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Abstract: Bayesian estimation has been previously demonstrated as a viable method for developing
subject-specific vocal fold models from observations of the glottal area waveform. These prior efforts,
however, have been restricted to lumped-element fitting models and synthetic observation data.
The indirect relationship between the lumped-element parameters and physical tissue properties renders
extracting the latter from the former difficult. Herein we propose a finite element fitting model, which
treats the vocal folds as a viscoelastic deformable body comprised of three layers. Using the glottal
area waveforms generated by self-oscillating silicone vocal folds we directly estimate the elastic moduli,
density, and other material properties of the silicone folds using a Bayesian importance sampling
approach. Estimated material properties agree with the “ground truth” experimental values to within 3%
for most parameters. By considering cases with varying subglottal pressure and medial compression we
demonstrate that the finite element model coupled with Bayesian estimation is sufficiently sensitive to
distinguish between experimental configurations. Additional information not available experimentally,
namely, contact pressures, are extracted from the developed finite element models. The contact pressures
are found to increase with medial compression and subglottal pressure, in agreement with expectation.

Keywords: patient-specific modeling; silicone vocal fold models; Bayesian inverse analysis; finite
element analysis

1. Introduction

Numerical models have long been employed to better understand the complex physics involved in
human phonation. For example, reduced-order and finite element numerical models of the vocal folds
(VFs) can self-oscillate in a manner representative of actual VF kinematics during sustained vowels [1],
pitch glides [2], and, in a few cases, running speech [3]. Such models have explored a wide range of
phenomena relevant to normal and pathological phonation, including the impact of a posterior glottal
gap [4], the ventricular folds [5], phonation onset pressure [6], and the efficacy of various compensation
mechanisms for vocal hyperfunction [7,8].

Whereas the majority of modeling efforts in speech, to date, have employed models with general
population-based parameters to uncover the universal physical underpinnings of human phonation,
a few research teams have begun to explore the development of subject-specific numerical models for
phonation [9–13]. The dynamics of the VFs are sensitive to a variety of factors, including subglottal
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pressure [14], laryngeal muscle activation [15], and a posterior glottal gap [4], to name a few. These factors,
which can play a role in vocal hyperfunction [16] and other pathologies [17–20], can be a challenge to
observe clinically. Subject-specific models, on the other hand, are constructed based on measurements of
the subject through less challenging media, such as high speed videoendoscopy (HSV) [9,11,21] and offer
the potential to elucidate clinically opaque features and parameters, such as VF contact pressures.

In general, development of a subject-specific model entails estimation of numerical parameters
such that the model behavior “matches” some observed data from the individual of interest, such as
VF kinematics from HSV [9,11,21]. Specifically, numerical model parameters are sought such that
some model output(s) (e.g., the VF kinematics) best match the equivalent observation data from the
subject. This problem is ill-posed, thus necessitating inverse analysis techniques to determine the model
parameters [22]. To date, optimization [9,22], machine learning [23], and Bayesian [10,11,21] frameworks
have been developed to estimate VF model parameters.

Optimization-based approaches define a cost functional and employ optimization techniques to
determine the parameter values that minimize the functional. Döllinger et al. [22] was the first to
successfully use this approach, employing the Nelder-Mead algorithm to determine the vibrating masses,
spring stiffnesses, and subglottal pressure of a two mass VF model by minimizing the least-squares
error between specific Fourier coefficients of the measured VF trajectories and the simulated trajectories.
Genetic algorithms were subsequently employed to determine parameters of a two mass model that best
reproduced the trajectories from patients suffering from unilateral VF paralysis [16]. Inverse procedures
have also been used to classify disordered versus healthy VF oscillations. Wurzbacher et al. [24] employed
simulated annealing to minimize the Euclidean distance between the model and experimental vocal fold
trajectories to distinguish between normal and dysphonic subjects during sustained vowel phonation and
a pitch glide. Very recently, deep learning tools have been employed for subject-specific modeling [23].
A long short-term memory network, trained on simulated data, was used to estimate the subglottal
pressure from ex vivo recordings of porcine vocal folds. They were able to produce accurate estimates of
the subglottal pressure with very low online computational costs.

The vast majority of these subject-specific VF modeling efforts, and all of those mentioned above,
have used lumped-element representations of the VFs and employed inverse methods to determine the
reduced-order parameters. Of noted exception are the efforts by Xue et al. [12] and Chang et al. [13]
that employ finite element model representations of the VFs. Xue et al. used computed tomography
to reconstruct the larynx of a subject in a computational domain. The external geometry of the
VFs was obtained from the scan, whereas the VF layers and material properties were assumed from
population-based histological data. Chang et al. constructed a laryngeal model of a rabbit from magnetic
resonance images. Two VF layers were observed in the scans, leading to a body-cover-type construction
wherein the densities and Poisson ratios were assumed a priori. The elastic moduli of the layers were
determined by an informal optimization that attempted to match the maximum glottal width and
fundamental frequency of the model with HSV measurements.

