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Featured Application: This study provided a new artificial intelligence system (i.e., PSO-SVR) to
predict and control PM10 concentration induced by drilling operations in open-pit mines. By the
use of this system, the air quality can be managed as a part of the whole air quality in open-pit
mines. Also, occupational diseases can be controlled and minimized by this system.

Abstract: Dust is one of the components causing heavy environmental pollution in open-pit mines,
especially PM10. Some pathologies related to the lung, respiratory system, and occupational diseases
have been identified due to the effects of PM10 in open-pit mines. Therefore, the prediction and
control of PM10 concentration in the production process are necessary for environmental and health
protection. In this study, PM10 concentration from drilling operations in the Coc Sau open-pit coal
mine (Vietnam) was investigated and considered through a database including 245 datasets collected.
A novel hybrid artificial intelligence model was developed based on support vector regression (SVR)
and a swarm optimization algorithm (i.e., particle swarm optimization (PSO)), namely PSO-SVR,
for estimating PM10 concentration from drilling operations at the mine. Polynomial (P), radial basis
function (RBF), and linear (L) kernel functions were considered and applied to the development of
the PSO-SVR models in the present study, abbreviated as PSO-SVR-P, PSO-SVR-RBF, and PSO-SVR-L.
Also, three benchmark artificial intelligence techniques, such as k-nearest neighbors (KNN), random
forest (RF), and classification and regression trees (CART), were applied and developed for estimating
PM10 concentration and then compared with the PSO-SVR models. Root-mean-squared error (RMSE)
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and determination coefficient (R2) were used as the statistical criteria for evaluating the performance
of the developed models. The results exhibited that the PSO algorithm had an essential role in the
optimization of the hyper-parameters of the SVR models. The PSO-SVR models (i.e., PSO-SVR-L,
PSO-SVR-P, and PSO-SVR-RBF) had higher performance levels than the other models (i.e., RF, CART,
and KNN) with an RMSE of 0.040, 0.042, and 0.043; and R2 of 0.954, 0.948, and 0.946; for the PSO-SVR-L,
PSO-SVR-P, and PSO-SVR-RBF models, respectively. Of these PSO-SVR models, the PSO-SVR-L
model was the most dominant model with an RMSE of 0.040 and R2 of 0.954. The remaining three
benchmark models (i.e., RF, CART, and KNN) yielded a more unsatisfactory performance with an
RMSE of 0.060, 0.052, and 0.067; and R2 of 0.894, 0.924, and 0.867, for the RF, CART, and KNN
models, respectively. Furthermore, the findings of this study demonstrated that the density of rock
mass, moisture content, and the penetration rate of the drill were essential parameters on the PM10

concentration caused by drilling operations in open-pit mines.

Keywords: meta-heuristic algorithm; PM10 concentration; drilling operation; artificial intelligence;
open-pit coal mine

1. Introduction

Open-pit mining is one of the technologies that aim to pick up natural resources underground.
However, the impact from the operations of open-pit mines, such as drilling, blasting, loading,
transporting, and dumping are significant [1]. Also, a large area of land is occupied for work and dump
sites. Other impacts on the property, water, and atmosphere due to open-pit mining activities are also
considered to be significant [2–4]. Of those, dust concentration has a significant impact on public health
and environmental pollution. The particles in the dust with an equivalent aerodynamic diameter
smaller than 10 µm (PM10) are considered as a hazardous factor for atmospheric and public health [5–7].
This dust is cause-related to lung, respiratory, and ocular diseases [3,8]. The fauna and flora of the
surrounding area are also affected by the dust caused by open-pit mining operations [9,10]. In open-pit
mines, many activities raise PM10 dust, such as transporting, drilling-blasting, loading/unloading,
and dumping [11–16]. These activities can be divided into point, line, and area sources [17,18]. Of those
activities, drilling is, at 25% of the whole operation, one of the point sources that generates dust in
the environment and is one of particular concern. Predicting and controlling PM10 concentration in
each operation is the basis of the development of the total predictive model for primary activities in
open-pit mines (i.e., drilling, blasting, loading/unloading, transporting). Accurate prediction and strict
control of PM10 concentration from drilling operations in open-pit mines are essential to ensuring
health and atmospheric safety, as well as providing the significant basis for the total predictive model.

According to the United States Environmental Protection Agency (USEPA), dust concentration
and emission can be predicted by various empirical equations. Several scholars have also proposed
experimental equations to estimate dust concentration [19–24]. However, those equations were not
suitable for mining conditions in Vietnam, especially deep mines [25,26]. In open-pit mines with
deep mining, the problem of natural ventilation is often complicated due to the impact of mining
depth because dust and toxic gases are often not circulated, making it challenging to calculate dust
concentration as well as poisonous gases. Ghose [27] proposed several equations for predicting dust
concentration in an open-pit coal mine of India; however, dust concentration from drilling operations
was not considered in his study. Meanwhile, drilling operations are one of the main factors causing
environmental pollution in open-pit mines, especially PM10 emission.

