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Abstract: The main objective of this study is to develop and compare hybrid Artificial Intelligence
(AI) approaches, namely Adaptive Network-based Fuzzy Inference System (ANFIS) optimized by
Genetic Algorithm (GAANFIS) and Particle Swarm Optimization (PSOANFIS) and Support Vector
Machine (SVM) for predicting the Marshall Stability (MS) of Stone Matrix Asphalt (SMA) materials.
Other important properties of the SMA, namely Marshall Flow (MF) and Marshall Quotient (MQ)
were also predicted using the best model found. With that goal, the SMA samples were fabricated in
a local laboratory and used to generate datasets for the modeling. The considered input parameters
were coarse and fine aggregates, bitumen content and cellulose. The predicted targets were Marshall
Parameters such as MS, MF and MQ. Models performance assessment was evaluated thanks to criteria
such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and correlation coefficient (R).
A Monte Carlo approach with 1000 simulations was used to deduce the statistical results to assess the
performance of the three proposed AI models. The results showed that the SVM is the best predictor
regarding the converged statistical criteria and probability density functions of RMSE, MAE and R.
The results of this study represent a contribution towards the selection of a suitable AI approach to
quickly and accurately determine the Marshall Parameters of SMA mixtures.

Keywords: adaptive network-based fuzzy inference system; stone matrix asphalt; genetic algorithm;
particle swarm optimization; support vector machine

1. Introduction

Stone Matrix Asphalt (SMA), created in Germany during the 1960s [1], is a hot mixed asphalt
which contains mainly a high binder content mortar and a coarse aggregate structure. The SMA
maximizes stone-to-stone contact with an important concentration of coarse aggregate. The latter are
held and bonded with a matrix of stabilizer and mineral filler in a thick asphalt layer [2]. The SMA has
been widely used due to its many advantages such as high durability, high rut resistance, reduced noise
pollution and resistance to reflective cracking [3,4]. Several well-known disadvantages of the SMA can
also be pointed out, for instance, drainage of binder or higher initial production costs compared to
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conventional hot-mix asphalt mixtures [5,6]. However, many studies have demonstrated that despite
the higher production cost, the durability of the SMA is better than that of conventional ones, thus
selection becomes a cost-effectiveness analysis problem [7], making the need to carefully analyze the
mechanical properties of the SMA highly required.

Marshall parameters such as Marshall Stability (MS), Marshall Flow (MF) and Marshall Quotient
(MQ) are important mechanical properties of the SMA, which directly reflect the performance of
such asphalt concretes [6]. Indeed, the MS is an important property of the SMA as it indicates the
performance of pavement subjected to shoving and rutting under usage conditions [8]. A good SMA
stability depends essentially on internal friction—the interlocking as well as frictional resistance of
aggregates—and the cohesion—a kind of binding force of the binder. The MF is, on the contrary,
considered as an opposite property of the MS. It measures the reversible behavior of the wear course
of pavements under traffic conditions [9]. Last but not least, the MQ, defined as a ratio of the MS
and MF, indicates the resistance of asphalt mixtures to permanent deformation. The three Marshall
parameters are widely used for the evaluation of resistance to displacement, distortion, rutting as well
as shearing stresses of SMA [10,11]. As the pavement is frequently subjected to traffic loads, it is very
necessary to find an optimum manner to determine these parameters [7]. In general, these parameters
are often determined by laboratory experiments or by traditional statistical approaches [7]. However,
such procedures are complicated, cost and time consuming, and operator expertise is also required.
Besides, various interesting parameters such as the specific gravity, air voids and voids in aggregates
could be deduced directly by simple mathematical calculations if researchers can obtain these Marshall
parameters by the help of another means.