In contrast to optimization-based and machine learning methods that treat estimated model
parameters as deterministic, the Bayesian framework treats all parameters and measurements as random
variables. Such a framework has the benefit of elucidating the propagation of measurement uncertainties
to the model parameters and outputs. Uncertainty estimates are powerful as they provide additional
information about the fidelity of the model outputs, which are expected to be of value for clinical
decisions. Cataldo et al. [10] introduced the Bayesian framework to estimate stationary (non-time-varying)
parameters of a two mass VF model using an importance sampling approach. This work was extended
to estimate non-stationary parameters of a three mass body-cover model using both a particle filter [11]
and an extended Kalman filter [21]. The Bayesian framework has, thus far, been demonstrated using
simulated observation data from a reduced-order VF model, wherein the ground truth was known a
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priori, to estimate the parameters of a different reduced-order VF fitting model. The similarity between the
generation and fitting models enabled direct assessment of the performance of the Bayesian framework.
Herein we build on the Bayesian inference framework for developing subject-specific VF models by:
(i) considering real HSV recordings of self-oscillating silicone VFs as the observation data; and, for the
first time, (ii) employing a two-dimensional (2D) finite element (FE) model of the VFs as the fitting
model. These two considerations address several limitations in prior Bayesian estimation-based inference
studies applied to voiced speech, while simultaneously extending the methodology to more complex VF
representations. Specifically, actual experimental data, with its inherent uncertainties, are used as the
observations. Furthermore, by employing a FE representation of the VFs, the estimated FE parameters
have direct relation to the material properties of the silicone VF models, reducing the layer of abstraction
associated with reduced-order models. By using silicone VFs to generate the observation data, however,
the “ground truth” is still available to assess the performance (estimated properties and their uncertainties)
of the estimation procedure. Lastly, the use of experimental data provides a more realistic test bed due to
the dynamical differences between the data source and the fitting model.

We consider two different VF base configurations, with and without medial compression, as well
as multiple subglottal pressures. Exploring medial compression offers insights into how FE models
and Bayesian estimation can incorporate VF posturing for subject-specific models, while varying
subglottal pressure affords a mechanism for evaluating how well Bayesian inference, when accounting for
measurement uncertainty, can differentiate between phonation conditions.

The paper is structured as follows: Section 2 discusses the silicone VFs and experimental conditions
used during collection of the data sets and handling of the HSV. Respectively, Sections 3 and 4 briefly
discuss the mathematical model and estimation procedure used in the analysis. Section 5 presents the
results of the estimates and provides discussion of the findings. Additionally, this section examines how the
numerical parameters, including the triangulation density and step size in time, effect the subject-specific
estimates. The manuscripts concludes with Section 6.

2. Experimental Setup and Data Collection

We employ the measured kinematics of silicone VFs undergoing self-sustained oscillations as a proxy
for clinical HSV recordings. Silicone VFs have been shown to exhibit similar kinematics to real VFs [25],
and thus serve as a reasonable test platform for exploring the viability of Bayesian estimation for producing
subject-specific models from clinical data. Furthermore, the known histology and material properties of
the silicone VFs provide “ground truth” data with which to compare property estimates. This section
discusses the details of the silicone VF experiments, including the manufacturing process used to develop
the silicone VFs, the experimental procedures used to capture the HSV, and extraction of the glottal area
waveform (GAW) from the HSV, which will serve as the observation data in the inverse analysis.

2.1. Silicone Vocal Fold Models

Silicone VFs are manufactured to reflect the physiological VF structure. The geometry, shown in
Figure 1a, is based on the M5 geometry [25] and comprises four layers to reflect the layered VF structure;
namely, the body, ligament, superficial lamina propria (SLP), and epithelium. Additionally, a fiber is
included in the middle of the ligament layer to control anterior-posterior stiffness. Each VF has an
anterior-posterior length of 17.00 mm, inferior-superior depth of 10.51 mm, and a medial-lateral height
of 8.40 mm.

The manufacturing process of each silicone VF follows previous approaches [25], where the specific
ratios of part A, B, and thinner used to manufacture each layer of the VFs, and the approximate resulting
value of the elastic modulus, can be found in Table 1. The same silicone VF models were used for all tests.
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(a) (b)

Figure 1. (a) Model of the geometry of the silicone vocal folds; and (b) image of the experimental
flow facility.

Table 1. Different mixture ratios of silicone and their corresponding Young’s moduli. A ratio of 1:1:x means
that the layer was formed by mixing 1 part A, 1 part B, and x parts thinner by weight.

VF Layer Material Ratio (A-B-Thinner) Young’s Modulus (kPa)

Body Ecoflex 1-1-1 11.8
Ligament Ecoflex 1-1-4 2

SLP Ecoflex 1-1-6 0.6
Epithelium Dragon Skin 1-1-1 45

2.2. Laryngeal Flow Facility

The synthetic VFs were mounted in a custom laryngeal flow facility driven by compressed air
(∼550 kPa) that was regulated down to 17.0 kPa via a Siemens 40-2 pressure regulator. The flow then
passed through a Dwyer RMC 103-SSV flow meter that measured the volumetric flow rate and further
regulated the flow before entering the vocal tract test facility shown in Figure 1b. The facility was
comprised of a model lung plenum, which consisted of a 0.03 m3 cylindrical chamber that was acoustically
treated on the inside to reduce acoustic reflections. The plenum exhausted to a square tube, representing
the trachea, with a cross-sectional area of 4.94 cm2 and 48.0 cm in length. The subglottal pressure was
measured with a flush-mounted Kulite ET-3DC pressure transducer in the wall of the trachea tube, 3.8 cm
upstream of the glottal exit.

Two square mounting brackets that housed the synthetic VF models were attached at the exit plate
of the tracheal tube. An inset within the tracheal tube transitioned the interior dimensions of the square
tracheal tube down to 1.7 cm× 1.7 cm over a length of 2.5 cm. While the medial-lateral dimension of each
VF is 8.4 mm, an inset depth of 7.6 mm was machined into each opposing mounting bracket to hold the
VFs. In this manner, the medial surface extended above the contacting surface of each bracket by 0.8 mm,
such that when the opposing VFs were brought into contact the amount of medial compression could
be adjusted.

Two data sets were collected. The first positioned the VFs in a natural, uncompressed position such
that there was no medial compression. The second incorporated a 0.8 mm shim between the opposing
brackets when the medial surfaces were positioned in contact. This resulted in each VF being compressed
by 0.4 mm in the medial-lateral direction. Anterior–posterior tensioning was applied in all cases by pulling
on the string embedded in the models with a constant force of 0.3 N. Note that in this study there was no
supraglottal tract, see Figure 1b.
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High-speed video of the VF motion was acquired using an 8-bit IDT MotionPro X3 PLUS camera
equipped with an Elicar V-HQ Macro 90 mm lens. In this study, an array size of 484× 504 pixels was used
with a frame rate of 2000 fps. The spatial resolution of the videos was 24.4 pixels/mm, corresponding to a
physical area for each pixel of 1.680× 10−3 mm2.