In recent years, quantitative models have been proven as effective methods to predict environmental
issues and control atmospheric pollution. Artificial intelligence (AI) and its applications were
considered as the robust tools for predicting and controlling environmental issues, especially in mining
operations [28–44]. For estimating PM10 concentration, Chelani and Gajghate [45] used an artificial



Appl. Sci. 2019, 9, 2806 3 of 23

neural network (ANN) based on the back-propagation (BP) algorithm to predict PM10 concentration.
The feasibility of ANN was interpreted in their study with promising results. By a similar approach,
McKendry [46] also developed an ANN model to predict PM10 and PM2.5 concentration. In another
research, Lal and Tripathy [47] successfully developed an ANN model for predicting PM10 concentration
in an open-cast coal mine of India with promising results. Alkasassbeh and Sheta [48] also considered
and developed two ANN models based on the Autoregressive with external (ANNARX) method for
predicting PM10 and total suspended particles (TSP). Their study showed that ANN was a superior
technique for predicting PM10 and TSP based on several statistical criteria. Mishra, Goyal [49] also
developed a hybrid model using ANN and fuzzy logic, i.e., neuro-fuzzy for predicting TSP. As a result,
they found that the neuro-fuzzy model provided a performance better than the ANN model. Nagesha,
Chandar [50] also conducted a similar study using the ANN model for predicting PM10 produced
by drilling operations in an open-pit mine. Patra, Gautam [51] also developed an ANN model to
predict various particulate matter (i.e., PM0.23–0.3, PM0.3–0.4, PM0.4–0.5, PM0.5–0.65, PM0.65–0.8, PM0.8–1,
and PM1–1.6) with an excellent result. Table 1 summarizes several AI techniques in predicting PM10

concentration and TSP. Also, similar and relevant work on the prediction of PM10 concentration can be
found at the following references [52–61]. Given the previous work, it can be seen that it is feasible to
use AI techniques to predict dust concentration as well as PM10 emissions. It has been demonstrated
that AI techniques, especially ANN, are significant in predicting and controlling dust concentration,
and can form the basis of development of other models and dust emission monitoring methods.

Table 1. Summary of works using AI techniques for predicting PM10 concentration and TSP.

No. Reference Technique Objective Result

1 Chelani, Gajghate [45] ANN PM10 RMSE = 7.9; R2 = 0.89

2 McKendry [46] ANN PM10 RMSD = 2.21; r = 0.75

3 Lal and Tripathy [47] ANN PM10 RMSE = 0.0339; d = 0.9969

4 Alkasassbeh, Sheta [48] ANN PM10, TSP

MSEPM10 = 219.785;
MSETSP = 1010.7;

MMREPM10 = 0.313;
MSETSP = 0.234

5 Mishra, Goyal [49] Neuro-fuzzy PM2.5 R = 0.72

6 Nagesha, Chandar [50] ANN PM10 MSE = 0.00606; R2 = 0.96

7 Patra, Gautam [51] ANN

PM0.23–0.3
PM0.3–0.4
PM0.4–0.5
PM0.5–0.65
PM0.65–0.8

PM0.8–1
PM1–1.6

R = 0.806, 0.852, 0.808, 0.896, 0.698,
0.674, 0.788, respectively

Our literature review showed that, although the studies of PM10 concentration prediction in
open-pit mines had been conducted, they are, however, still very sketchy. Furthermore, the intensity
of PM10 concentration in each area/mine/region/country is different due to the characteristics of
rock mass as well as the meteorological conditions. Therefore, each area/mine/region needs to be
specifically researched in order to have solutions aimed to ensure safety for the health of residents
and employees and the surrounding environment. In this study, PM10 concentration from drilling
operations in open-pit mines was investigated and considered. The Coc Sau open-cast coal mine in
Vietnam was selected as a case study for this aim. To this regard, many AI-related techniques, such
as deep learning (DL), reinforcement learning (RL), recurrent neural networks (RNN), convolutional
neural networks (CNN), generative adversarial networks (GAN), artificial neural network (ANN),
and the adaptive-neuro fuzzy inference system (ANFIS), to name a few, can be applied; however,
it is challenging to select which technique is the best for analyzing the concentration of PM10 in
open-pit mines. In practical engineering, simple machine learning and the optimization algorithms
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are often selected as the goal of soft computing models for simple regression problems due to their
applicability and effectiveness. Therefore, this study considered the feasibility of a simple machine
learning algorithm (i.e., Support Vector Regression (SVR)) and an optimization algorithm (i.e., Particle
Swarm Optimization (PSO)), for predicting PM10 concentration in open-pit mines. A new hybrid
model based on an assembly of SVR and PSO, i.e., the PSO-SVR model was developed and proposed
in this study for estimating PM10 concentration from drilling operations. The obtained results by
the proposed PSO-SVR model was compared to and evaluated against the other models, including
k-nearest neighbors (KNN), random forest (RF), and classification and regression trees (CART). This
study is useful for the environmental science community and practical engineering in minimizing the
effect of dust concentration on the surrounding environment.

