudinal prestressed
tendons (123 Ф1.52 cm)

Transverse
prestressed tendons
(123 Ф1.52 cm)

Road centerline
2600

1300

Galvanized steel wire (1693 Ф0.5 cm)

10
0

15
0

10
0

35
0

R10

7

65 100 65
230

7

7.9

Galvanized steel wire (Ф0.7 cm) 

Protective layer

44.2

Hanger centerline

Figure 2. Cable system and extra-wide girder (Unit: m).

The detailed cross sections of key components are shown in Figure 3, including the girder, tower,
hanger, and cable. The cast-in-place prestressed concrete girder is composed of two box beams
with three cells. The girder height at the road centerline is 2.8 m. The crossbeams are densely
arranged in a girder with an interval of 5 m corresponding to hangers. The standard cube compressive
strengths of the concrete materials used in girder and tower are 50 MPa and 40 MPa, respectively.
The tensile strengths of the steel wires used in prestressed tendon and cable are 1860 MPa and 1670
MPa, respectively.
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(Unit: cm).



Appl. Sci. 2019, 9, 2576 4 of 22

3. Determination Method of a Reasonable Completion State

3.1. Calculation Method of Cable Alignment

The segmented catenary theory of cable is shown in Figure 4. The loads include the concentrated
load Fi transmitted by hanger and the distributed load q. The basic assumptions include that the main
cable is an ideal flexible cable. The local bending at turning points and the sectional bending stiffness
are ignored. The changes in cable cross-sectional area and self-weight are ignored. Hooke’s law is
suitable for the cable stress-strain relationship [26]. The variation relationship between the cable
alignment and internal force is approximately considered as geometric nonlinear, which meet the force
balance condition and deformation compatibility condition [16,27].
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Figure 4. Forced state of cable at the completion state.

The calculation method of cable alignment is shown in Figure 5. The deformations of tower
and girder caused by the cable force and the concreter shrinkage and creep during construction and
operation periods were considered. In addition, the BNLAS program (SGKZ2000) developed by
Southwest Jiaotong University in China [6] was adopted to assist the calculation of cable alignment.
The BNLAS program is developed based on the analytical expressions and numerical iterations.
The calculation functions include the theoretical cable alignment, vertical and horizontal components
of cable force, reaction force of the tower, and cable erection alignment.
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3.2. Prediction Method of Concrete Shrinkage and Creep

The concrete shrinkage and creep effects during construction and operation periods were
predicted using the CEB-FIP 90 model [28] and age-adjusted effective modulus method [29].
The relationship between the initial instantaneous elastic deformation and final concrete creep
deformation is approximately linear when the stress of concrete does not exceed 40% of the ultimate
strength. The superposition principle can be used to calculate the strain caused by the stress applied
step-by-step [30]. The relationship between the strain increment and stress increment during the time
interval of (ti, ti−1) caused by concrete shrinkage and creep is shown in Equation (1).

∆εCS(ti, ti−1) =
∆σC(ti,ti−1)

E(ti−1)
[(1 + χ(ti, ti−1)φ(ti, ti−1)]

+
i−1∑
j=1

∆σ(t j)

E(t j)
[φ(ti, t j) −φ(ti−1, t j)] + ∆εS(ti, ti−1)

(1)

where C and S represent the creep and shrinkage effects, respectively. ∆σC(ti, ti−1) is the stress increment
caused by creep. ∆εS(ti, ti−1) is the strain increment caused by shrinkage. E is the elastic modulus
of concrete. χ(ti, ti−1), φ(ti, ti−1), and R(ti, ti−1) are the aging coefficient, the creep coefficient, and the
relaxation coefficient, respectively, which are detailed as follows.

χ(ti, ti−1) =
E(ti−1)

E(ti−1) −R(ti, ti−1)
−

1
φ(ti, ti−1)

(2)

R(ti, ti−1) =
1

J(ti, ti−1)

[
1 +

c1α(ti, ti−1)J(ti, ti−1)

10J(ti, ti − 1)

]−10

(3)

c1 = 0.0119 ln ti−1 + 0.08, α(ti, ti−1) =
J(ti−1 + ζ, ti−1)

J(ti, ti − ζ)
− 1, ζ =

ti − ti−1

2
(4)

The age-adjusted effective modulus EC”(ti, ti−1) can be defined as Equation (5).

E′′C(ti, ti−1) =
E(ti−1)

1 + χ(ti, ti−1)φ(ti, ti−1)
(5)

The step-wise analysis method of concrete shrinkage and creep effect is shown in Figure 6. First,
the elastic modulus of concrete during each time interval of (ti, ti−1) was replaced by the age-adjusted
effective modulus EC”(ti, ti−1). The structural responses caused by concrete creep were obtained
by the sequential calculation and gradual accumulation. Moreover, the initial strains applied on
the prestressed tendons during each time interval (ti+1, ti) were updated to consider the pre-stress
relaxation, which was based on the pre-stresses calculation results of the former time interval (ti, ti−1).
The changes in structural stress and geometry during the construction period caused by concrete
shrinkage and creep were considered in the bridge completion state, which was based on the drafted
construction time from the cast of concrete to the completion state for each girder segment. In addition,
the concrete shrinkage effects were calculated using the analogous means adopted in the temperature
effect calculation based on the shrinkage strain of each step.
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3.3. Finite Element Model

