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Abstract: The present paper discussed the development of a reliable and robust artificial neural
network (ANN) capable of predicting the tribological performance of three highly alloyed tool
steel grades. Experimental results were obtained by performing plane-contact sliding tests under
non-lubrication conditions on a pin-on-disk tribometer. The specimens were tested both in untreated
state with different hardening levels, and after surface treatment of nitrocarburizing. We concluded
that wear maps via ANN modeling were a user-friendly approach for the presentation of wear-related
information, since they easily permitted the determination of areas under steady-state wear that were
appropriate for use. Furthermore, the achieved optimum ANN model seemed to be a simple and
helpful design/educational tool, which could assist both in educational seminars, as well as in the
interpretation of the surface treatment effects on the tribological performance of tool steels.

Keywords: artificial intelligence techniques; artificial neural networks; soft computing techniques;
tribological performance

1. Introduction

Mechanical systems commonly incorporate assemblies characterized by the contact of solid
components moving relevant to each other, in order to transfer motion, power, or mechanical loading.
These coupled components constitute what is known as a tribosystem or a tribopair, which is defined
by the construction materials and geometry of the solids, with its operating parameters being the
applied load, the relevant speed, and the environmental conditions (i.e., lubrication, temperature,
humidity). In the case of malfunction of such assemblies, the operation of the entire mechanical system
is jeopardized. For example, typical assemblies on a vehicle include:

• The brakes, where a consumable brake pad, through the application of a force, slides against the
disc brake to suspend the wheel motion [1].

• The clutch assembly, where the clutch disk slides against the pressure plate to disengage power to
the drive train, enabling the vehicle to stop, start, or shift gears [2].
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• The air conditioning assembly, where the pulley directly attached to the compressor is coupled to
the engine crankshaft via two tensioner pulleys and a polymer V-belt. Poor operation of any of
the pulleys would result in stoppage of the belt motion, eventually leading to the interruption of
the electrical control circuit.

During the operation of a tribosystem, wear of the two solids in contact and the progressive loss
of material from the conjugated surfaces is expected. Hence, for the construction of such mechanical
assemblies, a designer should select materials that will ensure steady-state operation, uniform and
progressive wear, and a known rate of material loss. In the case of metallic components, wear takes
place via the adhesive mechanism [3], which promotes microscopic plastic shearing of the asperities in
touch and material transfer between the two surfaces. However, in several cases, the malfunction of
metallic tribosystems can be attributed to different failure causes, such as galling [4], cracking, extensive
oxidation, or severe plastic deformation [5], which are associated with improper materials selection for
the given application. Galling is understood as the instantaneous increase of the friction coefficient
(i.e., sudden difficulty in motion), whilst the operating parameters have not been altered. This, in
combination with simultaneous tearing, significant plastic deformation, and massive material transfer
constitutes a disastrous adhesive wear mechanism that could result in seizure—virtual welding of the
two surfaces—eventually rendering the relevant motion of the two metallic bodies impossible.

In the field of metal working, extrusion/casting/forging dies, blades for hot shearing, and hot
extrusion tools are typical examples of heavily loaded tribosystems, that are prone to any of the
above failure modes. For such applications, it is recommended to use highly-alloyed steels, known as
tool steels. These tool steels are special steel grades, usually incorporating a significant number of
carbide-forming elements. Depending on their specific chemical composition, tool steels exhibit an
interesting combination of properties, such as high toughness, shock resistance, machinability, abrasion,
and heat resistance. In particular, their high hardenability and dimensional stability allow their heat
treatment, resulting in materials that are within a wide range of bulk hardness values. All of the steels
are available from manufacturers in their soft-annealed state (22–24 HRC), and they are subjected
to further heat treatments to acquire the bulk hardness level required depending on the mechanical
loading they are going to bear during service. In general, the heat treatment follows thermal cycles that
include preheating, austenitization, and three successive tempering stages; where the specific relevant
procedure is described in detail in the available literature [6].