2. Study Area and Geological Conditions

The Coc Sau open-pit coal mine is one of the largest open-pit coal mines in Vietnam, with the depth
of −250 m above sea level (MASL). It is located in Cam Pha city, Vietnam, and it lies within latitudes
106◦25′00”E–108◦05′00”E and longitudes 20◦45′30”N−21◦10′00”N (Figure 1). The coal production of
the mine reached 2 to 3 million ton/year, overburden reached 30 to 40 million m3/year.
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Figure 1. Location of the study site.

The Coc Sau open-cast coal mine was covered entirely by sedimentary rocks of the Late Triassic
Hon Gai Formation (T3n-rhg) (Figure 2). The formation was composed of gritstone, conglomerate,
sandstone, claystone, siltstone, shale, and coal seams. In general, these sedimentary rocks are quite
hard with the Protodyakonov strength index (f) of 8 to 11 [62]. Therefore, fragmenting rocks by
drilling-blasting was considered as an effective method for the exploitation of coal in the mine.

For drilling operations, CБIII-250, D245S, and DML were the favorite drills used in the mine.
The borehole diameters used were in the range of 200 to 250 mm. For drilling, the average drilling
speed was 10 to 15 m/h, so the amount of PM10 concentration incurred was not small. The drilling
contributed to an increase in the impact of dust on the surrounding environment and public health.
In this regard, the distance from the mine to the residential area is about 0.42 mile (~700 m); therefore,
the effect of dust, especially the PM10 concentration, is significant (Figure 3). Also, the occupational
hazard for employees is a particular concern.
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3. Data Collection and Its Characteristics

As stated above, CБIII-250, D245S, and DML drills were used at the mine for drilling boreholes,
with the diameter of boreholes in the range of 200 mm to 250 mm. For data collection, the drilling
diameter/diameter of boreholes (d), the penetration rate of the drill (P), the moisture content (Wtn),
the silt content (S), the density of rock mass (ρ), the compressive strength (σc), and the rebound hardness
number (R) were used as independent variables to predict PM10 concentration.
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As mentioned, CБIII-250, D245S, and DML were the component drills used in the mine with d in
the range of 200 to 250 mm. With an average depth in the range of 12 to 15 m, the drills can penetrate
the rock with P in the range of 0.16 to 0.41 m/min.

For humidity moisture (Wtn), the core drilling rock samples were carefully preserved and brought
to the laboratory. Each drilling hole was collected as a sample by combining representative rock in
the drilling core. In the laboratory, a total of 245 samples were used to determine the natural water
content of rock (Wtn). The method was conducted by Vietnam’s standard of TCVN 10321:2014 [63].
The equation (1) for calculating the natural water content of the rock is as follows:

Wtn =
g1 − g2

g2 − g0
·100 (1)

where g0, g1, g2 are the weights of the sample box without a rock sample, of the sample box and the
natural rock sample, and of the sample box and the dried rock sample, respectively.

For silt content (S), the fine particles present in the drill cutting was determined (in %).
For determining the properties of rock mass (ρ, σc), indirect experiments in combination with
Protodiakonov’s strength index were used. To determine R, a rebound hardness tester was used,
i.e., a Schmidt hammer.

For measuring PM10 concentration, KANOMAX digital dust monitor model 3442 was used in this
study (the manual of KANOMAX can be found at the following link https://kanomax.biz/asia/products/
dust_monitors/model_3442_3443.html). This instrument (model 3442) is a light scattering portable
dust monitor using a semiconductor laser radiation light source [64]. The principle of this method
is that when the dust is irradiated, the scattered light intensity from the dust is proportional to the
mass concentration. Two monitoring stations with this instrument were installed: One in the upstream
and the other in the downstream. To ensure the accuracy of the predictive models, the datasets from
independent drilling locations were collected to eliminate the maximum of PM10 concentration from
other mining operations. In other words, there were no other activities (e.g., loading/unloading,
transporting, blasting) on the same work sites of the drilling operation. Furthermore, the dust monitor
was set around the drill with the distance being in the range of 5 to 10 m to ensure a maximum of
PM10 concentration from the drilling operation was obtained (Figure 3). With 245 drilling operations,
PM10 concentration was measured in the range of 0.148 to 1.306 gm/s. Figure 4 illustrates the data
collection process for this study, and the data used is summarized in Table 2. Also, Figure 5 shows the
relationship between input and output variables used in this study.