Apart from traditional laboratory experiments or traditional statistical analysis [12], the estimation
of Marshall parameters could be approximated by another manner which has been recently investigated
over the last three decades: Artificial Intelligence (AI) approaches. Indeed, AI simulations have been
widely applied in many fields of structural engineering [13–15], civil engineering materials [16–20] as
well as in pavement engineering due to their simplicity and effectiveness. The applications of AI in this
field cover a broad range, such as pavement crack detection and classification [21], condition rating of
jointed concrete pavements [22], prediction of the International Roughness Index (IRI) [23], evaluation
of pavement conditions to deduce performance prediction models [24]. Regarding the mechanical
properties of asphalt concrete, Ozgan et al. [25,26] applied Fuzzy Logic (FL) along with Artificial
Neural Networks (ANN) to predict the relationship between the MS with related physical properties.
The authors reported a better prediction capability of the AI models compared with classical statistical
methods. In another attempt, Tapkin et al. [27,28] affirmed the use of Neural Networks (NN) to
predict Marshall Test results and introduced the relationships in a closed form solution. The k-Nearest
Neighbor (k-NN) algorithm has also been applied to predict the Marshall Test results for asphalt
mixtures, as reported in the work of Aksoy et al. [8]. Although diverse studies have been carried out to
predict the SMA mechanical properties, only single methods have been employed. The possibility
to use hybrid AI models or more robust technique is still questioned. More important, up to date,
limited investigations clearly demonstrate the performance of AI models in predicting the Marshall
parameters of the SMA mixtures in particular, or of other asphalt concretes in general.

Consequently, the main objective of this study is to develop and compare hybrid AI approaches
namely Adaptive Network-based Fuzzy Inference System (ANFIS) optimized by Genetic Algorithm
(GAANFIS) and Particle Swarm Optimization (PSOANFIS) and Support Vector Machine (SVM) for
predicting the MS of the SMA materials. Other important properties of the SMA namely MF and MQ
were also predicted using the best model found. These AI models have not been applied yet for the
prediction of Marshall Parameters of the SMA mixtures. To this purpose, laboratory experiments were
first performed to fabricate the SMA samples using coarse and fine aggregates, two types of bitumen
as binder and cellulose as stabilizer. Various criteria, namely Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE) and correlation coefficient (R) were used for model performance assessment.
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A Monte Carlo approach with 1000 simulations was used to deduce the statistical results to assess the
performance of the proposed AI models.

2. Experimental Program and Data Preparation

The SMA samples were carefully fabricated in our laboratory by an expert operator to ensure
maximum precision of the experimental results. Detailed information about the compounds and
fabrication process used, as well as the testing procedures, are presented in the following sections.

2.1. Material Properties

The SMA samples were fabricated with three main ingredients: crushed stone coarse and fine
aggregates, bitumen and stabilizer. Crushed granite aggregates were collected from a local quarry at
Phu Man (Ha Noi, Viet Nam). The physical properties of the fine and coarse aggregates are given in
Table 1. The bulk specific density of the mineral filler is 2720 g/cm3. In this work, asphalt cements were
selected as 60/70 penetration bitumen (denoted as Bitumen 60/70) and Polymer Modified Bitumen I
(denoted as PMB I). They were provided by Vietnam National Petroleum Group (Petrolimex, Ha Noi,
Viet Nam). Physical properties of the bitumen samples are shown in Table 2. Cellulose fiber was added
to the SMA mixtures as a drain down inhibitor. It was a type of Chinese-grown fiber and the properties
are provided in Table 3.

Table 1. Physical properties of coarse, fine aggregates and mineral filler.

Properties Value

Coarse aggregate

Los Angeles abrasion (%) 16.22
Flat and Elongated (3 to 1) (%) 8.80
Water absorption (%) 0.53
Bulk specific density (g/cm3) 2.670
Crushed content (one face) (%) 100
Crushed content (two faces) (%) 100

Fine aggregate

Water absorption (%) 0.79
Bulk specific density (g/cm3) 2.667

Mineral filler

Bulk specific density (g/cm3) 2.720

Table 2. Physical properties of Bitumen 60/70 and PMB I bitumen.

Properties Bitumen 60/70 PMB I

Specific gravity at 25 ◦C (g/cm3) 1.030 1.027
Penetration at 25 ◦C (0.1 mm) 64.5 48
Flash point (◦C) 310 248
Softening point (◦C) 48.1 67.5
Ductility at 25 ◦C (cm) >100 >100

Table 3. Properties of cellulose fiber.