Furthermore, metallic components that are designed to participate in tribosystems often require
additional surface modification to enhance their fatigue, wear, and corrosion resistance. For example,
the enhancement of surface properties is required in the case of tool steel molds that are used for
the injection or compression of plastics. In the past, several non-conventional techniques based
on the use of high energy beams [7–9] have been proposed for the surface treatment of Fe-alloys,
with very promising scientific results. Nevertheless, owing to their relative lower installation and
operational costs, thermochemical surface treatments, such as nitriding and nitrocarburizing, still
remain the industrial-level surface treatments of choice for steels and cast irons [10]. Compared to other
nitrocarburizing techniques [11–14], Tufftriding, despite the drawback of a necessary post-processing
waste treatment step [15], is the most widespread, since it is less expensive, conceptually simpler,
and provides highly reproducible results. It involves the treatment of metallic components in molten
cyanide salt baths at 580 ◦C [16], a temperature lower than the eutectoid point (591 ◦C) of the Fe–N
phase diagram, thereby allowing the simultaneous diffusion of nitrogen and carbon atoms into the
ferrite lattice [6]. This results in the formation of two distinct surface layers of different nitrogen
concentration. The layer on the top of the treated surface is known as the compound or white layer, and
it primarily consists of ε-carbonitride Fe2–3(C,N). The layer underneath is known as the diffusion zone
and it is mainly composed of a α-(Fe,N) solid solution [17,18]. These two successive layers constitute
the nitrocarburized case that can extend to a depth of several—tens up to hundreds of— micrometers.

Liquid nitrocarburizing is applied as the final chemical-heat treatment for the improvement
of tribological performance of various machine parts and friction elements, which are subjected
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to sliding or rolling friction. Research efforts aim to optimize the material selection and surface
treatment parameters, considering the specific application demands. In this context, the performance
of nitrocarburized steels has been assessed under sliding [5,19,20], rolling [12], erosion [21], and/or
corrosion [22] conditions.

Despite the fact that extended experimental research on these materials can be found in the
international literature, a reliable quantitative tool, that is able to predict the tool steels performance in
plane-contact dry sliding tribopairs, is still missing. The strongly nonlinear dependence of the friction
and wear coefficients on parameters, such as the applied pressure, the rotational speed, and the bulk
hardness (HRC), render the development of an analytical formula for the prediction of tribological
performance, using deterministic methods, a rather difficult issue.

Meanwhile, artificial neural networks (ANNs) have emerged over the last decades as an attractive
meta-modelling technique that is applicable to a vast number of scientific fields, including material
science. An important characteristic of ANNs is that they can be used to build soft-sensors, i.e., models
with the ability to estimate critical quantities without having to measure them [23]. In particular, such
surrogate models can be constructed through a training process with only a few available data that can
be used to predict pre-selected model parameters, reducing the need for time- and cost-consuming
experiments. Thus far, the literature includes studies in which soft computing techniques, such as
ANNs, were implemented for predicting the mechanical properties and behavior of materials. It should
be stated that in the scientific field of engineering, the use of soft computing techniques has proven
to be the salient meta-computing approach that contributes in a reliable and robust manner in cases
where deterministic methods have failed [24–29]. Useful and detailed state-of-the-art reports can be
found in the published research works of Ripley [30] and Adeli [31].

The primary aim of this work was to develop an ANN model to predict the performance of three
steel grades in plane-contact dry sliding tribopairs. In particular, for the development and training of
NN models, a large database consisting of 216 datasets was composed, based on the experimental
results of 216 steel cylindrical specimens tested under non-lubricating sliding friction conditions, to
support the research presented herein. Specifically, nine parameters characterized each specimen.
In particular, the first three parameters encoded the type of materials, the next two parameters defined
whether the material was nitrocarburized or not, and the next three parameters were the values of the
applied pressure, the rotational speed, and the bulk hardness (HRC). The last parameter corresponds to
whether the material exhibits uniform wear; where the ability to predict uniform–or not–wear during
operation of the assemblies is highly important and desirable. The first eight parameters were used as
input parameters, whilst the last one was selected as the output parameter. The optimum developed
NN model proved to be very successful, exhibiting highly reliable predictions. Using the proposed
optimum NN model, we produced a set of “tribological performance” maps for each one of the three
steel grades, determining the areas of recommended and non-recommended use.