Table 2. Characteristics of the data used.

Elements d (mm) P (m/min) Wtn (%) S (%)

Min. 200.0 0.1600 0.29 15.20
1st Qua. 200.0 0.2100 7.84 24.70
Median 230.0 0.2500 11.38 27.60
Mean 227.3 0.2558 11.57 27.58

3rd Qua. 250.0 0.2900 15.39 30.10
Max. 250.0 0.4100 28.12 39.20

Elements ρ (gm/cm3) σc (MPa) R (m) PM10 (gm/s)

Min. 1.220 13.00 16.00 0.148
1st Qua. 1.230 15.00 20.00 0.329
Median 1.240 16.00 22.00 0.474
Mean 1.243 15.98 21.63 0.496

3rd Qua. 1.260 17.00 23.00 0.646
Max. 1.270 19.00 27.00 1.306

Note: drilling diameter/diameter of borehole (d), penetration rate of the drill (P), moisture content (Wtn), silt
content (S), density of rock mass (ρ), compressive strength (σc), rebound hardness number (R), particulate matter
10 micrometers (PM10).

https://kanomax.biz/asia/products/dust_monitors/model_3442_3443.html
https://kanomax.biz/asia/products/dust_monitors/model_3442_3443.html
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In Figure 5, the spread of the points denotes the relationship between the variables. Each sub-figure
means the relationship between two variables. Note that the matrix is symmetrical. The correlated
attributes showed good structure in their relationship, such as ρ, Wtn, and P. They are not linear, but
good predictable curved relationships. Also, Figure 5 shows that the correlation of most of the input
variables was not high. It is a right candidate for AI techniques in finding out the association between
the input and output variables.
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4. Compositions Analysis of PM10 from Drilling Operations

To assess the danger level of PM10 from drilling operations to community health and surroundings,
the compositions of PM10 from drilling operations at the Coc Sau open-pit coal mine were analyzed by
energy dispersive X-ray spectroscopy (SEM-EDS) (Quanta 450—FEI Company, Hillsboro, OR, USA).
Accordingly, three dust samples of different boreholes were collected at the Coc Sau open-pit coal
mine for analysis of their size and composition. The results from the scanning electron microscope
coupled with SEM-EDS showed that the dust particles from the drilling process in the study area were
relatively small with a size of less than ten µm. The composition of the dust consisted of many different
elements, such as Al, Si, K, Fe (Figure 6), which are very dangerous for human health when breathed
in. Therefore, accurate predictions of PM10 concentration from drilling operations in open-pit mines
are necessary to minimize impact on public health and the surrounding environment.
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5. The Principle of Intelligence Techniques

5.1. Random Forest (RF)

In this section, the RF is briefly presented. It is well-known as a decision tree algorithm, which
was proposed by Breiman [65]. RF is a classification or regression technique using classification or
regression trees in a group as a forest. Inspired by the development of the forest, each tree in the
forest is treated as a decision. For regression problems (such as estimating PM10 concentration from
drilling operations in this study), the average value of voters is selected as the final decision of the
RF model as well. In other hands, RF is considered as an ensemble learning method based on the
propensity of each tree [66]. It uses the bagging technique and decision tree algorithm like the CART
algorithm to build an extensive collection of the correlate-decision trees. In statistics, RF uses the
bagging technique as an ensemble tool to improve the accuracy and stability of models. The bootstrap
technique with replacement is also used by RF to generate decision trees without prune [67]. For each
bootstrap sample, a model is developed as a predictor. An ensemble of predictors and its average
value is computed for the final decision of the RF (for regression problems) as follows (Equation (2)):

f̂ (x) =
1
N

N∑
n = 1

f̂n(x) (2)

where N denotes the number of bootstrap samples; b denotes predictor; f̂ (x) denotes the prediction of
the n model on an observation x.

A literature review showed that the RF algorithm has never been used to estimate PM10

concentration from drilling operations; for this study, it was considered and developed for estimating
PM10 concentration from drilling operations. The background of the RF algorithm can be further found
in [68–71].

5.2. Support Vector Regression (SVR)

SVR is one of the branches of the support vector machine (SVM) algorithm, one of the benchmark
algorithms used in machine learning first introduced by Vapnik [72]. It has two main categories,
including SVR and SVC (support vector classification). Of those, SVR is considered as the most
common application form of continuous problems. The details of the SVR is presented in reference [73].
Also, kernel functions can be applied for regression problems (Equations (3)–(6)), including:

Linear function:
T(a, b) = a · b (3)

Polynomial function:
T(a, b) = [(a · b) + 1]d; d ∈ (1, n) (4)

Radial original kernel function:

T(a, b) = exp[
−‖a− b‖2

σ2 ] (5)

Two-layer neural function:
T(a, b) = tanh[e(a · b) − δ] (6)

Like the RF algorithm, a review of previous works showed that the SVR algorithm has never
been used to estimate PM10 concentration from drilling operations. Therefore, it was considered and
combined with the PSO algorithm for estimating PM10 concentration from drilling operations in this
study. More principles of the SVR algorithm can be seen in [72–77].