The spatial FE mode of Hunan Road Bridge established using ANSYS software is shown in
Figure 7. The Timoshenko beam element (BEAM188) in ANSYS was adopted to simulate the tower,
crossbeam, and girder. The tension-only link element (LINK10) was used to simulate the cable, hanger,
and prestressed tendons. The internal forces of the cable, hanger, and prestressed tendons were applied
by defining the initial strains. The additional quality element (MASS21) was adopted to simulate
the weights of deck pavement, saddle, clip, and approach bridge. The nodes of tower bottoms were
consolidated completely. The DOFs between the girder, tower, and approach bridge were constrained,
according to the actual bearing types [31]. As shown in Figure 8, the arrows represent the sliding
directions of bearing. The bearings between the girder and the crossbeams at west and east towers
are transverse unidirectional sliding bearing and bi-directional sliding bearing, respectively. The
static equilibrium analyses under self-weight were conducted in the follow sections. Moreover, the
massless rigid arms (BEAM188) were introduced to connect the cables with the girder ends and tower
tops. The compressions of girder and towers caused by cable force and the concrete shrinkage and
creep during the construction period were simulated by changing the temperatures of rigid arms.
The structural sectional properties and material parameters are shown in Table 1.

 6 of 22 

hanger, and prestressed tendons. The internal forces of the cable, hanger, and prestressed tendons 
were applied by defining the initial strains. The additional quality element (MASS21) was adopted 
to simulate the weights of deck pavement, saddle, clip, and approach bridge. The nodes of tower 
bottoms were consolidated completely. The DOFs between the girder, tower, and approach bridge 
were constrained, according to the actual bearing types [31]. As shown in Figure 8, the arrows 
represent the sliding directions of bearing. The bearings between the girder and the crossbeams at 
west and east towers are transverse unidirectional sliding bearing and bi-directional sliding bearing, 
respectively. The static equilibrium analyses under self-weight were conducted in the follow sections. 
Moreover, the massless rigid arms (BEAM188) were introduced to connect the cables with the girder 
ends and tower tops. The compressions of girder and towers caused by cable force and the concrete 
shrinkage and creep during the construction period were simulated by changing the temperatures of 
rigid arms. The structural sectional properties and material parameters are shown in Table 1. 

 

Figure 7. Spatial FE mode of the Hunan Road Bridge. 

West East

Bearings at 
girder end

Bearings at 
west tower

Bearings at 
east tower

Bearings at 
girder end  

Figure 8. Bearing types of the Hunan Road Bridge (The dashed boxes represent the locations of 
towers). 

Table 1. Typical cross-sectional properties and material parameters of the Hunan Road Bridge. 

Component Type 
Section 
Area A
（m2） 

Elastic Modulus 
E（MPa） 

Density ρ
（kg/m3） 

Ix（m4） 
Iy

（m4） 
Iz

（m4） 

Cable 

Cable 0.148 2.00 × 105 8005 —— —— —— 
Flexible hanger 

of type A 
4.89 × 10-3 2.05 × 105 8005 —— —— —— 

Flexible hanger 
of type B 

5.35 × 10-3 2.05 × 105 8005 —— —— —— 

Figure 7. Spatial FE mode of the Hunan Road Bridge.

 6 of 22 

hanger, and prestressed tendons. The internal forces of the cable, hanger, and prestressed tendons 
were applied by defining the initial strains. The additional quality element (MASS21) was adopted 
to simulate the weights of deck pavement, saddle, clip, and approach bridge. The nodes of tower 
bottoms were consolidated completely. The DOFs between the girder, tower, and approach bridge 
were constrained, according to the actual bearing types [31]. As shown in Figure 8, the arrows 
represent the sliding directions of bearing. The bearings between the girder and the crossbeams at 
west and east towers are transverse unidirectional sliding bearing and bi-directional sliding bearing, 
respectively. The static equilibrium analyses under self-weight were conducted in the follow sections. 
Moreover, the massless rigid arms (BEAM188) were introduced to connect the cables with the girder 
ends and tower tops. The compressions of girder and towers caused by cable force and the concrete 
shrinkage and creep during the construction period were simulated by changing the temperatures of 
rigid arms. The structural sectional properties and material parameters are shown in Table 1. 

 

Figure 7. Spatial FE mode of the Hunan Road Bridge. 

West East

Bearings at 
girder end

Bearings at 
west tower

Bearings at 
east tower

Bearings at 
girder end  

Figure 8. Bearing types of the Hunan Road Bridge (The dashed boxes represent the locations of 
towers). 

Table 1. Typical cross-sectional properties and material parameters of the Hunan Road Bridge. 

Component Type 
Section 
Area A
（m2） 

Elastic Modulus 
E（MPa） 

Density ρ
（kg/m3） 

Ix（m4） 
Iy

（m4） 
Iz

（m4） 

Cable 

Cable 0.148 2.00 × 105 8005 —— —— —— 
Flexible hanger 

of type A 
4.89 × 10-3 2.05 × 105 8005 —— —— —— 

Flexible hanger 
of type B 

5.35 × 10-3 2.05 × 105 8005 —— —— —— 

Figure 8. Bearing types of the Hunan Road Bridge (The dashed boxes represent the locations of towers).



Appl. Sci. 2019, 9, 2576 7 of 22

Table 1. Typical cross-sectional properties and material parameters of the Hunan Road Bridge.