For the case without medial compression, the VFs were driven with a subglottal pressure of 1.00 kPa.
With medial compression, data were collected for subglottal pressures of 0.91, 1.00, 1.09, and 1.18 kPa,
yielding average flow rates of 236, 260, 291, and 307 mL/s, respectively. HSV was recorded for 1 s in each
configuration, from which a 300 ms segment was used to extract the GAW using segmentation [26].

3. Finite Element Model

Estimates of the silicone VF material properties were computed by matching the simulated motion
with the kinematics captured by the HSV. To simulate the dynamics we employed a FE representation
of the silicone VFs based upon the model developed by Alipour et al. [27], where the displacement field
of a transversely isotropic linear medium is approximated using a FE basis defined by piece-wise linear
functions over triangular elements. The FE formulation, which is functionally equivalent to Alipour
et al. [27], is briefly described in this section.

3.1. Mathematical Model

Small deformations of the silicone VFs can be modeled using a displacement field u, which describes
the displacement of two linear transversely isotropic elastic bodies [27]. The VFs were oriented such that
the medial-lateral direction defines the x-axis, the y-axis is in the anterior-posterior direction, and the
z-axis is positive in the superior direction. As a simplification, the dynamics of the two VFs are treated as
symmetric and displacement is treated as uniform along the length of the VFs; as such, the displacement
field does not vary along the y-axis, i.e.,

u = u(x, t) = ux(x, t)î + uz(x, t) ĵ, (1)

where x = [x, z]T is a vector of planar spatial coordinates. This reduction of physical dimension greatly
reduces the computational cost of the FE model.

Given a deformation with displacement field u and an arbitrary variation uδ, the virtual work
principle gives [28] ∫

Ω

(
uδ
)T

ρ(x)ü dV +
∫

Ω
σσσ(u) : εεε(uδ) dV =

∫
Γ

(
uδ
)T

fs dS, (2)

where Ω and Γ are the 2D VF domain and its boundary, respectively, ρ is the material density, σσσ and εεε are
the stress and strain tensors, and fs is the surface force, in this case arising from aerodynamics.

Since the vocal folds are modeled as isotropic in the xz-plane, Hooke’s law gives [28]

σσσ(u) : εεε(uδ) = σ̃σσ(u)Tε̃εε(uδ) = ε̃εε(uδ)Tσ̃σσ(u) = ε̃εε(uδ)TCε̃εε(u), (3)

where ε̃εε(u) =
[

∂ux
∂x , ∂uz

∂z , ∂uz
∂x + ∂ux

∂z

]T
and C is a positive definite matrix given by

C(E, ν) =

λ + 2µ λ 0
λ λ + 2µ 0
0 0 µ

 = µ(E, ν)


2(1−ν)
1−2ν

2ν
(1−2ν)

0
2ν

(1−2ν)
2(1−ν)
1−2ν 0

0 0 1

 . (4)
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Here λ and µ are the Lamé parameters that are related to the Young’s modulus E and Poisson’s ratio ν via

µ(E, ν) =
E

2(1 + ν)
, λ(E, ν) =

νE
(1 + ν)(1− 2ν)

. (5)

Note that for C(E, ν) to be positive definite requires E > 0 and −1 < ν < 1/2.
Finally, following Alipour et al. [27], the viscous damping experienced by the VFs is modeled by

replacing the shear modulus, µ(E, ν), with µ + ηd/dt, where η is viscosity.

3.2. Finite Element Approximation

The displacement field is approximated with a linear combination of piece-wise linear basis functions
{φi}N

i=1, given by

u(x, t) ≈
(

∑N
i=1 αi(t)φi(x)

∑N
i=1 βi(t)φi(x)

)
(6)

where each φi(x) is defined over a set of connected elements that approximate the geometry of the VFs.
The FE approximation is then found by substituting this approximation into Equation (2), giving

Mθ̈θθ + Dθ̇θθ + Kθθθ = F, (7)

where

M =
∫

Ω
ρΦΦΦTΦΦΦ dV, D =

∫
Ω

ηΦΦΦT
d SΦΦΦd dV, K =

∫
Ω

ΦΦΦT
d CΦΦΦd dV, and F =

∫
Γ

ΦΦΦTfs dS. (8)

Here,

θθθ(t) = [α1(t), . . . αN(t), β1(t), . . . βN(t)]
T , (9)

ΦΦΦ(x) =

(
φ1(x) . . . φN(x) 0 . . . 0

0 . . . 0 φ1(x) . . . φN(x)

)
, (10)

ΦΦΦd(x) =

∂xφ1(x) . . . ∂xφN(x) 0 . . . 0
0 . . . 0 ∂zφ1(x) . . . ∂zφN(x)

∂zφ1(x) . . . ∂zφN(x) ∂xφ1(x) . . . ∂xφN(x)

 , (11)

and integration is interpreted element wise. The computation of M, D, and K now follow the standard
finite element construction [28].

The boundary of the VFs was split into two sections: (i) a section where external forces are applied,
denoted Γfree, and (ii) a section where the nodes do not move, which represents the walls of the trachea,
denoted Γfixed. The vector F is the nodal force vector and is the result of the transverse surface force. In this
work aerodynamic pressure is treated as the only stress leading to an external force on the surface nodes.
The pressure at each node along the free surface is modeled using a one-dimensional Bernoulli flow model,
which gives

p(s, t) =

 psub − (psub − psup)
(

Asep(t)
A(s,t)

)2
, A(s, t) < Asep

psup, A(s, t) ≥ Asep

(12)
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where s ∈ Γfree, psub and psup are the subglottal and supraglottal pressures, respectively, Amin(t) is the
minimum glottal area at time t, A(s, t) is the area at location s at time t, and Asep = 1.3Amin(t) is the glottal
area at the location of flow separation [29,30].