Appl. Sci. 2019, 9, 2806 10 of 23

5.3. Classification and Regression Tree (CART)

CART is a statistical technique proposed by Breiman [78]. It can solve both regression and
classification problems for exploring as well as modeling data. CART was also developed based
on decision trees to explain the variation of the dependent variable by one or more independent
variables [79]. As a “white box” algorithm, the relationship between dependent and independent
variables is more straightforward with the CART algorithm [80,81]. It does not consider any previous
assumptions related to the relationship between variables. Instead, the repeatedly split data process
is applied to construct the tree based on an independent variable. The data is separated into two
reciprocally exclusive clusters at each split, each of which is as much the same as possible. Then,
the separation process is held to each group independently. Yes/no answers concerning the predictor
values are the primary basis for generating a binary tree by the CART algorithm.

For developing a CART model for predicting PM10 concentration, the four main steps of the CART
algorithm are conducted as below:

1. Applying some rules to exploit data at a node based on a variable value;
2. Using some criteria to prevent the creation of complex trees;
3. Pruning for optimum performance of the model;
4. Calculation and prediction of the output for terminal nodes.

As with the RF and SVR algorithms, a review of previous studies show that the CART algorithm
has never been used to estimate PM10 concentration from drilling operations. Therefore, it is considered
and developed in this study. More background of the CART algorithm can be referred to at [82–86].

5.4. K-Nearest Neighbors (KNN)

KNN is one of the “learning lazy” algorithms, which can be used/applied for regression as well as
classification problems [87]. KNN aims to find the number of nearest neighbors (k) from a functional
space. To obtain this goal, the Euclidean distance ‖

→
x −

→
y‖ between the input variables and queries is

calculated as Equation (7). Then, the k closest input points for the consultation is determined.

d(at, ai) =

√√√ N∑
n = 1

Wn(at,n − ai,n)
2 (7)

where N is the features number; αi,n is the nth feature value of the training point αi; αt,n; is the nth
feature value of the testing point αt; Wn is the weight of the nth feature, 0 ≤Wn ≤ 1.

For estimating a regression problem (such as predicting PM10 concentration in this study), a kernel
function is often applied to calculate Wn based on its proximity to the testing point (Equation (8)),
as follows:

f̂ (at) =

k∑
i = 1

φ(at, a(i)) f (a(i))

k∑
i = 1

φ(at, a(i))
(8)

Where φ(at, a(i)) denotes a kernel function at the ith training point αi; f (a(i)) indicates the response
of αi.

Like the RF, SVR, and CART algorithms, a review of the literature showed that the KNN algorithm
has never been used to estimate PM10 concentration from drilling operations, and is considered and
developed to predict PM10 concentration from drilling operations in this study. More principles of
KNN algorithm can be seen in [42,87–89].
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5.5. Particle Swarm Optimization (PSO) Algorithm

PSO is a swarm algorithm inspired by the behavior of the particles/social animals, such as fish or
birds. It was introduced and developed by Eberhart and Kennedy [90] and classified as one of the
metaheuristic techniques. It was considered as an evolutionary computation technique in the statistical
community [41]. The PSO algorithm implements six steps for optimal searching as the following
procedure. In which, the velocity and local positions are continuously updated using Equations (9)
and (10), for sharing their experience.

1. Generate the particle swarm size with random locations and speeds on d dimensions in the
subject space.

2. Estimate the proper optimization fitness function for each particle in d factors.
3. Compare the fitness evaluation with pbest of the particle. If the present value is better than pbest,

then set pbest value equal to the present value, and the pbest position equal to the current position
in d-dimensional space.

4. Compare the evaluation of the fitness with the overall previous best of the population. If the
current value is better than gbest, then reset gbest to the current population index and value
of particle.

5. Change the velocity and local of the particle as Equations (9) and (10) as follow:

vi+1
j = wv(i)j + (c1 × r1 × (local best j − x(i)j )) + (c2 × r2 × (global best j − x(i)j )),

vmin ≤ v(i)j ≤ vmax
(9)

xi+1
j = x(i)j + v(i+1)

j ; j = 1, 2, . . . , n (10)

where x(i)j denote the position of particle j at iteration i; v(i)j denote the velocity of particle j at
iteration i; w is the inertial weight coefficient; i is the iteration number; r1 and r2 represent a
random number uniformly distributed in [0,1] which is randomly generated at iteration and for
each particle.