Component Type Section
Area A (m2)

Elastic
Modulus
E (MPa)

Density ρ
(kg/m3) Ix (m4) Iy (m4) Iz (m4)

Cable

Cable 0.148 2.00 × 105 8005 —— —— ——
Flexible hanger

of type A 4.89 × 10−3 2.05 × 105 8005 —— —— ——

Flexible hanger
of type B 5.35 × 10−3 2.05 × 105 8005 —— —— ——

Rigid hanger 0.011 2.00 × 105 8005 —— —— ——

Girder
Main girder 13.947 3.45 × 104 2549 21.631 13.809 569.453
Crossbeam 1.250 3.45 × 104 2549 0.499 × 10−17 0.651 0.026

Tower
Main tower 8.050 3.25 × 104 2549 0.833 × 10−16 3.549 8.218
Crossbeam 3.105 3.25 × 104 2549 0.419 × 10−9 2.037 1.510

In addition, the refined simulation method of cable saddles was proposed as shown in Figure 9.
The deformation of the saddle was ignored. The middle part of the saddle top was assumed to be
in constant contact with cable, and there was no relative displacement between the splay saddle
base and girder [32]. The changes in contact relationships between cable and saddles during system
transformation were simulated precisely and conveniently.

As can be seen in Figure 9a, the main saddle body was simulated by the rigid beam elements
distributed radially along the top surface of the saddle. The main saddle base was simulated by
the rigid beam element co-locating with the tower. The rigid connections relaxing the longitudinal
constraints were used to connect the saddle base and the bottom surface of the main saddle. Thus,
the displacement of the main saddle during system transformation can be simulated. Moreover,
the rigid connections were used to simulate the contact between the cable and the middle part of the
saddle top. The encryption areas of compression-only connections were set in both sides of the saddle.
Thus, the separation of cable from the main saddle and the changes in cutting point positions can be
simulated. In addition, the splay saddle is also an important steering member for the cable. As can
be seen in Figure 9b, the rigid connections were used to simulate the connections between the splay
saddle base and the main girder.
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3.4. Synthesis Algorithm for Determining a Reasonable Completion State

The synthesis algorithm for the reasonable completion state determination of a concrete
self-anchored suspension bridge was proposed, as shown in Figure 10. The compressions of tower
and girder caused by the cable force and the concrete shrinkage and creep effects during the drafted
construction period were offset by introducing the rigid arms. The structural deformations caused by
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the concrete shrinkage and creep effects during the long-term operation period were considered by
optimizing the hanger force and girder alignment at the completion state based on the prediction results. 8 of 22 
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Figure 10. Algorithm flowchart of reasonable completion state determination for concrete self-anchored
suspension bridge.

3.5. Reasonable Completion State of the Hunan Road Bridge

The proposed algorithm was used to determine the reasonable completion state of the Hunan
Road Bridge. The results of cable alignments at the erection and completion states are shown in
Figure 11. The boundary conditions of the global FE model were consistent with the analytic analysis
after introducing the rigid arms. The FE analysis results of cable alignment and internal force were in
good agreement with the BNLAS analysis results after a comparison. The unstressed lengths of cable
segments at side span and middle span are 55.322 m and 120.881 m, respectively. The pre-displacements
of the cable anchoring points at girder ends are 0.021 m. The pre-displacements of main saddles on the
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west and east towers are -0.0271 m and 0.286 m, respectively. The positive displacement values in this
paper are eastward. 9 of 22 
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Figure 11. Results of cable alignments at erection and completion states of the Hunan Road Bridge. 
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4. Implementation Analysis of a Reasonable Completion State

4.1. Cable Erection

The cable erection control is the foundation for the realization of a reasonable completion state [33].
The pre-displacements of components were calculated using the method described in Figures 5 and 10,
considering the deformations of tower and girder caused by the cable force and concrete shrinkage and
creep effects [34,35]. The pre-displacements of cable anchoring points at the west and east girder ends
were −1.5 cm and 3 cm, respectively. The same pre-displacements were adopted for the splay saddle
bases and bearings at girder ends. The corresponding pre-displacements of hanger anchoring points
were calculated. The pre-displacements of the main saddle and the splay saddle were 25.6 cm and 2 cm,
respectively, which were pre-biased toward the girder ends along the support planes. The bearings
on the crossbeam of east tower were pre-biased toward the east side-span with the value of 2.5 cm.
The pre-lifting amounts of main saddles were 1.5 cm. The pre-camber of girder at the middle mid-span
was 0.18 m.

The unstressed lengths of cables were calculated based on the cable cross-section type shown in
Figure 14 and the results of cable alignments are shown in Figure 11. The calculation method of the
unstressed hanger length was proposed as shown in Figure 15, which was based on the measured
geometry of the hanger tube and cable erection alignment.
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The comparison between the measured free cable alignment and target alignment is shown in
Figure 16, which takes the north cable as an example. The error percentage of cable alignment at each
hanger was compared. For the sake of brevity, only part of the hanger serial number was plotted
along the horizontal coordinate axis. In addition, the discrete statistics results of error percentage were
described. The results show that the error percentages of cable alignment at girder ends and middle
mid-span are relatively higher, because of the catenary characteristics of the cable. Moreover, the errors
of cable alignment are smaller than the allowable value of ± 2 cm in China specification.
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4.2. Multiple-Control Method for the Whole Process of System Transformation

The girder jacking-up method [36] and hanger tensioning method [1,2] are usually adopted for
the system transformation of a self-anchored suspension bridge. The application of the later method
is wider [21,37]. The hangers are tensioned in several stages and the girder is transformed from the
bracket support state to the cable suspension state [38,39]. In addition, the hanger force, hanger elastic
elongation, and the vertical displacements of girder and cable can be chosen as the control parameters
of the system transformation process [40]. However, only one of them is usually chosen as the single
control parameter currently, or the target hanger force and tag line position were chosen as the dual
control parameters for part of the hanger tensioning process [41]. Moreover, the control accuracy
of the hanger tensioning process is affected by the ambient temperature changes, operation errors,
and measuring errors [42]. Especially for the later tensioning stages, the influences on hanger force
brought by the measuring error of cable displacement are more significant because of the large cable
stiffness. The final adjustment of hanger force might be more complex.