2. Short Literature Review

Several studies have addressed the issue of applying ANN techniques to predict the tribological
performance of tribopairs. As early as 1996, ANNs were first introduced to assist in this issue, when
Rutherford et al. [32] applied the technique to analyze the hardness and abrasive wear resistance of
TiN/NbN PVD-deposited multilayers, and correlated them to the specific composition of the thin
films. Jones et al. [33] showed the feasibility of using neural networks to predict life data for different
material/mechanical systems (rub shoe, pin-on-disk, and four-ball rigs), via the proper selection of
input variables that influenced the tribological behavior of each particular system. Ramesh and
Gnanamoorthy [34] used ANNs to describe the friction and wear behavior of various surface-treated
structural steels fretted against bearing steel. The surface treatment applied comprised liquid nitriding,
boriding, as well as MoS2 spraying, whilst 35 pairs of friction and wear experimental datasets were
used to develop the ANN. Similarly, the wear mechanisms of glass fiber reinforced epoxy were
investigated via pin-on-roller tests against hardened steel and the experimental data were used to
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identify the areas of mild, severe, and ultra-severe wear on a “normalized force”-“normalized velocity”
chart produced with the aid of neural networking algorithms [35]. More recently, several works have
emerged on the use of ANNs for the prediction of the wear of composite metallic matrix materials,
based on the combined experimental investigation of the weight losses during pin-on-disk sliding and
the percentage of the reinforcing constituent of the material [36–39]. Abdelbary et al. [39] developed an
ANN architecture for modeling the wear of polyamide 66 during dry sliding, introducing the applied
load, the load ratio, the number of surface cracks, the lubricant’s thickness, and the linear wear rate of
the material under study as input data. Stojanovic et al. [40] combined the Taguchi method and ANN
to optimize the percentage of particulate reinforcement of 2024 aluminum alloys that could ensure
a minimum wear rate during dry sliding block-on-disc tests. The experimental data were used to
develop a multiple linear regression model and an ANN model, where the latter proved to be more
efficient. In 2018, Pillai et al. [41], focusing on the effects of prior heat treatment on the tribological
performance of AISI A8 cold working tool steel, developed wear mechanism maps by applying K
means clustering and neural networks. Detailed and in-depth state-of-the-art works can be found in
References [41–48].

3. Need for Research

As already mentioned, due to the absence of an analytical model able to predict the tribological
performance of metals and alloys, the selection of the material grade and its hardening level is performed
in a rather empirical manner. The motivation for the work presented herein was to investigate the
possibility of developing a reliable model that could predict the tribological performance of materials
exhibiting elastoplastic behavior, considering crucial material characteristics, such as the grade and
hardening level, as well as operational parameters, such as the applied pressure and rotational speed.
Such a quantitative tool may lead to “tribological performance maps” that are relevant and tailored to
the requirements of each particular application, thereby assisting in the selection of: (a) Materials for
the manufacture of mechanical components that are designed to operate as parts of a tribo-system; (b)
Appropriate heat treatment, aimed at materials hardening; and (c) Appropriate surface treatment to
further expand a component’s service life.

4. Artificial Neural Networks

4.1. General

Artificial neural networks (ANNs), which are a well-known artificial intelligence technique, have
the ability to process and explore complex information (data) to solve classification and regression
problems. The main advantage of an ANN is that it is capable of producing more reliable outcomes than
conventional numerical analysis methods, as ANNs can handle complex problems with many input
parameters, which would otherwise be very difficult to solve using traditional approaches [49–55].

The basic structure of an ANN is the artificial neuron, that is, a mathematical model which
resembles the behavior of the biological neuron (Figure 1), but with a plethora of activation functions
enabling the biological neuron’s sigmoid activation function. To be precise, it should be noted that
scientists have decoded only a small amount of the biological neural networks (BNNs) structure,
behavior, and functions. Therefore, to be exact, the similarity between biological and artificial neural
networks is mainly the morphological characteristics.



Appl. Sci. 2019, 9, 2788 5 of 20Appl. Sci. 2019, 9, x FOR PEER REVIEW  5 of 20 

 

Figure 1. Schematic representation of biological neuron structure. 

The structure of an ANN consists of three main layers, including input layers, hidden layers, 

and output  layers. Out of  these  layers,  the hidden  layers use  the activation  function  to pass and 

process the information from the input layers to provide results in the output layers, using artificial 

neurons (nodes). To train the ANN, there are several steps that need to be considered as follows: (i) 

select the architecture of the ANN which describes the way the artificial neurons are organized and 

linked; (ii) select the suitable activation function to be used in the hidden layers to learn the data; and 

(iii)  select  the  loss  function, metrics, which  are used  to update  the weights of  input parameters. 