6. Loop to step (2) until a criterion is met. Usually, the maximum number of iterations or sufficiently
good fitness, the searching process will stop.

In this study, the PSO algorithm was used/applied to optimize the hyper-parameters of the SVR
model with different kernel functions (i.e., radial basis function, polynomial, linear) for predicting
PM10 concentration from drilling operations.

5.6. Development of the PM10 Concentration Predictive Models

To establish the PM10 concentration predictive models, a database including 245 drilling operations
was randomly divided into two phases. In the first phase, ~80% of the data (approximately 221
observations) was used for the development of the models. The remaining ~20% (around 24
observations) in the second phase was used as new data for validating the performance of the
developed models. ArcGIS software was used to manage databases with big data query capabilities [91].
The preparation of data for this study is illustrated in Figure 7.

To validate/evaluate the models performances, two performance indicators, the root-mean-squared
error (RMSE) and the determination coefficient (R2), were calculated (Equations (11) and (12)):

RMSE =

√√
1
n

n∑
i = 1

(yi − ŷi)
2 (11)
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R2 = 1−

∑
i
(yi − ŷi)

2

∑
i
(yi − y)2 (12)

where n is a total number of data; yi, ŷi and y are measured, predicted, and mean of yi values,
respectively. For an optimal model, R2 = 1 and RMSE = 0.Appl. Sci. 2019, 9, x 13 of 25 
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5.7. RF Model

For the RF model, the number of decision trees (ntree) and the random predictor selected (mtry)
are considered as the essential criteria for measuring the quality of the model. To ensure the diversity
of the forest, ntree was selected equal to 2000 [71] in this study. Each decision tree plays a role as a
voter in the RF model. The remaining parameter, i.e., mtry was selected by a grid search technique
with mtry in the range of 1 to 50 (Figure 8). Also, k-fold cross-validation resampling technique was
applied with k = 10 to avoid overfitting/underfitting. As a result, the optimal values of the RF model
for anticipating PM10 concentration was obtained at ntree = 2000 and mtry = 45.Appl. Sci. 2019, 9, x 14 of 25 
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5.8. CART Model

For the CART model, the complexity parameter (cp) was used to tune the performance of the
model. Similar to the RF model, a grid search with the cp in the range of 0 to 0.1 was conducted.
The 10-fold cross-validation resampling technique was also used to avoid overfitting/underfitting, as
those used for the RF model. Eventually, the CART model obtained the best performance at cp = 0 for
estimating PM10 concentration, as shown in Figure 9.

Appl. Sci. 2019, 9, x 14 of 25 

 
Figure 8. Performance of the random forest (RF) model for forecasting PM10 concentration on the 
training dataset. 

5.8. CART Model 

For the CART model, the complexity parameter (cp) was used to tune the performance of the 
model. Similar to the RF model, a grid search with the cp in the range of 0 to 0.1 was conducted. The 
10-fold cross-validation resampling technique was also used to avoid overfitting/underfitting, as 
those used for the RF model. Eventually, the CART model obtained the best performance at cp = 0 for 
estimating PM10 concentration, as shown in Figure 9. 

 
Figure 9. Root-mean-squared error (RMSE) of the classification and regression trees (CART) model 
with various cp values on the training dataset. 

5.9. KNN Model 
For the KNN model, its performance is controlled by the number of neighbors (k). Similar to the 

RF and CART models, a grid search with the k in the range of 1 to 50 was conducted to find out the 
best KNN model. The 10-fold cross-validation technique with three repeats was also used to avoid 
overfitting/underfitting of the KNN model. Finally, a good KNN model was found at k = 4, as shown 
in Figure 10. 

Figure 9. Root-mean-squared error (RMSE) of the classification and regression trees (CART) model
with various cp values on the training dataset.

5.9. KNN Model

For the KNN model, its performance is controlled by the number of neighbors (k). Similar to the
RF and CART models, a grid search with the k in the range of 1 to 50 was conducted to find out the
best KNN model. The 10-fold cross-validation technique with three repeats was also used to avoid
overfitting/underfitting of the KNN model. Finally, a good KNN model was found at k = 4, as shown
in Figure 10.Appl. Sci. 2019, 9, x 15 of 25 
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5.10. PSO-SVR Models for Estimating PM10 Concentration

As introduced above, the primary purpose of this study is developing and proposing a new
artificial intelligence system for predicting PM10 concentration, i.e., PSO-SVR model. Three forms of
kernel function were applied for the development of the PSO-SVR models, abbreviated as PSO-SVR-L,
PSO-SVR-P, and PSO-SVR-RBF models. In this procedure, the PSO algorithm performs a global
search for the optimal values of SVR models through a fitness function, i.e., RMSE (Equation 11).
For each PSO-SVR model, the hyper-parameters are different. Depending on the kernel function used,



Appl. Sci. 2019, 9, 2806 14 of 23

the hyper-parameters of each PSO-SVR model are different. Table 3 shows the hyper-parameters of
the PSO-SVR models with different functions of the kernel. A framework of the PSO-SVR model for
estimating concentration in this study is shown in Figure 11.