In this paper, the multiple-control method for the whole process of the system transformation
was proposed. The hanger tensioning force, exposed the amount of hanger anchor cup, and the tag
line position were chosen as the multi-control parameters. The hanger tensioning and the mutual
check between the multiple parameters were synchronized. The tensioning error accumulations were
basically avoided. The calculation schematic is shown in Figure 17. The tag line was prefabricated on
the surface of hanger, and Lta was the initial distance between the tag line and the bottom surface of
the hanger anchor cup. The hanger tensioning force Pij of tensioning step i for hanger j was used to
calculate the elevation value Haij at the bottom surface of the hanger anchor cup.

Hai j = Hci j − ∆Hci j − Lc − Lsj −
Pi jLsj

E jA j
(6)
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where Hcij is the measured cable alignment at hanger j and ∆Hcij is the vertical displacement of the
cable caused by hanger tensioning. Lc is the distance from the cable center to the hanger fork ear center
and Lsj is the unstressed hanger length. Ej and Aj are the elastic modulus and cross-sectional areas of
the hanger, respectively. 12 of 22 

 
 

Figure 17. Calculation schematic and photo of the multiple-control method for system 
transformation. 

The target distance Ltdij from the tag line to the top of the hanger tube was calculated based on 
the vertical displacement ΔHgij of the girder caused by hanger tensioning, as well as the target value 
of the exposed amount Lsaij of the hanger anchor cup. 

(1 )ij
tdij aij ta dij gij

i j

saij dij dj p s gij aij

P
L H L H H

E A
L H L T T H H


= + + − − Δ


 = − − − + Δ −

 (7) 

where Hdij is the measured elevation of the hanger tube top, Ldj is the measured length of the hanger 
tube, and Tp and Ts are the thicknesses of the anchor plate and nut, respectively. The principles of the 
multiple-control method are detailed as follows. 

(1) The prefabricated tag line should be convenient for observation. The value of Lta for the 
Hunan Road Bridge was 3.5 m. The elastic elongation of the hanger segment from the tag line to the 
bottom surface of the hanger anchor cup cannot be ignored. 

(2) The target position of the tag line in each tensioning step should be calculated based on the 
hanger tensioning force, instead of the target hanger force. Thus, the synchronization of hanger 
tensioning and multiple-check can be realized. The tensioning errors can then be eliminated basically 
before dismantling the tensioning equipment. The phenomenon of repeated installation of tensioning 
equipment, if checking the tag line positons after the whole hanger tensioning round according to the 
traditional control method [41], can be avoided. 

(3) The observation line was prefabricated before hanger tensioning, according to the target 
distance from the tag line to the hanger tube top in each tensioning step. The sign of the completion 
of the tensioning step is that the observation line goes down to be parallel with the top surface of the 
hanger tube. In addition, the hanger tensioning can be continued only if the error ratio between the 
measured tensioning force and target value is within ±3%. Otherwise, correct the hanger tensioning 

Cable clamp  

Hanger tube

Bottom of nut (Hs)
Bottom of anchor cup (Ha)

Bottom of anchor plate (H p)

Bottom of girder (H gb)

Top of girder (H gt)

Top of hanger tube (Hd)

Tag line (Ht)

Cable center (Hc)

Fork ear center

Hanger

L s
L t

a

L t
d

L d
T

p

L c

L s
a

T s

Notation：
Ltd = Distance from tag line to the top of hanger tube
Lsa = Exposed amount of anchor cup
Lta = Distance from tag line to the bottom of anchor cup
Lc  = Distance from cable center to hanger fork ear center
Ls  = Unstressed length of hanger
Ld  = Measured length of hanger tube
T p  = Thickness of anchor plate
T s  = Thickness of nut

Figure 17. Calculation schematic and photo of the multiple-control method for system transformation.

The target distance Ltdij from the tag line to the top of the hanger tube was calculated based on the
vertical displacement ∆Hgij of the girder caused by hanger tensioning, as well as the target value of the
exposed amount Lsaij of the hanger anchor cup. Ltdi j = Hai j + Lta(1 +

Pi j
EiA j

) −Hdij − ∆Hgij

Lsai j = Hdij − Ldj − Tp − Ts + ∆Hgij −Hai j
(7)

where Hdij is the measured elevation of the hanger tube top, Ldj is the measured length of the hanger
tube, and Tp and Ts are the thicknesses of the anchor plate and nut, respectively. The principles of the
multiple-control method are detailed as follows.

(1) The prefabricated tag line should be convenient for observation. The value of Lta for the Hunan
Road Bridge was 3.5 m. The elastic elongation of the hanger segment from the tag line to the
bottom surface of the hanger anchor cup cannot be ignored.

(2) The target position of the tag line in each tensioning step should be calculated based on the
hanger tensioning force, instead of the target hanger force. Thus, the synchronization of hanger
tensioning and multiple-check can be realized. The tensioning errors can then be eliminated
basically before dismantling the tensioning equipment. The phenomenon of repeated installation
of tensioning equipment, if checking the tag line positons after the whole hanger tensioning
round according to the traditional control method [41], can be avoided.