Training the ANN can be considered as a function minimization problem, whereas the loss function 

(error function) is used to determine the optimum value of weights assigned for parameters used in 

the input layers. Different types of ANNs can be built using various optimization algorithms. In this 

study, we used  the back‐propagation neural network  (BPNN), which  is an effective optimization 

algorithm to train the ANN. 

4.2. Structure of the BPNN 

Known as a feed‐forward, multilayer neural network, the BPNN does not have feedback loops. 

Thus, information passes on from the input layers towards the output layers, and the neurons of the 

same layer are connected with all the neurons of the subsequent and previous layer; however, not 

connected to one another. The standard structure of a BPNN can be presented as follows: 

N H H ∙∙∙ H M  (1)

where M  is  defined  as  the  number  of  output  parameters  (output  neurons), N  is  defined  as  the 

number of  input parameters (input neurons); H   corresponds to the number of neurons in the i‐th 

hidden layer (i = 1,…,NHL); and NHL is known as the number of hidden layers. 

Despite the fact that the majority of researchers dealing with ANN techniques use multilayer 

NN  models,  mathematical  ANN  models  with  only  one  hidden  layer  can  serve  as  reliable 

computational tools for certain forecast problems. 

Figure 2 depicts the structure of a single node (with the corresponding R‐element input vector) 

of a hidden layer. 

Figure 1. Schematic representation of biological neuron structure.

The structure of an ANN consists of three main layers, including input layers, hidden layers, and
output layers. Out of these layers, the hidden layers use the activation function to pass and process
the information from the input layers to provide results in the output layers, using artificial neurons
(nodes). To train the ANN, there are several steps that need to be considered as follows: (i) select the
architecture of the ANN which describes the way the artificial neurons are organized and linked; (ii)
select the suitable activation function to be used in the hidden layers to learn the data; and (iii) select
the loss function, metrics, which are used to update the weights of input parameters. Training the
ANN can be considered as a function minimization problem, whereas the loss function (error function)
is used to determine the optimum value of weights assigned for parameters used in the input layers.
Different types of ANNs can be built using various optimization algorithms. In this study, we used
the back-propagation neural network (BPNN), which is an effective optimization algorithm to train
the ANN.

4.2. Structure of the BPNN

Known as a feed-forward, multilayer neural network, the BPNN does not have feedback loops.
Thus, information passes on from the input layers towards the output layers, and the neurons of the
same layer are connected with all the neurons of the subsequent and previous layer; however, not
connected to one another. The standard structure of a BPNN can be presented as follows:

N−H1 −H2 − . . .−HNHL −M (1)

where M is defined as the number of output parameters (output neurons), N is defined as the number
of input parameters (input neurons); Hi corresponds to the number of neurons in the i-th hidden layer
(i = 1, . . . ,NHL); and NHL is known as the number of hidden layers.

Despite the fact that the majority of researchers dealing with ANN techniques use multilayer NN
models, mathematical ANN models with only one hidden layer can serve as reliable computational
tools for certain forecast problems.

Figure 2 depicts the structure of a single node (with the corresponding R-element input vector) of
a hidden layer.
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Consider each neuron i, the weights wi,1, . . . , wi,R are used to multiply with the individual
element inputs p1, . . . , pR, and the weighted values are then put into the junction of the summation
function, of which the input vector p = [p1, . . . , pR]

T and the dot product (W·p) of the weight vector
W = [wi,1, . . . , wi,R] are generated. Presented below is the argument of the transfer function ƒ, where
the threshold b (bias) is added to the dot-product forming the net input n:

n = W·p = wi,1p1 + wi,2p2 + . . .+ wi,RpR + b, (2)

The complexity and performance of an ANN might be influenced by the selection of the activation
function ƒ. There are different activation functions used to train an ANN, such as sigmoidal transfer
functions, the logistic sigmoid, and the hyperbolic tangent transfer functions [56–59]. In this study,
we found that the logistic sigmoid and the hyperbolic tangent transfer functions were appropriate
activation functions for the problem under examination. Using the activation functions, the training
data were input to the network, which attempted to transfer the information from the input layers
to the output layers. During this process, the weights were adjusted to minimize the loss function,
presented as follows:

E =
∑

(xi − yi)
2, (3)

where xi and yi are defined as the true value (ground truth) and the predicted value, respectively, of
the i-th dataset.