Table 3. Hyper-parameters of the SVR models with the different kernel functions.

Model
Hyper-Parameters

C d γ Σ

PSO-SVR-L 3 - - -
PSO-SVR-P 3 3 3 -

PSO-SVR-RBF 3 - - 3

Note: cost (C); degree (d); scale (γ); sigma (σ).
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Before proceeding to search for the optimal values of hyper-parameters of the SVR models,
the parameters of the PSO algorithm is set as the first step on the training dataset. In the PSO algorithm,
the number population (p), maximum number of iteration (mi), maximum particle’s velocity (Vmax),
individual cognitive (φ1), group cognitive (φ2), and inertia weight (w) are the parameters used for the
optimization process. The sample size should have functional population diversity [92–94], therefore,
a trial-and-error procedure was employed with the swarm size was 100, 150, 200, 250, 300, respectively
(p = 50, 100, 150, 200, 250, 300). For terminating the optimization process in this study, mi was set
equal to 1000 to check the fitness of particle positions using the RMSE metric (Equation 11). To ensure
the balance between global discovery and local search, w was set equal to 0.9 [95]. According to
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Kennedy [96] and Clerc and Kennedy [97], φ1 should be equal to φ2 and φ1 + φ2 lie in the range of 0 to
4. Therefore, in this study, φ1 = φ2 = 1.6. To ensure convergence and prevent explosion [98], Vmax was
set equal to 2 in this study. Figures 12–14 shows the training process of PSO-SVR models (PSO-SVR-L;
PSO-SVR-P; PSO-SVR-RBF).Appl. Sci. 2019, 9, x 17 of 25 
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After the optimization process of the PSO algorithm was stopped, the optimal values of the SVR
models were extracted for predicting PM10 concentration. Table 4 shows the obtained results by the
PSO algorithm for searching the hyper-parameters of the SVR models.

Table 4. The parameters of the PSO-SVR models for estimating PM10 concentration.

Model
Hyper-Parameters

C d γ σ

PSO-SVR-L 900.792 - - -
PSO-SVR-P 509.611 2 0.0014 -

PSO-SVR-RBF 19.988 - - 0.01
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6. Results and Discussion

Once the PM10 concentration predictive models were developed, their performance was evaluated
and discussed through RMSE and R2, as mentioned in Equations (11) and (12). Table 5 shows the
performance of the developed models on the training and testing datasets.

Table 5. Performance indices of the PM10 concentration predictive models.

Model
Training Testing

RMSE R2 RMSE R2

RF 0.057 0.963 0.060 0.894
CART 0.052 0.945 0.052 0.924
KNN 0.074 0.904 0.067 0.867

PSO-SVR-L 0.036 0.963 0.040 0.954
PSO-SVR-P 0.040 0.962 0.042 0.948

PSO-SVR-RBF 0.041 0.962 0.043 0.946

Note: The bold type represents the best model. RMSE denotes root-mean-square error; R2 denotes
determination coefficient.

Table 5 showed that the PSO-SVR models performed very well in estimating PM10 concentration
from drilling operations in this study with an RMSE in the range of 0.036 to 0.041 on the training
dataset, 0.040 to 0.043 on the testing dataset; R2 in the range of 0.962 to 0.963 on the training dataset,
0.946 to 0.954 on the testing dataset. Notable, the PSO-SVR-L model yielded the best performance
with an RMSE of 0.036 and 0.040 for the training and testing dataset, respectively; and R2 of 0.963 and
0.954 for the training and testing dataset, respectively. With the highest performance, the PSO-SVR-L
model is the most dominant model for estimating PM10 concentration in this study. The remaining AI
models (RF, CART, KNN) provided more mediocre performance than those of the PSO-SVR models
with an RMSE in the range of 0.057 to 0.074 on the training dataset, 0.052 to 0.067 on the testing dataset;
and R2 in the range of 0.904 to 0.963 on the training dataset, 0.867 to 0.924 on the testing dataset.
Remarkable, the KNN model yielded the most inferior performance with an RMSE of 0.074 and 0.067
for the training and testing dataset, respectively; and R2 of 0.904 and 0.867 for the training and testing
dataset, respectively. Figure 15 shows the measured versus predicted values of PM10 concentration on
the testing dataset.