(3) The observation line was prefabricated before hanger tensioning, according to the target distance
from the tag line to the hanger tube top in each tensioning step. The sign of the completion of the
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tensioning step is that the observation line goes down to be parallel with the top surface of the
hanger tube. In addition, the hanger tensioning can be continued only if the error ratio between
the measured tensioning force and target value is within ±3%. Otherwise, correct the hanger
tensioning force until the error ratio is within ±3%, under the premise of ensuring the tag line
position error is within ±2 cm in China specification.

4.3. Hanger Tensioning Procedure

The system transformation method based on the passive tensioning of the side span was adopted.
The active tensioning process was divided into four stages, including five tensioning rounds. The four
stages were the initial tensioning stage (tensioning round 1), side-span passive tensioning stage I and
II (tensioning round 2, 3, and 4), and partial adjustment stage (tensioning round 5). The target hanger
forces at the end of the first three stages were 0.35F, 0.72F, and 0.96F, respectively, and F is the hanger
force at the completion state, as shown in Figure 12. In addition, all of the hangers were tensioned
in the initial tensioning stage. The hangers of side span were tensioned so that the target exposed
amounts of hanger anchor cups at a completion state were achieved. The control parameters included
the tag line position Ltd and exposed amount Lsa of the hanger anchor cup. Then, only the hangers
of mid-span were tensioned in place progressively during the subsequent stages, which adopted the
hanger tensioning force Pij, the tag line position Ltd, and the anchor cup exposed amount Lsa as the
multiple control parameters. At the same time, the main saddles were pushed toward the mid-span.
Thus, the side-span passive tensioning was realized through the passive loading of side-span hangers.
Lastly, the target completion state was realized through the global passive tensioning by applying the
secondary dead loads. Thereby, the system transformation process was significantly simplified with
good economic rationality.

The implementation plan and the target values of control parameters in each hanger tensioning
stage were formulated based on the proposed control method. In addition, the deformations of cable
and girder during system transformation were measured using the total station instrument. The hanger
forces were measured using the hanger tensioning equipment based on the meter reading when the
hangers were pulled up.

4.3.1. Initial Tensioning Stage

The self-anchored suspension bridge was transformed from the free cable state to the hanger
anchoring state by conducting the initial tensioning for all hangers. A total of 8 sets of tensioning
equipment were adopted considering the structural symmetry of the Hunan Road Bridge. The specific
steps are shown in Table 2. The pushing amounts of main saddles and the serial numbers of tensioned
hangers are described. The hangers were tensioned beginning from the towers toward both sides
symmetrically. The south and north hangers were tensioned synchronously. The target values of
control parameters are shown in Table 3, including the tag line position Ltd and the exposed amount
Lsa of the hanger anchor cup.

Table 2. Specific step of tensioning round 1.

Step Description Step Description

1-1 The main saddles on the west and east towers were
pushed 8.6 cm and 7.1 cm respectively towards the middle. 1-7 DS4, DS14, DS24, DS34

1-2 DS8 DS9, DS29, DS30 1-8 DS3, DS15, DS23, DS35
1-3 DS7, DS10, DS28, DS31 1-9 DS16, DS22
1-4 DS6, DS11, DS27, DS32 1-10 DS2, DS17, DS21, DS36
1-5 DS5, DS12, DS26, DS33 1-11 DS18, DS20
1-6 DS13, DS25 1-12 DS1, DS37, DS19
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Table 3. Target values of the control parameters of tensioning round 1 (Unit: m).

North Side South Side

Hanger Lsa Ltd Hanger Lsa Ltd Hanger Lsa Ltd Hanger Lsa Ltd

DS1-N 0.228 0.303 DS20-N −0.432 0.974 DS1-S 0.234 0.294 DS20-S −0.443 0.982
DS2-N 0.229 0.312 DS21-N −0.434 0.973 DS2-S 0.244 0.298 DS21-S −0.429 0.969
DS3-N 0.223 0.337 DS22-N −0.386 0.929 DS3-S 0.237 0.305 DS22-S −0.403 0.942
DS4-N 0.204 0.335 DS23-N −0.339 0.882 DS4-S 0.218 0.319 DS23-S −0.358 0.904
DS5-N 0.213 0.327 DS24-N −0.292 0.832 DS5-S 0.223 0.319 DS24-S −0.299 0.840
DS6-N 0.217 0.326 DS25-N −0.229 0.772 DS6-S 0.210 0.334 DS25-S −0.240 0.783
DS7-N 0.218 0.322 DS26-N −0.155 0.695 DS7-S 0.220 0.318 DS26-S −0.169 0.709
DS8-N 0.239 0.303 DS27-N −0.098 0.641 DS8-S 0.225 0.314 DS27-S −0.110 0.653
DS9-N 0.090 0.448 DS28-N −0.013 0.556 DS9-S 0.075 0.465 DS28-S −0.033 0.577
DS10-N −0.005 0.545 DS29-N 0.083 0.459 DS10-S −0.017 0.558 DS29-S 0.053 0.492
DS11-N −0.083 0.626 DS30-N 0.262 0.284 DS11-S −0.091 0.631 DS30-S 0.266 0.313
DS12-N −0.133 0.673 DS31-N 0.218 0.322 DS12-S −0.167 0.704 DS31-S 0.243 0.297
DS13-N −0.207 0.746 DS32-N 0.221 0.322 DS13-S −0.233 0.771 DS32-S 0.238 0.302
DS14-N −0.263 0.806 DS33-N 0.217 0.325 DS14-S −0.287 0.826 DS33-S 0.251 0.290
DS15-N −0.316 0.858 DS34-N 0.236 0.307 DS15-S −0.344 0.882 DS34-S 0.258 0.282
DS16-N −0.351 0.894 DS35-N 0.248 0.294 DS16-S −0.390 0.933 DS35-S 0.269 0.268
DS17-N −0.405 0.949 DS36-N 0.246 0.296 DS17-S −0.425 0.966 DS36-S 0.270 0.273
DS18-N −0.431 0.970 DS37-N 0.219 0.312 DS18-S −0.441 0.979 DS37-S 0.217 0.280
DS19-N −0.432 0.974 —— —— —— DS19-S −0.450 0.989 —— —— ——

Notes: The meanings of the control parameters shown in Table 3 can refer to Figure 17. The negative values of
the exposed amount Lsa of the hanger anchor cup represent that the extension rods were required to realize the
anchoring state. The exposed amounts of extension rods can be calculated based on the geometry size of the
extension rod adopted.