Properties Test Value

Cellulose content (%) 85%
Length (mm) <5

Diameter (µm) 46
Density (g/m3) 1.6

pH Value 6.5
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2.2. Samples Preparation and Testing

Sample preparation used three different aggregate gradations with 12.5 mm nominal maximum
aggregate sizes to prepare the SMA mixtures, namely SMA type I, SMA type II and SMA type III.
The mixture gradation and gradation limits were subjected to the AASHTO M325 testing and the
results plotted in Figure 1. The SMA I samples were prepared with coarse and fine aggregates,
mineral filler, Bitumen 60/70 and cellulose fibers, the SMA II samples were produced with similar
aggregates, cellulose fibers and PMB I as binder, whereas the SMA III samples were using different
weight percentages of coarse and fine aggregates, mineral filler, Bitumen 60/70 and cellulose fibers.
Out of these, with the SMA I samples, the bitumen content is in a range from 5.4% to 7.0% and retained
coarse aggregates on the 4.75 mm sieve was 76.1 wt.%; with the SMA II samples, the bitumen contents
varied from 5.5% to 7.5% and the retained coarse aggregates on the 4.75 mm sieve is 71.17 wt.%; and
with the SMA III samples, the bitumen content is in a range from 5.7% to 6.9% and the retained coarse
aggregates on the 4.75 mm sieve is 74.2 wt%. In summarize, a number of 60 mixtures were prepared.
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Figure 1. Mixture gradation aggregate for the SMA samples.

For the experimental procedures, the aggregates were first dried in an oven at 105 ◦C to 110 ◦C until
a constant mass was achieved, following the ASTM D6926 norms [29]. The separation of aggregates
by dry-sieving was performed next in order to obtain the desired size fractions. The mixing process
was conducted following the ASTM D6926 standard [29], using an asphalt mixer with 30 L capacity.
Before adding cellulose fiber, the mixture of aggregates and mineral filler were homogeneously mixed
together. The corresponding bitumen content was then added into the mixing machine and stirred for
120 s to assure the aggregates and mineral filler are well covered by bitumen [29]. The asphalt cements
were heated in order to get the viscosities of 170 ± 20 cP and 280 ± 30 cP for mixing and compacting
procedures, respectively [29]. The Marshall Automatic Compaction was next used for the compacting
procedure. The SMA samples were compacted on two faces, using 50 blows of a 4536 g hammer falling
from a 457.2 mm of height, following the ASTM D6927 procedure [30]. After cooling down to ambient



Appl. Sci. 2019, 9, 3172 5 of 20

room temperature, the samples were extracted from the cylindrical mould and kept under laboratory
conditions. The testing procedure was performed within 24 h after the compaction [30].

The Marshall test was carried out with cylindrical specimens of 63.5 mm in height and 101.6 mm
in diameter, a standard compaction hammer and a cylindrical mold. Marshall Tests were conducted
as per ASTM D6927 [30], with an Automatic Stability Testing machine. Before each measurement,
the specimen was placed in a hot water at 60◦C for 40 min [30]. Data of the MS and MF were collected
after each measurement, whereas the MQ was deduced as a ratio of MS and MF. The SMA materials
and testing machine are shown in Figure 2.
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2.3. Data Statistical Information

After experimental tests, the data were collected and summarized in Appendix A (Table A1),
whereas the statistical information of the dataset is presented in Table 4.

In this study, input variables considered were coarse aggregates (%), two types of bitumen, namely
Bitumen 60/70 and PMB I, and the cellulose fibers contents (%). In this study, the polymer-modified
bitumen was selected since it is one of the most common types of modified binders in Vietnam
and many other regions [31–33]. The targets were three Marshall Parameters, i.e., MS, MF and MQ.
The histogram of the inputs and outputs are presented in Figures 3 and 4. It is noticed that all the
values of inputs and outputs parameters covered a reasonable range, which corresponded to typical
characteristics of the SMA mixtures as well as SMA component materials.
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Table 4. Statistical analysis of the inputs and outputs in this study.

Parameters Unit Minimum Maximum Average StD * Median

Coarse aggregates (%) 71.17 76.1 73.82 2.05 74.2
Bitumen 60/70 (%) 0 7.0 4.17 3.00 6.00

PMB I (%) 0 7.5 2.17 3.12 0
Cellulose fiber (%) 0 0.5 0.25 0.18 0.25

MS (kN) 6.4 11.32 7.99 1.02 7.85
MF (mm) 2.55 4.65 3.21 0.44 3.20
MQ (kN/mm) 1.38 3.45 2.54 0.44 2.65

StD * = Standard Deviation.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 20 

In this study, input variables considered were coarse aggregates (%), two types of bitumen, 
namely Bitumen 60/70 and PMB I, and the cellulose fibers contents (%). In this study, the polymer-
modified bitumen was selected since it is one of the most common types of modified binders in 
Vietnam and many other regions [31–33]. The targets were three Marshall Parameters, i.e., MS, MF 
and MQ. The histogram of the inputs and outputs are presented in Figures 3 and 4. It is noticed that 
all the values of inputs and outputs parameters covered a reasonable range, which corresponded to 
typical characteristics of the SMA mixtures as well as SMA component materials. 