5. Materials and Methods

A prerequisite for the successful function of artificial neuron networks is the use of an extended
and reliable database that is capable of training the system. The extent of the experimental database
should be large enough to provide the necessary amount of input information, and, at the same time,
restricted enough to avoid overuse of costly experimental resources. The optimization of the ANNs
proposed for the prediction of the tribological performance of tool steels, is based on the experimental
datasets presented briefly below.

5.1. Experimental Procedures—Database

The reliability of a developed artificial network is directly dependent on the reliability of the
database compiled and utilized in its design and training. In particular, to develop a reliable neural
network, a reliable database is necessary, and one which incorporates datasets covering a wide range
of possible values of the input parameters involved. Thus, in the current study, an adequate amount of
reliable experimental data was necessary, i.e., data which could describe the tribological performance of
tool steels in a satisfactory manner. It should be noted that a high number of datasets does not necessarily
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lead to the development of a more accurate ANN. For example, datasets which refer to similar values
of the parameters, without covering a wide range of possible values, cannot assist in describing
and revealing the material’s behavior in relation to the input parameters. A database incorporating
data which describes the influence of all parameters on the output parameter is necessary, and the
database should incorporate the whole range of possible values of input parameters. Furthermore,
the accuracy of the data incorporated in the database is of high importance, because if erroneous
values are introduced into the training datasets, the artificial neural network will be trained using these
values and will provide erroneous prediction values. This is indicative of the meaning of the famous
expression in informatics “garbage in garbage out” (GIGO).

Multitudinous experimental tests were conducted to support the work presented herein. Three
different steel grades, two of them intended for cold working and the third for hot working applications,
were chosen as model materials. Table 1 shows their AISI (American Iron and Steel Institute)
classifications. Each grade was properly heat-treated to achieve three series of specimens per grade,
presenting a bulk hardness of 40, 50, and 60 HRC. After hardening, half of the specimens of each
series were further subjected to liquid nitrocarburizing via the Tufftriding technique as described in
Reference [16]. Finally, all steel grades, with hardening treatment, as well as with both hardening and
surface treatment, were subjected to plane-contact dry sliding, under the common testing conditions
described below.

Table 1. Characteristics of the materials employed in the present study.

Material Examined AISI Classification Application

Steel A D2 Cold working tools
Steel B - Cold working tools
Steel C H13 Hot working tools

A Cameron–Plint® pin-on-disk tribometer, equipped with a force transducer was used for the
real-time recording of the sliding friction coefficient evolution. During all tests, two identical cylindrical
pins (Ø 8 mm, 55 mm length) of the steel grade under examination were mounted and pressed against
a rotating disk (counterbody), manufactured from AISI D6 steel and heat-treated to a bulk hardness of
62 HRC. Figure 3 depicts a schematic representation of the testing rig operation. Detailed and in-depth
descriptions can be found in the authors’ recently published work [60].
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Figure 3. Schematic representation of the Cameron-Plint® pin-on-disk testing tribometer.

All sets of specimens were tested by applying pressures of 0.3, 0.5, and 0.7 MPa, as well as
rotational speed values of 300 and 1050 rpm. The experiments were carried out at ambient atmosphere
(25 ◦C, 50% RH) and lasted for 25,000 revolutions, except for cases where galling occurred, leading
to test interruption. The worn surfaces were post-observed at low magnification via an optical
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stereoscope to clarify the different types of materials degradation during plane-contact sliding, even in
cases where galling did not take place. Finally, the outcome of all series of experiments allowed the
distinguishing of four different wear/failure types of the operating tribosystems, i.e., one desirable and
three non-desirable, as summarized in Table 2. More detailed analyses on these evaluation criteria,
including friction coefficient evolution diagrams and stereoscopic images, were reported in a previous
work [60]. Based on the above, we prepared a database consisting of 216 datasets, corresponding
to 72 datasets for each steel grade tested. The compiled database is presented in the excel file titled
“Database” in Supplementary Materials.