4.3.2. Side-Span Passive Tensioning Stage I

The side-span passive tensioning process was divided into two stages to avoid the excessive
hanger tensioning force Pij. The control parameters included the hanger tensioning force Pij, the tag
line position Ltd, and the exposed amount Lsa of hanger anchor cup. The specific steps of side-span
passive tensioning stage I are shown in Table 4. The hangers were tensioned beginning from the towers
toward mid-span symmetrically. At the same time, the main saddles were pushed toward mid-span
using the principle of “small step and fast running.” For the sake of brevity, only the target values of
the tensioning force Pij and tag line position Ltd are shown in Table 5. The corresponding exposed
amounts Lsa of the hanger anchor cup can be easily calculated, according to Equation (7).

Table 4. Specific step of tensioning round 2.

Step Description Step Description

2-1 Saddles were pushed 1.0 cm toward
the mid-span. 2-7 Saddles were pushed 2.1 cm toward

the mid-span.
2-2 DS9, DS10, DS28, DS29 2-8 DS15, DS16, DS22, DS23

2-3 Saddles were pushed 1.8 cm toward
the mid-span. 2-9 Saddles were pushed 1.1 cm toward

the mid-span.
2-4 DS11, DS12, DS26, DS27 2-10 DS17, DS21

2-5 Saddles were pushed 2.0 cm toward
the mid-span. 2-11 Saddles were pushed 1.3 cm toward

the mid-span.
2-6 DS13, DS14, DS24, DS25 2-12 DS18, DS19, DS20
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Table 5. Target values of the control parameters of tensioning round 2.

North Side South Side

Hanger P (kN) Ltd (m) Hanger P (kN) Ltd (m) Hanger P (kN) Ltd (m) Hanger P (kN) Ltd (m)

DS9-N 1700 0.359 DS20-N 2340 0.674 DS9-S 1700 0.376 DS20-S 2340 0.682
DS10-N 2150 0.397 DS21-N 3800 0.689 DS10-S 2150 0.410 DS21-S 3800 0.686
DS11-N 1650 0.431 DS22-N 3550 0.648 DS11-S 1650 0.436 DS22-S 3550 0.661
DS12-N 2700 0.440 DS23-N 2200 0.598 DS12-S 2700 0.471 DS23-S 2200 0.620
DS13-N 1950 0.487 DS24-N 3100 0.566 DS13-S 1950 0.512 DS24-S 3100 0.574
DS14-N 3100 0.540 DS25-N 1950 0.513 DS14-S 3100 0.560 DS25-S 1950 0.524
DS15-N 2200 0.574 DS26-N 2700 0.462 DS15-S 2200 0.598 DS26-S 2700 0.476
DS16-N 3550 0.613 DS27-N 1650 0.446 DS16-S 3550 0.652 DS27-S 1650 0.458
DS17-N 3800 0.666 DS28-N 2150 0.408 DS17-S 3800 0.683 DS28-S 2150 0.429
DS18-N 2340 0.670 DS29-N 1700 0.370 DS18-S 2340 0.679 DS29-S 1700 0.403
DS19-N 2340 0.669 —— —— —— DS19-S 2340 0.685 —— —— ——

4.3.3. Side-Span Passive Tensioning Stage II

The target hanger force at the end of the side-span passive tensioning stage II was 0.96F, which
is relatively big with respect to the bearing capacity and anti-sliding ability of the cable clamp. As
the cable displacement during the hanger tensioning process is characterized by the weak coherence
when the bridge has been provided with certain stiffness. The hangers closest to the tensioned hanger
will be unloaded during hanger tensioning, while the internal forces of the farther hangers will
increase. The peaks of the hanger tensioning force and the internal forces of the farther hangers need
to be decreased. Thereby, the side-span passive tensioning stage II was divided into two rounds,
including round 3 and round 4. The specific steps are shown in Table 6. The target values of control
parameters are shown in Tables 7 and 8, respectively.

Table 6. Specific steps of tensioning rounds 3 and 4.

Step Description Step Description

3-1 Saddles were pushed 0.3 cm toward
the mid-span. 3-9 Saddles were pushed 0.5 cm

toward the mid-span.
3-2 DS9, DS10, DS28, DS29 3-10 DS17, DS21

3-3 Saddles were pushed 0.8 cm toward
the mid-span. 3-11 Saddles were pushed 1.0 cm

toward the mid-span.
3-4 DS11, DS12, DS26, DS27 3-12 DS18, DS19, DS20

3-5 Saddles were pushed 1.4 cm toward
the mid-span. 4-1 Saddles were pushed 0.1 cm

toward the mid-span.
3-6 DS13, DS14, DS24, DS25 4-2 DS14, DS24

3-7 Saddles were pushed 1.6 cm toward
the mid-span. 4-3 Saddles were pushed 1.4 cm

toward the mid-span.
3-8 DS15, DS16, DS22, DS23 4-4 DS16, DS17, DS21, DS22

Table 7. Target values of the control parameters of tensioning round 3.