 
Figure 3. Histogram of the input parameters in this study for: (a) coarse aggregates; (b) Bitumen 60/70; 
(c) PMB I Bitumen and (d) cellulose fibers. 

 
Figure 4. Histogram of the output parameters considered in this study for: (a) Marshall Stability (MS); 
(b) Marshall Flow (MF) and (c) Marshall Quotient (MQ). 

3. Method Used 

In this study, four main techniques, namely ANFIS, Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), and SVM were used. Out of these methods, the GA and PSO were used to 

Figure 3. Histogram of the input parameters in this study for: (a) coarse aggregates; (b) Bitumen 60/70;
(c) PMB I Bitumen and (d) cellulose fibers.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 20 

In this study, input variables considered were coarse aggregates (%), two types of bitumen, 
namely Bitumen 60/70 and PMB I, and the cellulose fibers contents (%). In this study, the polymer-
modified bitumen was selected since it is one of the most common types of modified binders in 
Vietnam and many other regions [31–33]. The targets were three Marshall Parameters, i.e., MS, MF 
and MQ. The histogram of the inputs and outputs are presented in Figures 3 and 4. It is noticed that 
all the values of inputs and outputs parameters covered a reasonable range, which corresponded to 
typical characteristics of the SMA mixtures as well as SMA component materials. 

 
Figure 3. Histogram of the input parameters in this study for: (a) coarse aggregates; (b) Bitumen 60/70; 
(c) PMB I Bitumen and (d) cellulose fibers. 

 
Figure 4. Histogram of the output parameters considered in this study for: (a) Marshall Stability (MS); 
(b) Marshall Flow (MF) and (c) Marshall Quotient (MQ). 

3. Method Used 

In this study, four main techniques, namely ANFIS, Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), and SVM were used. Out of these methods, the GA and PSO were used to 

Figure 4. Histogram of the output parameters considered in this study for: (a) Marshall Stability (MS);
(b) Marshall Flow (MF) and (c) Marshall Quotient (MQ).



Appl. Sci. 2019, 9, 3172 7 of 20

3. Method Used

In this study, four main techniques, namely ANFIS, Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and SVM were used. Out of these methods, the GA and PSO were used to
optimize the parameters of the ANFIS to develop hybrid AI models (PSOANFIS and GAANFIS),
whereas the SVM was used as a single benchmark model for comparison. A brief description of these
techniques is given in the following sections.

3.1. Adaptive Network-Based Fuzzy Inference System

Adaptive Network-based Fuzzy Inference System (ANFIS) is a hybrid algorithm with the
combination of fuzzy systems and neural networks. It was first proposed by Jang [34] and often used
to investigate nonlinear systems. Generally, an ANFIS includes five layers and each layer is formulated
by some nodes and node functions [35]. In this study, the ANFIS uses Takagi-Sugeno model which is
the most prominent fuzzy inference system (FIS) model [36].

3.2. Genetic Algorithm

Genetic algorithm (GA) is an optimization method which is similar to natural evolution, where
a population of a specific species becomes adapted to the environmental conditions [37]. It was
first introduced by Holland [38], and has become one of the oldest and most widely used evolution
algorithms. Its structure consists of a population, in which each individual is called a chromosome,
which is a possible solution of the problem. The search process of the GA is made by developing a
random chromosome population and the next generation is determined by applying three operators
(i.e., selection operator, crossover operator, and mutation operator) [35,39].

3.3. Particle Swarm Optimization

Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart [40,41], is one of the
most commonly evolutionary methods in optimizing the parameters of a given model. The principle
of the PSO algorithm is based on the social and biological behaviors of animals when seeking food.
The PSO originates with a random group of particles where each particle stands for a specific solution
to the problem. It comprises of group of particles, in which the position of each individual is affected
by the surrounding most optimal position during its movement. In a PSO, each individual can adjust
its position in the search space related to the best locations that can ever have and the best location
adjacent to its neighbors. In the PSO, the position of each particle at every iteration step is updated
based on its current position and velocity [35].