Table 2. Wear/failure modes used as evaluation criteria for the performance of the tribosystems examined.

Wear/Failure Type Characteristics Performance of the Tribosystem

Mode I Uniform and progressive material loss Desirable behavior during service

Mode II Galling observed as a sudden increase of the
friction coefficient

Non-desirable, due to the incipient
interruption of the tribosystem

operation

Mode III
Plastic flow of the material at the vicinity of
the contact, in some cases accompanied by

local oxidation

Non-desirable material behavior
during application

Mode IV Severe plastic deformation that can be
macroscopically observed

Non-desirable material behavior
due to the distortion of the

mechanical parts

5.2. Material Encoding

During the development process of the BPNN model, emphasis was placed on the encoding of
the experimental data. These data involved measurements from five different cases, i.e., three different
steel grades with and without post-hardening surface treatment. To simulate the crucial characteristics
of the materials, we used five encoding parameters (i.e., the five shown in Table 3, as well as in columns
4–8 in the excel file titled “Database” in Supplementary Materials. Furthermore, the output parameter
was encoded: 0 for desirable performance (Mode I, Table 2) and 1 for non-desirable (Modes II, III, and
IV, Table 2). This encoding protocol has been successfully applied in the previous works of some of the
present authors, addressing the issue of electro-discharge machining using ANNs [56,57]. Based on
the above, Table 4 presents the input and output parameters, as well as their values.

Table 3. Materials encoding.

Case Material Treatment
Encoding Parameters

Material Treatment

I
Steel A

H.T. 1
1 0 0

1 0
II H.T. + S.T.2 0 1

III
Steel B

H.T.
0 1 0

1 0
IV H.T. + S.T. 0 1

V
Steel C

H.T.
0 0 1

1 0
VI H.T. + S.T. 0 1

1 Heat treatment aiming to bulk hardening. 2 Surface treatment (nitrocarburizing) after heat treatment.
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Table 4. The input and output parameters used in the development of back-propagation neural
networks (BPNNs).

Parameters
Units Type Value

No. Variable

1 Material Encoding Parameter 1 - Input 0 or 1
2 Material Encoding Parameter 2 - Input 0 or 1
3 Material Encoding Parameter 3 - Input 0 or 1
4 Material Encoding Parameter 4 - Input 0 or 1
5 Material Encoding Parameter 5 - Input 0 or 1
6 Bulk Hardness (BH) HRC Input 40, 50 and 60
7 Rotational Speed (RS) rpm Input 0, 300 and 1050
8 Applied Pressure (AP) bar Input 0, 3, 5 and 7

9 Tribological Performance - Output 0 or 1

5.3. Training Algorithms

Training the BPNN models is the most important step in developing the optimal artificial neural
network. Each problem is best expressed with the use of a specific training function. For this
purpose, in the current research, we explored a wide variety of training functions to select the most
appropriate function that could provide the ANN with the highest accuracy in terms of prediction
capability. We employed and assessed the quasi-Newton, resilient, one-step secant, gradient descent
with momentum and adaptive learning rate, and Levenberg–Marquardt back propagation algorithms.
The Levenberg–Marquardt training function provided, by far, the best results, achieving prediction with
the highest accuracy [61]. This algorithm appeared to present the best results in non-linear problems,
whilst at the same time, it appeared to be the least time consuming method to train moderate-sized
feedforward neural networks (meaning networks with up to several hundred weights). The fact that
the solution of the Levenberg–Marquardt matrix equation was a built-in function of the MATLAB®

software was an added benefit and advantage to its selection. This enhanced the efficiency of its use.

5.4. Normalization of Data

To enhance the accuracy and efficiency of the developed ANN, normalization of the data
(a frequently encountered issue in the field of soft computing techniques pre-processing stage) was
decided. Specifically, we employed the Min-Max [62] normalization method for the eight input
parameters, as stated in Table 4, and the single output parameter. To this aim, it was important to
normalize the data within a defined range of appropriate upper and lower limit values, especially
considering the fact that the selection of the appropriate limit values could have a highly beneficial
effect on the ANNs’ learning rate, as presented by Iruansi [63,64]. In the present study, the input
parameters, as well as the output parameters, were normalized in the range of values [0.10, 0.90].