Vocal fold collision is modeled by restricting the x-coordinate of each node from crossing the midline.
Should a time step result in a node crossing the midline, its x-coordinate is forced to the midline. The force
required to restrict the node to the midline is directly the contact force. Contact pressure can be obtained
by dividing by the edge area (distance between the the node and its neighbor).

Finally, time integration was achieved through the finite differencing scheme set out by
Alipour et al. [27]. The time integration gives the displacement field over time, yielding a position
time series for each node in the finite element mesh. From this the glottal width, equivalent to what can be
observed with HSV; Wgl is given by Wgl(t) = 2 min{x1(t), x2(t), . . . , xN(t)}, where N is the number of
nodes, and xi(t) represents the x-coordinate position time series the of the ith node. Thus the simulated
glottal area, As, can be computed as As(t) = `gl ×Wgl(t), where `gl is the length of the glottis, a constant
in the two-dimensional approximation employed herein.

4. Estimation of VF Material Properties

The FE model embeds the material properties (e.g., E, ρ, etc.) that we aim to directly estimate via
Bayesian inference. This section details the parameterization of the FE model and the Bayesian inference
procedure employed herein.

4.1. Parameterization of the FE Model

The silicone VFs were numerically modeled with three layers: the body, cover (which combines the
SLP and epithelium), and ligament. Employing the same dimensions as the silicone VFs (see Section 2.1),
a FE representation was generated comprising 205 triangular elements and 120 nodes, see Figure 2a.
The sensitivity of the results to the triangularization is discussed in Section 5.3.-8.6 0 8.6-10.7-5.050.6 8.4 mm

(a)

-8.6 0 8.6-10.7-5.050.6
7.6 mm

(b)

Figure 2. (a) Finite element triangulation used to simulate the silicone vocal folds; and (b) mesh
deformation occurring as a result of medial compression. Red region: body; green region: ligament;
and blue region: cover.

All material properties are modeled as uniform across all layers except for the Young’s modulus,
which differs from layer to layer, but is constant within a layer. As a result, the FE model is parameterized
by: ρ, η, E (for each layer), ν, and psub and psup. The density, viscosity, Young’s modulus for each
layer, and subglottal pressure were estimated while all other parameters were treated as fixed and
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known. Specifically, we assumed ν = 0.4995 [31] and psup = 0 Pa. This parameterization results in low
dimensionality for the estimation problem while still employing a high degree-of-freedom VF model.

As discussed in Section 2.2, medial compression of the silicone VFs is considered. Medial compression
pre-stresses the VFs introducing more initial potential energy into the system. The compression is modeled
via an initial position parameter, x0, which represents the maximum value that the x coordinate of
any node can attain. As a result, having x0 = 8.4 mm indicates no medial compression and any value
0 ≤ x0 < 8.4 mm indicates the presences of medial compression, as shown in Figure 2. The initial
displacement of each node θθθ0 in cases involving medial compression was calculated from Equation (7)
with time derivatives set to zero. This equation was solved iteratively by adjusting the x coordinate of the
nodes in steps of 10−4 mm while enforcing that no node cross the midline.

The FE simulations used a time step of h = 0.05 ms [27], which is equivalent to a frame rate of
20,000 fps. Since the HSV was captured at 2000 fps, the simulated signal was downsampled to match that
of the HSV. The first 250 ms of the simulated GAW were trimmed to ensure that the numerical model had
reached stable oscillations and to avoid any initial numerical transients. This generally resulted in a phase
shift between the measured and simulated signals which was corrected by cross correlating the first two
cycles of the signals and phase shifting to align the remainder of the signals.

4.2. Bayesian Inference

The Bayesian framework for parameter inference seeks a joint probability distribution that represents
the probability of all potential values of the parameters of interest, χ. Such a density is found through
Bayes equation [32]

π(χ|y) =
π(y|χ)πpri(χ)

π(y)
∝ π(y|χ)πpri(χ), (13)

where π(χ|y) is the posterior probability density function, which contains all probabilistic information
about χ given observed measurements y. The density πpri(χ) is the “prior” probability density, π(y|χ) is
the “likelihood”, and π(y) is the “evidence”. The prior contains known or expected statistical properties
of the parameters based on all knowledge available prior to obtaining the measurements. For instance,
if subglottal pressure is a model parameter to be inferred, it is known ahead of time that the value cannot
be negative, and is likely within a specified bound. The likelihood quantifies the probability of an observed
measurement occurring given fixed parameter values; that is, given a particular model with set parameters,
what is the likelihood that the measured data would be observed. Lastly, the evidence is a normalization
constant that ensures the Law of Total Probability is satisfied.

In the present work, the importance sampling approach is used due to the computational
complexity of the model [33]. Such approaches have been successfully used previously for the study
of phonation [10,11,34]. The fundamental premise of importance sampling is that certain values of the
inputs are more important to the parameter being estimated than others. So a greater weight, which
we hereafter refer to as an importance weight, is allocated to those regions in the parameter space that
exhibit a better fit to the measurements. In particular, random samples of χ are drawn from some
proposal distribution, and the resulting observations are simulated using the randomly drawn parameters.
The likelihood distribution is then used to probabilistically quantify the goodness of fit to the measured
data, from which an importance weight is allocated. When a sufficiently large number of random draws
have been computed, a new ensemble is constructed by sampling from the random draws in proportion to
their computed importance weight. This can be summarized as follows:

• Initialization: generate an ensemble {χ̃(`)}N
`=1 of N random samples from the proposal distribution

π0(χ).
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• Update: for each of the drawn samples, calculate the relative likelihood and normalize to get the
importance weight for that sample

w(`) =
1

W
π(y|χ̃(`)), W =

N

∑
`=1

π(y|χ̃(`)). (14)

• Resample: generate another ensemble {χ(`)}N
`=1 by sampling each χ̃` with probability w`.