3.4. Support Vector Machine

Support vector machine (SVM) was firstly introduced in the work of Vapnik [42]. The principle of
SVM is to create a hyperplane to classify a dataset into distinct classes. By using a mapping, the SVM
completely plots the original input space into a high-dimensional feature space [43]. Thereafter,
the optimal plane is determined by maximizing the margins of class boundaries in the feature space.
There are two kinds of the SVM problems, the first kind deals with classification problems whereas
the second one deals with regression problems. This work used the SVM to predict the Marshall
Parameters, therefore the regression problem is studied [44].

3.5. Quality Assessment

The efficiency of the developed models is evaluated using various statistical indexes namely Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE) and correlation coefficient (R). The value of
R ranges from [0, 1], the higher value of R (i.e., closer to 1) indicates more successful model. On the



Appl. Sci. 2019, 9, 3172 8 of 20

contrary, lower value of RMSE, MAE indicates better performance of proposed AI models. The criteria
are determined by the following equations:

RMSE =

√√√ N∑
i=1

(y0 − yp)
2/N (1)

MAE =
1
N

N∑
i=1

∣∣∣y0 − yp
∣∣∣ (2)

R =

√√√√√√√√√√√√√√1−

N∑
i=1

(y0 − yp)
2

N∑
i=1

(y0 − yi)
2

(3)

where N is defined as the number of input data, y is the mean value of the outputs, and y0 and yp

express the actual and modeled values, respectively.

3.6. Monte Carlo Method

In this study, a Monte Carlo approach was applied to propagate input variability on the predicted
output. The method exhibits a high numerical performance because of its automatic parallelization and
is widely adopted in many fields [45–47], especially for multi-variable problems [44,48,49]. Random
samplings of input variables (by a uniform distribution) are generated and incorporated into the
model to simulate output results [50]. By doing so, any variability of the input dataset could be fully
accounted for in the prediction results. Various types of quantitative information could be obtained
as a result of statistical analysis of predicted outputs, for instance, (i) robustness of the proposed
models under presence of input variability and/or (ii) sensitivity of each input on the prediction results.
In order to investigate the optimal number of Monte Carlo simulations, an indicator of convergence,
named as IC, is introduced [51,52]:

N 7→ IC(N) =
1
N

N∑
k=1

θk, (4)

where N is defined as the number of Monte Carlo simulations of the random variable θ. The indicator
IC was helpful to identify an optimal number of Monte Carlo simulations, as a relative factor directly
reflects time-consuming.

3.7. Modeling Methodology

The modeling methodology of this study was carried out through several main steps described as
follows (Figure 5):

Step 1: Loading the as-obtained dataset and dividing it into two parts. The first part, including 70%
of the data, is used to train and construct the AI “black-boxes”, whereas the remaining 30%
of data was used for validation of the models. The input parameters were coarse and fine
aggregates (wt.%), AC-60/70 (wt.%) or PMB I (wt.%) binders, and cellulose fibers (wt.%).
The output of the AI numerical tools was MS (kN), MF (mm) and MQ (kN/mm).

Step 2: Construction of the models using the training dataset. In the PSOANFIS, the PSO was first
used to optimize the consequent and antecedent parameters of the ANFIS with the best
number of particles and the inertia weight were set as 25 and 0.01, respectively. The optimal
parameters optimized by the PSO were then used to train the ANFIS model for generating
the PSOANFIS. For the GAANFIS, the GA was first used to optimize the consequent and
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antecedent parameters of the ANFIS with the crossover rate, the best number of individuals
and mutation rate were set as 0.4, 25, and 0.7, respectively. The optimal parameters optimized
by the GA were then used to train the ANFIS model for generating the GAANFIS. With
respect to the SVM, the cubic algorithm was used to train and construct the model. A k-fold
cross-validation was applied to assess the performance of SVM with the number of 10 folds.

Step 3: Validation of the models using testing data set was performed in this step. Various criteria
namely R, RMSE, MAE were used to validate the three developed models in both the training
and testing datasets.

Step 4: Monte Carlo analysis and asymmetric distribution were finally used to validate the robustness
of the developed models. In this step, the uniform distribution was used to generate random
sampling of the training dataset for Monte Carlo simulation.