5.5. BPNN Model Development

Consequently, we developed and evaluated a high number of BPNN models. We used 108
data-points to train each ANN model, corresponding to 50% of the total number of data-points, whilst
validation of the developed model was achieved through the use of 54 data-points, corresponding
to 25% of the total data-points. The remaining 25% of the available data-points, amounting to 54
data-points, were used to test the trained ANN.

It was decided to investigate ANNs with hidden layers ranging from 1 to 2, whilst the number
of neurons for each hidden layer ranged from 1 to 30. In addition to the aforementioned scenarios,
we examined various activation functions for the development and training of each artificial neural
network. In particular, we investigated the log-sigmoid transfer (logsig), the linear transfer (purelin),
and the hyperbolic tangent sigmoid transfer (tansig) functions, to select the most appropriate function,
capable of achieving optimal results [65–73].
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Thus, the ANNs were trained by employing the parameters as stated in Table 5. To compare
the results provided by the different ANNs, beforehand, the datasets were randomly divided into
training datasets, validation datasets, and testing datasets. The grouping of the datasets was performed
manually by the user prior to the training of the various ANNs, and indices were used to mark the
group to which each dataset was attributed.

Table 5. Training parameters of BPNN models.

Parameter Value

Training Algorithm Levenberg-Marquardt Algorithm
Normalization Minmax in the range 0.10–0.90

Number of Hidden Layers 1; 2
Number of Neurons per Hidden Layer 1 to 30 by step 1

Control random number generation Rand (seed, generator)
where generator ranges from 1 to 10 by step 1

Training Goal 0
Epochs 250

Cost Function MSE 1; SSE 2

Transfer Functions Tansig (T) 3; Logsig (L) 4; Purelin (P) 5

1 Mean Square Error. 2 Sum Square Error. 3 Hyperbolic tangent sigmoid transfer function. 4 Log-sigmoid transfer
function. 5 Linear transfer function.

5.6. Mathematical Model Validation

The most crucial and challenging task after the training and development process of ANN models
is the evaluation of their performance, as well their reliability. A number of statistical indices were
calculated to assess the performance of the developed FF-ABC-NN model. In particular, we calculated
the root mean square error (RMSE) and the mean absolute percentage error (MAPE), where lower
calculated values correspond to higher predictive accuracy of the model, as well as the Pearson
correlation coefficient (R2), where the higher the R2 value, the better the fitting between experimental
and predicted values. To the best of the authors’ knowledge, the RMSE performance index seems
to be the most accurate index for the evaluation and ranking of ANN mathematical models, for
selection of the optimum and most robust model. Nevertheless, the majority of researchers use the
Pearson correlation coefficient for the evaluation of ANN models, usually in conjunction with other
performance indexes [74–78]. The statistical indices used in the present study were calculated using
the following, well known and available in the literature, expressions [79–87]:

RMSE =

√
1
n

∑
n
i=1(xi − yi)

2, (4)

MAPE =
1
n

∑
n
i=1

∣∣∣∣∣xi − yi

xi

∣∣∣∣∣, (5)

R2 = 1−


∑n

i=1(xi − yi)
2∑n

i=1(xi − x)2

, (6)

where n denotes the total number of datasets, and xi and yi represent the predicted and target
values, respectively.

6. Results and Discussion

Based on the above, we investigated a total of 982,800 different BPNN models to find the optimum
NN model for the prediction of tribological performance of the experimentally tested tool steel grades.
We also studied combinations of the use or non-use of the normalization technique and the use of one
or two hidden layers.