Based on the obtained results from the developed models, it can be seen that machine learning
algorithms perform very well in estimating PM10 concentration from drilling operations in open-pit
mines. In particular, the PSO algorithm played a significant role in optimizing the hyper-parameters of
the SVR models to provide more accurate predictive results. The PSO-SVR-L model was introduced
as the most superior model in this study for estimating PM10 concentration that explained the linear
relationship of the input variables with PM10 concentration. However, the present study used seven
independent/input variables for predicting PM10, and the effectiveness of the models was different.
Therefore, an importance analysis procedure of the independent/input variables for each model
was performed in this study, i.e., using the Hilbert-Schmidt Independence Criterion (HSIC) [99,100].
An overall picture of performance as well as the ability to explain the relationship between the
independent/input variables of the models is illustrated in Table 6.

From Table 6, it is easy to recognize that P, Wtn, and σc are the most importance parameters of all
developed AI models. They should be used for estimating PM10 concentration from drilling operations.
Taking a closer look at Table 6 shows that the assessment of the importance of input variables has
a significant effect on the performance of the model. In the proposed PSO-SVR-L model, the Wtn

parameter was most importance parameter with indices of 0.975, whereas the remaining models were
only evaluated in the range of 0.896 to 0.957. Likewise, P and σc also received different values from
different models. It can be seen that the evaluation of the importance of input variables as too low or
too high has a significant impact on the performance of the forecasting model.
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Table 6. Important parameters of the models in this study.

Model
Performance Importance Parameters

RMSE R2 d P Wtn S ρ σc R

RF 0.060 0.894 0.018 0.825 0.927 0.008 0.017 0.779 0.013
CART 0.052 0.924 0.019 0.824 0.929 0.007 0.017 0.784 0.012
KNN 0.067 0.867 0.024 0.802 0.896 0.006 0.022 0.826 0.014

PSO-SVR-L 0.040 0.954 0.018 0.825 0.975 0.006 0.018 0.817 0.012
PSO-SVR-P 0.042 0.948 0.017 0.836 0.957 0.007 0.018 0.812 0.013

PSO-SVR-RBF 0.043 0.946 0.016 0.839 0.955 0.006 0.018 0.813 0.013

Note: drilling diameter/diameter of borehole (d), penetration rate of the drill (P), moisture content (Wtn), silt
content (S), density of rock mass (ρ), compressive strength (σc), rebound hardness number (R), particulate matter 10
micrometers (PM10), root-mean-squared error (RMSE), determination coefficient (R2).

7. Conclusions and Recommendations

Drilling-blasting is an essential task in mining operations. Until now, it is still the most efficient
method for fragmenting rocks in open-cast mines. However, the impact on the environment caused
by drilling operations as well as blasting operations is inevitable, especially in dust concentration.
Evidence of the dangers of PM10 has been found in open-pit mines. Therefore, the prediction and
strict control of PM10 concentrations is necessary to minimize the harmful impact on the surrounding
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environment. In this study, PM10 concentration from drilling operations in open-pit mines was
considered and evaluated. In this study, some conclusions and remarks were drawn:

1. The dust concentration caused by activities in open-pit mines is high and very dangerous.
The dust is the cause of the harmful impact on the environment and public health. In this study,
PM10 concentration from drilling operations in open-pit mines was considered and predicted.
However, the dust concentration caused by other activities in open-pit mines also needs to be
controlled and predicted in the future. Total dust concentration needs to be managed in open-pit
mines, and is a challenge for future works.

2. For drilling operations, AI techniques are the advanced methods for predicting drill-induced
dust concentration. They provided predictive intelligence models with high accuracy in practical
engineering. In addition to the ANN, which was developed by previous researchers, the other
machine learning techniques, i.e., RF, CART, KNN, PSO-SVR in this study were also techniques
to control air quality in open-pit mines.

3. The PSO algorithm is a robust tool for the optimization of the SVR model for estimating PM10

concentration. With an RMSE of 0.040 and R2 of 0.954, the proposed PSO-SVR-L model was the
most dominant model for predicting drill-induced PM10 concentration in this study. It should be
applied in practical engineering to control PM10 concentration from drilling operations as well as
the other processes. Additionally, the CART, RF, and KNN models should also be considered in
other conditions of different sites for predicting dust concentration. They can be good models in
other case studies for predicting the environmental issues in open-pit mines.

4. ρ, Wtn, and P are the most influential parameters on the PM10 concentration predictive model,
especially Wtn. They should be of particular interest and carefully collected for predicting
drill-induced PM10 concentration.

5. Based on the obtained results of this study, PM10 concentration from drilling operations can be
predicted and controlled by the proposed PSO-SVR model. However, there are several operations,
such as blasting, transporting, loading/unloading, which are also the causes of dust generation
in open-pit mines. Therefore, the feasibility of AI techniques is also needed to investigate and
establish a comprehensive air quality control system in open-pit mines.
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