Step 5: Predicting the MF and MQ of the SMA materials: Using the results of Monte Carlo analysis,
asymmetric distribution and other validation criteria, the best model will be determined, this
model is then used to predict other important parameters of the SMA materials namely MF
and MQ.
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4. Results and Discussion

4.1. Prediction Capability

Taking MS as the prediction target, the performance of three proposed AI methods, namely
PSOANFIS, GAANFIS and SVM was investigated with both training (Figure 6a,c,e) and testing datasets
(Figure 6b,d,f). As regards to the training part, the PSOANFIS technique had the closest fitted line to
the diagonal, confirmed by the highest value of R (i.e., 0.9266 compared to 0.9111 and 0.9110 using the
GAANFIS and SVM, respectively). With respect to RMSE and MAE, the PSOANFIS appeared the best
predictor of the MS as the corresponding values were smallest (Table 5). This is a good indication that
RMSE and MAE were in excellent agreement with R, demonstrating that the PSOANFIS performed
better than other techniques in term of training dataset.
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Table 5. Summary of prediction capability for the training and testing parts using PSOANFIS, GAANFIS
and SVM.

Part Method R RMSE MAE

Training
PSOANFIS 0.9266 0.3429 0.2134
GAANFIS 0.9111 0.3834 0.2655

SVM 0.9110 0.3781 0.2609

Testing
PSOANFIS 0.8692 0.6592 0.4361
GAANFIS 0.8181 0.7213 0.5015

SVM 0.8711 0.5978 0.3804
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As regard to the testing part, the SVM technique has the closest fitted line to the diagonal one,
proved by the highest value of R (i.e., 0.8711 compared with 0.8692 and 0.8181 while using the
PSOANFIS, GAANFIS, respectively). Besides, the SVM algorithm was a very strong candidate with
the smallest values of RMSE and MAE (i.e., RMSE = 0.5978 and MAE = 0.3804). All the values are
summarized in Table 5.

The training part of an AI algorithm is used for the construction of the model, whereas the testing
one reflects its prediction capability [39]. With the main focus on the performance of the AI algorithms
to predict the MS, the results on the testing parts are the focused in this study. Besides, a ratio of 70/30
was kept constant for the training/testing data, as recommended by Ahneman et al. [53]. The effect
of random sampling of both training and testing datasets will be analyzed in the next section. It is
noteworthy noticed that the results presented in the present section refer to one random combination
of data indexes. It has been reported elsewhere that the prediction capability was greatly affected by
the choice of sample index in the training/testing parts [39]. Therefore, the robustness of the three
proposed AI models needs to be analyzed.

4.2. Models Robustness

Investigation of the robustness of three developed AI algorithms were achieved by performing
1000 Monte Carlo simulations, where an uniform distribution of data index was applied to construct
the training and testing dataset for each run. Thereby, 1000 corresponding values of R, RMSE and MAE
were obtained. The values of R for testing the PSOANFIS, GAANFIS and SVM over 1000 runs were
plotted (Figure 7) to demonstrate the high level of fluctuation of R in function of the choice of dataset.
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In order to estimate the robustness of the AI models, statistical analysis of the criteria was
performed. It is worth noticingthat a post-treatment was performed at this stage. The outliers were
removed using the quantile at 90% of RMSE as a threshold value. These values were extreme and not
representative for the statistical analysis of the results obtained by AI models. Of over 1000 values
obtained after the simulations, only 774 relevant values were used to perform the statistical analysis.
Firstly, the statistical convergence of R, RMSE and MAE was introduced in order to determine the
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optimal number of Monte Carlo simulations. It is noticed that the convergence indicator IC was
introduced in the previous section (see Equation (4)). The values of IC with respect to R (Figure 8a),
RMSE (Figure 8c) and MAE (Figure 8e) over 774 Monte Carlo simulations are presented. It is observed
that the three AI methods exhibited an optimal number of about 300 runs to reach the stationary
solution of R, in other words, the PSOANFIS, GAANFIS, SVM were statistically converged after about
300 simulations (Figure 8). As regards to RMSE and MAE, it is shown that the SVM model possessed a
smaller number of runs than that of the PSOANFIS and GAANFIS (i.e., 300 compared with 400 runs
for PSOANFIS and GAANFIS). Besides, an important fluctuation of the IC curves of RMSE and MAE
using the PSOANFIS and GAANFIS was observed (i.e., at N smaller than 100). Two conclusions can be
deduced: (i) outliers should be removed before performing statistical analysis; (ii) at least 500 Monte
Carlo simulations were needed to obtain reliable statistical analysis results, and (ii) the SVM algorithm
is the most stable and robust predictor even with the variation of input index in the dataset. Detailed
statistical information related to the robustness of the three proposed AI models is summarized in
Table 6.
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Table 6. The robustness of PSOANFIS, GAANFIS and SVM for testing part.