If the proposal distribution is chosen to be the prior density, the final resampled ensemble converges
in distribution to the posterior [35]. As a result, the resampled ensemble can then be used to compute
sample-based point and spread estimates of the posterior. Herein, the sampling ensembles consist of 50,000
random draws from the prior distributions, which treats each parameter as independent. The sample
mean of each ensemble is used to estimate the material properties and the sample standard deviation
serves as an uncertainty estimate. The sensitivity of the results to the number of samples is considered in
Section 5.3.

The above algorithm defines importance weights in terms of the likelihood density π(y|χ̃), which
is determined by the specific error model [33]. In particular, if errors are modeled as unbiased additive
normal errors the likelihood density is given by

π(y|θ) ∝ exp
(
−1
2σ2

e
‖Am −As‖2

)
, (15)

where σe is the expected standard deviation of the measurement error, and ‖Am −As‖2 is the squared
two-norm of the difference between the vectors of the measured and simulated GAWs, respectively. In this
work we choose σe = 1 mm2; this assumes a noise level of around 6%, which is quite large. Such a large
noise level was chosen to “whiten” the likelihood to compensate for any model errors that are present [33].

The prior distribution for all estimated parameters were assumed uniform so as to impart the least
information into the posterior. Table 2 lists the parameters to be estimated, their experimental “ground
truth” values (when known), and the bounds of the uniform prior distribution. The specific bounds for
these priors were selected to ensure that the priors sampled a sufficiently wide range of combinations
of the parameters and were selected in an ad hoc manner based on an amplification of the expected
uncertainty in the experimental value or expectations about that value. We note that a more informative
prior distribution (e.g., a Normal distribution) will generally improve estimates and reduce uncertainties,
see [36] for more details of how different priors impact estimates.

Table 2. List of the the experimental values and prior distributions used for the estimated parameters.
The distribution bounds are the bounds of the employed uniform prior distribution (lower bound,
upper bound).

Ebdy Ecvr Elig psub ρ η x0
(kPa) (Pa) (kPa) (Pa) (kg/m3) (Poise) (mm)

Experimental Value 11.8 600 2 1000 1049.75 - -
Distribution Bounds (9, 15) (250, 950) (0.5, 3) (400, 1800) (950, 1200) (1, 7) (7.4, 8.4)

5. Results and Discussion

Considering the case without medial compression as an exemplar, the estimated material properties
from the Bayesian inferences are presented in Table 3. Overall, the estimated parameters show good
agreement with the “ground truth” experimental values; the maximum discrepancy between the estimates
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and the experimental values occurs with the Young’s modulus of the ligament with a 9.6% difference.
We note that the experimental values, while considered the “ground truth”, are themselves approximate
values estimated from the silicone mixture fractions.

Table 3. Material property estimates for the case without medial compression.

Ebdy Ecvr Elig psub ρ η

(kPa) (Pa) (kPa) (Pa) (kg/m3) (Poise)

Experimental Value 11.8 600 2 1000 1049 -

Estimated Value 12.15 636.2 1.808 989.9 1051 3.079

Standard Deviation as a
percentage of the Estimate 3.19% 3.35% 8.63% 3.21% 0.31% 3.48%

We observe that Ebdy and Ecvr are over-estimated while psub is under-estimated when compared with
the experimental values. The under-estimation of subglottal pressure is likely due to the simplified fluids
model being used resulting in high nodal pressures. Over-estimating Young’s modulus of the cover is
likely due to the lack of an epithelium in the FE model. The epithelium in the silicone VFs is extremely
thin, but has a high Young’s modulus (45 kPa). As a result it is likely that the estimate for Ecvr is slightly
elevated to compensate. It is unclear why the estimate for the body is consistently higher than expected,
but may be related with the under-estimation of Elig. An important observation, however, is that all of the
experimental values fall within two standard deviations of the estimated values. This indicates that the use
of a FE model of the VFs is statistically capable of inferring accurate estimates of the material properties
from a GAW. The relative uncertainty (standard deviation divided by the estimated value) shows that
all estimates except for the Young’s modulus of the ligament have uncertainties of approximately 3%;
the Young’s modulus of the ligament has an 8.6% level of uncertainty.

The relatively large bias and uncertainty for the ligament stiffness in comparison with the other
parameters potentially results from the comparative insensitivity of the FE kinematics to this parameter.
The ligament is a small internal region of the geometry and as a result has less impact on the large scale
kinematics compared with the body and cover layers. Since Elig is the only parameter defined in this
region, a range of values are likely to generate similar GAWs, and any error in the estimate of Elig can be
compensated for by slight adjustments to Ebdy and/or Ecvr. Despite the modest difficulty in estimating
this parameter, overall Bayesian inference is able to accurately estimate the VF material properties from
HSV data alone, presuming that the histology of the folds are known a priori.

Figure 3 compares the kinematics of the FE model employing the estimated material properties
from Table 3 with the HSV over a single vibratory cycle. The FE model captures the silicone VF motion
well, including the mucosal wave and the pronounced inferior-superior motion of the folds (see the third
column in Figure 3). The fourth column highlights that closure of the FE model does not necessarily always
correspond with closure of the silicone VFs.
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Figure 3. Kinematics of the FE model in comparison with the observed high speed videoendoscopy
(HSV) for the case with no medial compression (psub = 1 kPa) at several time points throughout a single
oscillation cycle.