North Side South Side

Hanger P (kN) Ltd (m) Hanger P (kN) Ltd (m) Hanger P (kN) Ltd (m) Hanger P (kN) Ltd (m)

DS9-N 2850 0.327 DS20-N 4030 0.363 DS9-S 2850 0.343 DS20-S 4030 0.371
DS10-N 3010 0.341 DS21-N 4000 0.503 DS10-S 3010 0.354 DS21-S 4000 0.500
DS11-N 2650 0.345 DS22-N 4000 0.445 DS11-S 2650 0.350 DS22-S 4000 0.458
DS12-N 3620 0.318 DS23-N 3750 0.360 DS12-S 3620 0.349 DS23-S 3750 0.381
DS13-N 3050 0.325 DS24-N 4000 0.383 DS13-S 3050 0.350 DS24-S 4000 0.391
DS14-N 4000 0.357 DS25-N 3050 0.351 DS14-S 4000 0.377 DS25-S 3050 0.362
DS15-N 3750 0.335 DS26-N 3620 0.340 DS15-S 3750 0.359 DS26-S 3620 0.354
DS16-N 4000 0.410 DS27-N 2650 0.360 DS16-S 4000 0.449 DS27-S 2650 0.372
DS17-N 4000 0.479 DS28-N 3010 0.353 DS17-S 4000 0.496 DS28-S 3010 0.374
DS18-N 4030 0.359 DS29-N 2850 0.336 DS18-S 4030 0.368 DS29-S 2850 0.370
DS19-N 3180 0.358 —— —— —— DS19-S 3180 0.374 —— —— ——
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Table 8. Target values of the control parameters of tensioning round 4.

North Side South Side

Hanger P (kN) Ltd (m) Hanger P (kN) Ltd (m) Hanger P (kN) Ltd (m) Hanger P (kN) Ltd (m)

DS14-N 3120 0.333 DS21-N 3120 0.383 DS14-S 3120 0.353 DS21-S 3120 0.380
DS16-N 3120 0.334 DS22-N 3120 0.369 DS16-S 3120 0.373 DS22-S 3120 0.382
DS17-N 3120 0.359 DS24-N 3120 0.359 DS17-S 3120 0.376 DS24-S 3120 0.367

4.3.4. Partial Adjustment Stage

The internal forces of partial hangers were adjusted based on the measured hanger forces and the
actual remaining secondary dead loads. The specific step and hanger tensioning force Pij are shown in
Table 9. Then, the west and east main saddles were pushed toward the mid-span with the distances of
0.7 cm and 1.7 cm, respectively. The remaining secondary dead loads were applied.

Table 9. Specific step and control parameter of tensioning round 5.

Step North Side South Side

Hanger P (kN) Hanger P (kN) Hanger P (kN) Hanger P (kN)

5-1
B2 3380 B30 3400 N4 3080 N32 3080
B7 3500 B31 3500 N7 3380 N33 3080

5-2
B4 3140 B32 3140 N2 3370 —— ——
B5 3140 B33 3140 N10 3030 —— ——

B15 3060 —— —— N15 3060 —— ——

5-3 B34 3080 B36 3100 N1 3620 N37 3560

4.4. Verification of the Proposed Multiple-Control Method

When the errors of Ltd, Lsa, and P in each tensioning step were within their respective allowable
ranges. The measured tag line positons Ltd were compared with the target values. As shown in
Figure 18, taking the north hangers as examples. The errors of Ltd are within ±1.5 cm, which reflects
the accuracy of the proposed multiple-control method. In addition, the mutual check between the
multiple control parameters was realized during each tensioning step. The phenomenon of repeated
installation of tensioning equipment, if checking the tag line positons at the end of a hanger tensioning
round according to the traditional control method, was avoided.
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 Figure 19. Measured error of the final hanger force. Figure 20. Comparison of the final cable alignment. 
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Figure 18. Comparisons of the tag line positions of north hangers. (a) Tensioning round 1. (b) Tensioning
round 2. (c) Tensioning round 3. (d) Tensioning round 4.

5. Discussions on the Completion State

5.1. Measured Results of the Completion State

The measured errors of final hanger forces of the Hunan Road Bridge are shown in Figure 19.
Taking the north hangers as examples, the error ratios are within ±4%. The alignment comparisons
of north cable and main girder are shown in Figures 20 and 21, and the errors are within ±2 cm and
±1 cm, respectively. The measured cable forces at anchor ends are shown in Table 10. The error ratios
are within ±3%. The measured data reflect that the actual completion state of the Hunan Road Bridge
is in good agreement with the target state by adopting the proposed multiple-control method.
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Figure 21. Measured girder alignment at completion state and error.

Table 10. Comparison of cable force at completion state.

Location Cable Measured Value (kN) Target Value (kN) Error Ratio (%)

West anchor end
North cable 51763.156 52945.4 −2.22
South cable 54320.910 52951.5 2.59

East anchor end
North cable 51587.652 52966.3 −2.60
South cable 51585.725 52967.5 −2.61

5.2. Further Optimization Analysis of the Completion State

The targets of completion state control for concrete self-anchored suspension bridge include the
uniform cable force, smooth girder alignment, suitable pre-lifting amount of the girder, and pre-biased
amount of tower toward the side span, which considers the long-term concrete shrinkage and creep
effects. The maximum measured girder lifting amount of the Hunan Road Bridge at the completion
state was located in the middle of mid-span with the value of 0.013 m, with respect to the initial
installation state. The measured biased amount of towers toward the side span were 0.4 cm. For the
purpose of offsetting the adverse influences brought by the concrete shrinkage and creep effects during
long-term service life, the further optimization analysis of the completion state was conducted based
on the actual completion state. The optimized values of hanger force and girder lifting amount were
determined to provide appropriate feedback to the construction control process.