Method MeanR StdR MeanRMSE StdRMSE MeanMAE StdMAE

PSOANFIS 0.8655 0.0784 0.5485 0.1937 0.3782 0.0982
GAANFIS 0.8463 0.0723 0.5769 0.1447 0.4206 0.0889

SVM 0.9246 0.0376 0.4004 0.1158 0.2741 0.0600
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The probability density distributions of 774 values of R (Figure 8b), RMSE (Figure 8d) and MAE
(Figure 8f) are also presented. It is observed that all distributions are highly asymmetric, particularly
in case of the SVM model. In conclusion, from overall statistical analysis, the SVM method is the most
robust and powerful algorithm to predict MS. The SVM model, after being carefully evaluated herein,
could be used for saving time and cost in laboratory experiment.

4.3. Prediction of Marshall Flow (MF) and Marshall Quotient (MQ)

The SVM algorithm, found as the best predictor, was then employed to predict other properties
of the SMA materials, namely MF and MQ. The convergence indicator IC and normalized IC are
plotted in Figure 9. The predicted results of MF and MQ. The converged statistical values of R over
1000 Monte Carlo simulations were 0.9246, 0.9429 and 0.9085 for the MS, MF and MQ, respectively.
A post-treatment was also performed at this stage. The outliers were removed using the quantile at 90%
of RMSE computed by SVM as a threshold value, remaining 900 results for MF and MQ. An important
fluctuation of IC with RMSE and MAE was observed in case of prediction of MF (Figure 9a) and
prediction of MQ (Figure 9b). It observed that the required number of simulations is about 400 to
obtain the converged statistical values of MF and MQ, with respect to RMSE and MAE. Again, it seems
that 900 runs were sufficient to reach the converged solutions of MF and MQ. On the contrary, using
R as criterion, statistical convergence values were obtained within 100 runs for all MS, MF and MQ.
This confirmed the fact that an evaluation of a model generally requires at least two criteria for better
quality assessment.
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It is interesting to note that over 1000 Monte Carlo simulations, the maximum values of R were
0.9915 and 0.9874 for MF and MQ, respectively. Therefore, the best performance of realization (i.e.,
the one that gave maximum R and minimum RMSE, MAE are obtained) could not truly reflect
the robustness of a given AI algorithm. Using a well-trained AI model, for a parametric study for
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instance [20], might be correct for only given dataset but not validated for all combinations of dataset.
The results showed that the SVM has a good predictive capability in predicting the MS as well as other
parameters (MF and MQ).

4.4. Comparison with Polynomial Regression Approach

This section demonstrates the effectiveness of AI approaches compared to classical statistical
approach using polynomial regression technique. A first order polynomial equation was tested and
selected as a reference to compare with SVM model. Such equation is in the following form:

O = AI1 + BI2 + CI3 + DI4 + E (5)

where O refers to output parameters of the problem (i.e., MS, MF and MQ), whereas I1, I2, I3, I4

correspond to inputs parameters such as the contents of coarse aggregates, Bitumen 60/70, PMB I
bitumen and cellulose fibers, respectively. Figure 10 shows the regression of the predicted outputs
using the proposed equation (Equation (5)) with respects to the input dataset.
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The obtained values of R were R = 0.82, 0.76 and 0.73 using Equation (5), whereas using SVM model,
they were R = 0.9246, 0.9429 and 0.9085, for predicting MS, MF and MQ, respectively. The constants
used in these equations are presented in Table 7.

It is worth noting that using a higher order polynomial equation could only increase the correlation
coefficient by about 3%, but the results fluctuated over a wide range. It could be concluded that with a
similar number of samples (i.e., 60 data points), using an AI approach is more efficient in predicting
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the complex nonlinear relation between the Marshall Parameters and the mixture components than
classical regression techniques.