The GAW extracted from the FE model and the corresponding HSV for the no medial compression
case is presented in Figure 4. As suggested by the fourth column of Figure 3, the FE model closes (GAW
reaches zero) before the silicone VFs close. In fact, small openings along the span of the silicone VFs exist
during the “closed” phase, as suggested by Figure 2a. Overall, however, the simulated GAW fits the
observed data well, with the measured GAW falling within the estimated uncertainty bounds the majority
of the time. There are a few persistent mismatches, such as the small peak immediately after opening.
Such errors are likely to be model errors induced by approximations, including the use of a simplified 2D
approximation of the VFs.
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Figure 4. Comparison of the glottal area waveforms extracted from the FE model and the HSV for the case
with no medial compression (psub = 1 kPa). Blue dashed line: HSV; red solid line: FE model; orange solid
lines: uncertainty bounds from the FE estimate.
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5.1. Effect of Medial Compression

As discussed in Section 2.1, HSV was captured with and without medial compression for psub = 1 kPa.
Since it was difficult to measure the degree of medial compression experimentally, the actual pre-stress is
highly uncertain. As such, the initial position parameter x0 in the FE model is included as an estimated
parameter for both cases.

Table 4 presents the estimated material properties for both medial compression cases. The estimated
properties (excepting x0) agree well with each other and with the “ground truth” values. This is
encouraging in two respects: the same silicone VFs were used in both cases, and the pre-stress in the
medial compression case is captured in x0 and thus does not appreciably bias the stiffness estimates.
However, the higher parameter uncertainties for the medial compression case is very likely due to the fact
that the pre-stress associated with medial compression can be approximated by varying other stiffness
parameters. This yields more overall uncertainty in the results, as other parameter combinations can
explain the observed data.

The estimates for the initial position parameter, x0, are statistically different between the two cases.
When there is no medial compression the initial position is estimated to be 8.39 mm (8.4 mm corresponds
to zero compression, see Figure 2a); with compression, x0 is estimated to be 8.27 mm. This 0.12 mm
difference in the estimates is more than double the sum of the two estimated standard deviations, with a
t-value of 3.67, indicating that the FE model was capable of distinguishing between the experimental
configurations. This does differ from the 0.4 mm shim placed experimentally to produce the medial
compression, though again, the actual degree of experimental medial compression was very difficult
to ascertain.

Comparing the case without medial compression with the results in Table 3 shows that the
uncertainties in the estimated parameters are larger in the present case despite using the same observation
data. By including the extra fitting parameter, x0, the estimated uncertainties increase due to the higher
dimensionality (more parameters being fit given the same input data). That is, with the addition of x0

as a parameter, there is now an alternative pathway to influence the energy in the system. That said,
the uncertainties in both estimates are large enough and the estimated values are similar enough that the
two data sets cannot be distinguished statistically.

Table 4. Estimates and the associated uncertainties as a percentage of the estimate values (in brackets)
for material properties of the silicone vocal folds and initial position for cases with and without medial
compression (psub = 1 kPa).

Ebdy Ecvr Elig psub ρ η x0
Data Set (kPa) (Pa) (kPa) (Pa) (kg/m3) (Poise) (mm)

Experimental Value 11.8 600 2 1,000 1049 - -

Without Medial Compression 12.32 632.1 1.807 987.7 1051 2.981 8.39
(3.96%) (3.53%) (9.74%) (3.98%) (0.25%) (4.66%) (0.38%)

With Medial Compression 12.28 629.8 1.842 991.9 1051 3.11 8.27
(4.30%) (4.1%) (12.16%) (4.536%) (0.26%) (4.66%) (0.30%)

Figure 5 presents the measured and estimated GAWs for the two medial compression cases, wherein
the FE models employ the material properties given in Table 4. Both estimates fit the data reasonably well
given the simplified FE model being used. The open quotient and speed quotients are both lower for
the FE models, with the effect more pronounced for the case with medial compression. This results in a
more peaked GAW in comparison with the HSV. The case without medial compression exhibits larger
maximum glottal area, however the maximum contact pressure experienced during collision in the case
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with compression is 18% higher, on average, due to the pre-stress of the system (825.7± 58.6 Pa versus
665.0± 53.1 Pa).
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Figure 5. The glottal area waveform extracted from HSV of self-oscillating silicone vocal folds at psub =

1.00 kPa (a) without medial compression and (b) with medial compression. Blue dashed line: HSV; red
solid line: FE model; orange solid lines: uncertainty bounds from the FE estimate.

5.2. Distinguishing between Model Configurations

As the eventual goal of this research is patient-specific modeling, we wish to investigate whether the
FE model is sufficiently sensitive and if HSV data provide enough information to distinguish between
similar experimental configurations. As a first order exploration we consider varying subglottal pressures
for silicone VFs with medial compression. As discussed in Section 2.1, the pressures considered range
from 0.91 to 1.18 kPa.

The fits to each GAW are shown in Figure 6 and the resulting estimates of the degree of medial
compression, along with the other material properties, are shown in Table 5. Similar to Figure 5, the fits are
again reasonable given the simplified model being used. As the subglottal pressure increases, so too does
the maximum glottal area, as expected; this increase is captured by the FE model. As with the previous
comparison, the open quotient and speed quotient are both lower for the FE model, though the difference
decreases with increasing subglottal pressure.
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Figure 6. Comparison on the glottal area waveforms extracted from HSV and the FE predictions
from the fitted material properties for (a) psub = 0.91, kPa (b) psub = 1.00 kPa, (c) psub = 1.09 kPa,
and (d) psub = 1.18 kPa. Blue dashed line: HSV; red solid line: FE model; orange solid lines: uncertainty
bounds from the FE estimate.

As shown in Table 5, all experimental values fall within two standard deviations of the estimated
values; furthermore, the viscosity is estimated to be approximately 3 Poise, which is consistent with the
previous results. The estimated medial compression, x0, varies somewhat from case to case, but all values
are within two standard deviations of one another, indicating statistical consistency. Overall, comparing
the estimates in Tables 3–5, we find that the estimated material properties are quite consistent across all
cases studied, engendering confidence in the method.