First, the predicted results of cable and girder displacements affected by long-term concrete
shrinkage and creep are investigated, as shown in Figures 22 and 23, respectively. The prediction
reliability was verified by comparing the predicted cable displacement of −0.020 m at DS19 after the
first operation year with the measured data of −0.018 m. The significant downward deformation of
cables at the middle mid-span will be caused by the movements of cable anchoring points at tower
tops toward the mid-span. The girder deflection at the mid-span will increase continually, and the
maximum is located in section CS5. The side-span girder will rise slightly. The structural alignment
evolutions present a change trend of increasing quickly first and then slowing down.

Then, the parametric analysis about the influence on the stress and geometry evolution of girder
brought by the final girder alignment was conducted. The global hanger forces were changed by
1% to 5% to provide different final girder geometries. The bridge completion state after equilibrium
analysis and the state evolution at mid-span girder section CS5 after 50 years are shown in Table 11.
The longitudinal stresses of the plate close to the first outer web were compared. The results show
that the compressive stresses of the top plate after 50 years will decrease in a safe range, and the
ones of the bottom plate will increase. The girder compressive stress can be effectively allocated by
increasing the pre-lifting amount of the girder at the mid-span. The adverse influences on the structural
safety brought by concrete shrinkage and creep can then be reduced. In addition, the adjustment of
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girder curvature should be conducted in a reasonable range to avoid the excessive bending moment in
the girder.
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Increasing
Percentage of
Hanger Force

Completion State after Equilibrium Analysis Girder State after 50 Years

Girder
Lifting

Amount (m)

Girder Longitudinal Stress
(MPa) Girder

Deflection (m)

Girder Longitudinal Stress
(MPa)

Top Plate Bottom Plate Top Plate Bottom Plate

0% 0.013 −5.410 −5.780 −0.087 −6.618 −2.171
1% 0.015 −5.322 −6.183 −0.087 −6.532 −2.569
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6. Conclusions

In this study, we focused on the determination and implementation methods of reasonable
completion state for the concrete self-anchored suspension bridge. The construction-control process
of the Hunan Road Bridge, which is the widest one among the similar bridges in China currently,
was analyzed by integrating the numerical simulation and field monitoring. Moreover, the long-term
structural changes affected by concrete shrinkage and creep were investigated. The further optimization
analyses of hanger forces were conducted based on the actual completion state. The significant
contributions of this study are summarized as follows.
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The calculation principles of the cable system was proposed based on the segmented catenary
theory, invariance principle of unstressed length, and prediction of concrete shrinkage and creep.
The cable analytic program (BNLAS SGKZ2000) and ANSYS spatial beam-type FE model were
integrated. The synthesis algorithm for determining a reasonable completion state was proposed.
The contact relationships between the cable and saddles during system transformation were well
simulated using the refined FE meshing method. The rigid arms were introduced to consider the
compressions of tower and girder caused by the cable force and concrete shrinkage and creep during
construction. Thus, the calculation accuracy of the FE model was in good agreement with the BNLAS
program. The cable alignments at a free cable state, system transformation condition, and completion
state were determined. In addition, the control parameters of cable erection were obtained, including the
pre-displacements of anchoring points and pre-lifting amounts of the main saddles. The whole-process
control of the cable system from the construction to the completion state was realized using the
proposed algorithm.

The multiple-control method for the whole process of system transformation and corresponding
control principles were proposed. The hanger tensioning force, exposed amount of hanger anchor cup,
and tag line position were chosen as the multi-control parameters, which were mutually checked during
each hanger tensioning step. The tag line position was calculated based on the hanger tensioning
forces of each step considering the elastic elongation of hanger. In addition, the system transformation
method based on the passive tensioning of the side span was adopted. The active tension process was
divided into four stages, including five tension rounds. The accuracies of the proposed multiple-control
method was verified by comparing the measured tag line positon in each tensioning step with the
target values, as well as the measured completion state. The tensioning error accumulations were
avoided basically. In addition, the phenomenon of repeated installation of equipment, if checking
the tag line positon after a hanger tensioning round, according to the traditional control method,
was avoided. Moreover, the total time used for the system transformation of Hunan Road Bridge
was 21 days, which reflects the efficiency of the proposed control method. This part of the research
work provides important references for the system transformation control of the similar self-anchored
suspension bridges.

The concrete shrinkage and creep effects during construction and operation periods were
considered to determine a reasonable completion state. According to the prediction results,
the positions of cable anchor points at tower tops and girder ends will move toward the mid-span.
Significant deflections of girder at the middle mid-span will be caused. The maximum measured
girder-lifting amount at the middle section under the actual completion state was 0.013 m. The target
hanger forces were further optimized based on the numerical simulations. A parametric study about
the influence on the stress and geometry evolution of the girder brought by the final girder alignment
after adjusting hanger forces was conducted. The results show that the long-term compressive
stress evolution of the girder was optimized through the appropriate adjustment of hanger force.
The optimized girder pre-lifting amount and hanger force were obtained to effectively offset the adverse
influences brought by the long-term concrete shrinkage and creep, which are the lessons learned from
this paper.
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