The developed ANN models were sorted in a decreasing order according to their RMSE value.
Based on this ranking, several reliable ANN architectures were found with a value of RMSE equal
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to zero for all investigated cases (one or two hidden layers, with or without use of normalization
technique). Amongst the most reliable mathematical models, it was important to select the simplest as
the optimum BPNN model. Specifically, the 8-8-1 BPNN model was proposed as the optimum ANN
for the prediction of the wear of the three tool steels. Its notation indicates that it corresponds to the
case of one hidden layer with eight neurons (the minimum number of neurons), and without the use of
any pre-processed normalization technique (Figure 4). As shown therein, the transfer functions are
the log-sigmoid transfer function for the hidden layer and the hyperbolic tangent sigmoid transfer
function for the output layer.
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Using this proposed optimum ANN model, preliminary “safe operation area” maps of the
tribological performance of the three steel grades were produced (Figures 5–7). These maps showed
a material property on the x-axis, namely the bulk hardness, achieved by heat treatment, and
an operational parameter during service on the y-axis, namely the applied pressure. Each map
corresponded to one specific rotational speed and one surface state, either without or with the surface
treatment of nitrocarburizing. In each figure, in addition to the experimentally tested rotational speed
values of 300 and 1050 rpm, the predictions for an intermediate value of 600 rpm were also included.
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Figure 5. Maps of tribological performance for steel grade A, tested under three different rotational
speeds 300, 600, and 1050 rpm: left column without surface treatment (before nitrocarburizing; right
column after nitrocarburizing. The blue area corresponds to desirable uniform wear (Mode I), whilst
the red one corresponds to non-desirable material behavior (Modes II, III, IV).
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Figure 6. Maps of tribological performance for steel grade B, tested under three different rotational
speeds 300, 600, and 1050 rpm: left column without surface treatment (before nitrocarburizing); right
column after nitrocarburizing. The blue area corresponds to desirable uniform wear (Mode I), whilst
the red one corresponds to non-desirable material behavior (Modes II, III, IV).
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Figure 7. Maps of tribological performance for steel grade C, tested under three different rotational
speeds 300, 600, and 1050 rpm: left column without surface treatment (before nitrocarburizing); right
column after nitrocarburizing. The blue area corresponds to desirable uniform wear (Mode I), whilst
the red one corresponds to non-desirable material behavior (Modes II, III, IV).

7. Limitations

It is worth noting that the application field of the proposed optimum neural system is defined
within the range of parameter values used as input for its design and training. Specifically, the
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proposed neural system provides reliable forecasts for parameter values ranging within the minimum
and maximum value of the input parameters, as stated in Table 4.

The reliability of the neural system for parameter values beyond these limit values was quite
restricted. It is also worth noting that, despite the satisfactory derived results, the proposed neural
network should be applied with caution. Despite the fact that the database used was the largest set
used in the relevant literature up to date, for the prediction of the surface treatment effects on the
tribological performance of tool steels using ANNs, the authors considered that this database needs to
be embellished with further experimental data. To this end, it is within the authors’ plans to conduct
further experiments related to these three metals. In particular, the experiments that are lacking are
related to applied pressure equal to 2.00 bar, as well as experiments for rotational speed values of 600
and 900 rpm.

8. Conclusions

Wear maps for three different highly alloyed steel grades (two cold working steels and a hot
working one) under a certain set of operating conditions were constructed by applying ANN modelling
on an extended and reliable database of tribological experimental results.

Experimental results were obtained by performing plane-contact sliding tests under
non-lubrication conditions on a pin-on-disk tribometer. The specimens were tested both in an
untreated state, with different hardening levels, and after surface treatment of nitrocarburizing
(Tufftriding technique).

From the numerous ANN models tested, the 8-8-1 BPNN model was selected as the optimum
ANN for the prediction of the wear of the three tool steels; the transfer functions are the log-sigmoid
transfer function for the hidden layer and the hyperbolic tangent sigmoid transfer function for the
output layer.

From the application of the optimum ANN, the main results can be summarized as follows:

• Wear-related information can be easily presented in a comprehensive manner by the design of
wear maps, as derived through the ANN modelling. Wear maps are user-friendly and allow the
determination of areas under steady-state wear, which are recommended for use.

• When the operational parameters are evaluated as severe, it is recommended to select different
steel grades.

• Higher values of bulk hardness correspond to a more extended steady-state wear region.
• Surface treatment by nitrocarburizing of the hardened steel has a beneficial effect, as it limits the

region of non-recommended use.
• For a certain steel grade, the increase of the sliding speed decreases the region of recommended use.
• Nitrocarburizing seems to be more effective in the case of hot working steel grade than in the

cases of cold working grades.

In addition, the proposed optimum ANN model seems to offer a simple design/educational tool,
which can assist both for educational purposes, as well as the interpretation of the surface treatment
effects on the tribological performance of tool steels.
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