Table 5. Material properties estimates for varying subglottal pressures with medial compression.
The associated estimate uncertainties as a percentage of the estimate values are in brackets.

psub Ebdy Ecvr Elig psub ρ η x0
(kPa) (kPa) (Pa) (kPa) (Pa) (kg/m3) (Poise) (mm)

0.91 12.38 643.0 2.375 901.2 1048 2.98 8.29
(4.31%) (6.22%) (12.67%) (6.16%) (0.28%) (6.28%) (0.37%)

1.00 12.28 629.8 1.842 991.9 1051 3.11 8.27
(4.3%) (4.1%) (12.16%) (4.53%) (0.26%) (4.66%) (0.30%)

1.09 12.15 635.1 1.858 1062 1047 3.01 8.33
(2.27%) (3.01%) (10.39%) (2.89%) (0.16%) (4.45%) (0.28%)

1.18 12.25 639.6 2.098 1164 1049 3.03 8.32
(2.07%) (2.74%) (8.1%) (2.43%) (0.15%) (3.86%) (0.22%)
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Considering the uncertainty in the estimates, we see that as the subglottal pressure increases its
uncertainty decreases. As the variance of the measurement noise is treated as fixed at 1 mm2 in all
estimates, this decrease in uncertainty is not due to a decrease in measurement uncertainty. Furthermore,
the same prior distributions are used in all cases. Hence, this decrease in uncertainty is due to an increase
in sensitivity of the model, which could be due to the larger glottal width having fewer parameter
combinations that are capable of matching the data. Alternatively, the change in uncertainty could be
due to the pre-stress model. The estimates computed for psub = 1.09 kPa and psub = 1.18 kPa have
x0 > 8.3 mm, whereas the other two estimates have x0 < 8.3 mm; in addition, there is a marked decrease
in the uncertainties in x0 as psub increases. This could indicate that a higher level of VF compression results
in a model with lower sensitivity to the parameters. That is, the dynamics may be more influenced by
pre-stress at higher subglottal pressures.

Overall, the consistency in the material property estimates and the reasonably low relative uncertainty
in psub indicates that the FE model is capable of distinguishing between operational conditions. In pairwise
t-tests of the four estimates only two pairs fail to reject the hypothesis of unique data sets (95% confidence);
those pairs are psub = 0.91 kPa versus 1.00 kPa and psub = 1.00 kPa versus 1.09 kPa. In these two pairs
there are small changes in the experimental subglottal pressures (0.09 kPa) and similar fundamental
frequencies. Interestingly, there is significant difference between the two cases with the highest subglottal
pressures, despite also only differing by 0.09 kPa in line with the decreased uncertainty in subglottal
pressure at these conditions. We note there is a more marked difference between fundamental frequencies
in these cases.

For further validation we compare the volumetric flow rate, Q, estimated from the model with the
experimentally measured values; volumetric flow rate was not included in the estimation process and
thus provides an independent measure for method/model validation. Table 6 compares the estimated
and experimentally measured values. The estimated flow rate is derived directly from the Bernoulli

flow model embedded in the FE model (see Section 3) as Q(t) = 1.3Amin(t)
√

2$−1(psub − psup) where

$ = 1.14 kg m−3 is the density of air. As can be seen in the table, the estimated values generally agree
well with, but tend to slightly over-predict, the experimentally measured values. Excepting for the case of
psub = 1.18 kPa, the estimated values are all within one standard deviation of the measurements.

Table 6. Experimental and estimated mean volumetric flow rates along with a measure of uncertainty in
the form of a standard deviation as a percentage of the estimated value. Data are all in mL/s.

psub (kPa) 0.91 1.00 1.09 1.18

Experimental 236 260 291 307
Estimated 242.5 272.2 301.4 361.6

Uncertainty 8.29% 7.02% t6.14% 4.87%

With the FE models developed for the four cases and validated with an independent measure (Q),
an additional parameter is explored that is not available experimentally. Table 7 presents the average
mean and maximum contact pressures experienced during collisions for the four subglottal pressures.
The contact pressures increase with increasing subglottal pressure, which qualitatively agrees with previous
studies [37]. Excepting for the psub = 1.18 kPa case, the contact pressures are all less than the subglottal
pressure. The silicone VFs employed in this study qualitatively do not appear to have vigorous contact
when self-oscillating, and as such, the contact pressures may indeed be less than the subglottal pressure.
The outlier in the estimated pressure data is the highest subglottal pressure, which exhibits mean and
maximum contact pressures well above the subglottal pressure. This is also the case that predicted a
volumetric flow rate well above the measured value, suggesting that this model is less reliable. Interestingly,
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this is the case that had the lowest material property uncertainties. It is likely that the poor agreement in Q,
and the exceedingly high contact pressures for this case, are a result of more complex vibratory patterns
for the silicone VFs at this higher subglottal pressure that are not captured well with the simplified 2D FE
model. This suggests that additional measures may be required in the estimation process to generate an
accurate model for this case.

Table 7. Estimated average maximum and mean contact pressures along with a measure of uncertainty in
the form of a standard deviation as a percentage of the mean estimated value for the cases with medial
compression. All data are in (Pa).

psub (kPa) 0.91 1.00 1.09 1.18

Maximum 405.8 825.7 1032.8 2000.9
Mean 246.5 475.8 662.6 1469.8

Uncertainty 13.87% 12.32% 10.14% 6.67%

5.3. Sensitivity Analysis

The estimates presented in Section 5 were produced for fixed ensemble size for the importance
sampling, and fixed time step size and mesh density for the FE model. These parameters influence the
quality of the numerical model and the estimation procedure while also impacting the computational load.
The estimates presented in the previous sections, for example, took 140 h for 16 parallel threads on a AMD
Ryzen Threadripper 1950X with 16 cores at 3.4 GHz and 128 GB of RAM to run the importance sampling
for all 50,000 samples. As such, there is motivation to use a coarser model (larger/fewer elements and
larger time step) and fewer samples to decrease the computational load. To ensure that the estimates
presented in this work are not conditional on the numerical parameters being used in the model we explore
the sensitivity of the results to them in this section. We use the case without medial compression, again,
as the exemplar.

5.3.1. Ensemble Size

Sensitivity of the results to the importance sampling ensemble size was checked by computing
estimates with a progressively smaller number of samples from the priors. Figure 7 presents the relative
error, defined as the percentage difference in the estimate and experimental value, and uncertainty level
for ensemble sizes ranging from 100 to 50,000. It was found that, on average, the estimated values stabilize
as the ensemble size increases. The peaks which occur at approximately 15,000 and 25,000 samples
are due to the sample-based nature of the estimate. Since the estimates are the sample mean of the
resampled ensemble the exact estimated value for each parameter changes as more samples are included
in the ensemble. As such, it is encouraging to note that the estimates do appear to stabilize. Specifically,
the average error of the estimates stabilizes when using an ensemble size of approximately 15,000, with the
maximum error stabilizing with approximately 40,000 samples. The uncertainty smoothly decreases as
the ensemble increases, stabilizing when approximately 25,000 samples are used. Error in the estimates
converges faster than the uncertainty since an accurate estimate of the mean is easier to attain than a stable
estimate of the variance.
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Figure 7. (a) Relative error of the estimates; and (b) relative uncertainty for increasing ensemble size. Solid
blue line: average; dashed red line: maximum.

5.3.2. FE Time Step and Triangulation

Estimates were produced using time step sizes of h = 0.025, 0.05, and 0.1 ms and triangulations with
172, 205, and 263 elements over the same geometry. For direct comparison, the estimates were computed
using an importance sampling ensemble size of 50,000.

Figure 8a shows that, on average, the relative error (as defined above) in the estimates is very similar
whether the triangulation involves 263 or 205 elements. In fact, all estimated parameter values differ by
0.1% or less for the two triangulations. This difference is likely due to numerical error resulting from the
sample-based nature of importance sampling. In contrast, the lower density mesh introduces a larger error
for all step sizes, but rapidly improves with decreasing step size.
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Figure 8. The average (a) relative error and (b) relative uncertainty of the estimates as a function of time
step size for various triangulations. Blue with the plus markers: 172 elements; red with circle markers: 205
elements; black with diamond markers: 263 elements.

Similar trends are observed in Figure 8b where decreasing step size or increasing mesh density
results in a decrease in uncertainty. The observed decrease in uncertainty with decreasing time step and
increasing mesh density results from having a higher fidelity numerical model that is more sensitive
to the parameter values; that is, small changes in the parameter values will have a larger impact on
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the simulated data [33]. As a result, the uncertainty of the estimates will decrease as the fidelity of the
model increases. However, as the time step decreases and mesh density increases the computational cost
grows exponentially. Thus, examining how the estimated uncertainty behaves as the fidelity of the model
increases becomes quickly infeasible.

6. Conclusions

To date, the approaches employed for developing subject-specific numerical VF models have focused
on lumped-elements for the fitting model in the inverse analysis; as such, parameter estimates are often
greatly abstracted from the physical tissue properties. To overcome these limitations, the present work
proposes a FE model of the VFs for a fitting model. The FE model captures the geometry and layered
structure of the VFs more accurately, treating them as a multi-layered viscoelastic body, thus better
approximating their kinematics. Since the FE model directly employs the tissue properties, such as Young’s
moduli, these properties are estimated directly. Estimation of material properties was demonstrated using
HSV data of silicone VFs as the observation, showing good agreement between the estimated and “ground
truth” material properties.

The robustness of the method was demonstrated by considering experimental data with different
degrees of medial compression and differing subglottal pressures. The FE model faithfully recovered the
material properties in all cases, including the degree of medial compression, which was embedded into the
FE model in the form of base displacement. This suggests that the employed Bayesian framework using a
FE fitting model is sufficiently sensitive to distinguish between different experimental conditions, even
though the model was restricted to two dimensions.

The FE models were validated by comparing the volumetric flow rate predicted by the model with
experimentally measured values. This observation was not included in the estimation process and, as such,
was an independent measure. The volumetric flow rate was slightly over-predicted, but generally agreed
well. The exception was the highest subglottal pressure case, which was considerably over-predicted.
Additionally, the contact pressures extracted from the developed FE models were found to increase with
increasing subglottal pressure and medial compression, which is a trend that qualitatively agrees with
previous studies. The highest subglottal pressure case was again an outlier, suggesting that the FE model
for that case does not accurately capture the kinematics of the silicone VFs, likely due to the 2D geometry.
This could potentially be improved by incorporating additional observations in the estimation procedure
or expanding to a three-dimensional model.

The stability of the results was examined with respect to numerical parameters, such as the importance
sampling ensemble size, time step size, and mesh density. Estimated values converged at relatively modest
ensemble sizes, though resolving the uncertainties required considerably more samples. Decreasing the
time step size and increasing the mesh density lead to smaller uncertainties at the cost of significant
computational time. One of the main drawbacks to our proposed model is the computational complexity;
this cost will increase if more complex fluids models, a three-dimensional geometry, or acoustics
are included.

One source of uncertainty that has not been considered in this work is the structure of the layers.
All estimates in this work have been computed with a FE model that was formed treating the layers and
dimensions of the silicone VFs as perfectly known. The use of imperfect layers will affect the estimates
and uncertainties of the material properties, however, this is the subject of ongoing research and requires a
further examination.

As an introductory effort, incorporating a FE fitting model into the Bayesian estimation framework has
shown good promise. Future work includes validating the contact pressure estimates with experimental
data, implementing a three-dimensional FE model, and employing clinical HSV.
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