Table 7. The constants used to fit MS, MF and MQ using Equation (5), along with the corresponding
correlation coefficient.

Output A B C D E R (Equation (5)) R(SVM)

MS −0.13 −0.32 −0.13 1.22 18.80 0.82 0.92
MF 0.01 0.45 0.47 −0.97 −0.28 0.76 0.94
MQ −0.05 −0.41 −0.38 0.97 8.38 0.73 0.91

5. Conclusions

In this study, three AI models, namely GAANFIS, PSOANFIS and SVM, were developed and
compared for predicting the MS, one of the most important parameters of SMA materials. The best
model determined was then applied to predict other important parameters of the SMA materials such
as the MF and MQ. For this purpose, a total of 60 groups of the SMA samples were fabricated in our
laboratory and then used for generating datasets, which included input parameters (coarse aggregates,
bitumen content and cellulose) and output parameter (MS or MF or MQ). Validation of the models was
achieved using several criteria such as MAE, RMSE and R. In addition, converged statistical values
of criteria deduced from 1000 Monte Carlo simulations were used to evaluate the robustness of the
developed models under the variability of inputs.

The results showed that all the proposed AI models performed well for predicting the MS of
the SMA materials, but the SVM (MAE = 0.3804, RMSE = 0.5978 and R = 0.8711) exhibited the best
compared with other methods such as the PSOANFIS (MAE = 0.4361, RMSE = 0.6592 and R = 0.8692)
and the GAANFIS (MAE = 0.5015, RMSE = 0.7213 and R = 0.8181). In addition, the robustness analysis
results also showed that under input variability, the SVM was the most stable algorithm (MAE = 0.2741,
RMSE = 0.4004 and R = 0.9246) compared with others. Other results also confirmed that the SVM has
a good performance for predicting other Marshall Parameters (MF and MQ) of the SMA materials.
Thus, it can be reasonably concluded that the SVM is a promising method for predicting the MS, MF
and MQ of the SMA materials, which can be used to predict other properties of the SMA materials.
It should be pointed out that the statistical robustness analysis in this study was according to the
considered range of data but may provide efficient information to prepare experiments in further
researches with a wider range of the components of SMA samples. It is also noticed that the dataset
in this study is still limited (60 samples), therefore the short term perspective would be dedicated
to produce more sophisticated dataset in order to develop more accurate and reliable AI models.
In addition, the difference of the PSOANFIS and GAANFIS models was not significant in this study;
thus, several tests namely Friedman and Wilcoxon sign rank tests should be carried out to find a better
model. In general, the results of this study might help in selecting the suitable AI method for quick
determination of several important properties of the SMA mixtures.
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Appendix A

Table A1. The dataset used in this study.

Samples Coarse
Aggregate (%)

Bitumen
60/70 (%)

Bitumen
PMB I (%)

Cellulose
Fibers (%)

MS
(kN)

MF
(mm)

MQ
(kN/mm)

1 76.1 5.4 0 0 6.449 2.900 2.224
2 76.1 6.0 0 0 6.530 3.550 1.839
3 76.1 6.2 0 0 6.700 3.680 1.821
4 76.1 6.5 0 0 6.550 3.970 1.650
5 76.1 7.0 0 0 6.400 4.650 1.376
6 76.1 5.4 0 0.2 7.350 2.720 2.702
7 76.1 6.0 0 0.2 7.510 2.830 2.654
8 76.1 6.2 0 0.2 7.760 2.910 2.667
9 76.1 6.5 0 0.2 7.840 2.960 2.649
10 76.1 7.0 0 0.2 7.090 3.440 2.061
11 76.1 5.4 0 0.3 7.799 2.633 2.962
12 76.1 6.0 0 0.3 7.970 2.721 2.929
13 76.1 6.2 0 0.3 8.240 2.860 2.881
14 76.1 6.5 0 0.3 8.420 2.907 2.896
15 76.1 7.0 0 0.3 7.560 3.360 2.250
16 76.1 5.4 0 0.5 7.220 2.700 2.674
17 76.1 6.0 0 0.5 7.380 2.790 2.645
18 76.1 6.2 0 0.5 7.630 2.930 2.604
19 76.1 6.5 0 0.5 7.790 2.980 2.614
20 76.1 7.0 0 0.5 7.000 3.440 2.035
21 71.17 0 5.5 0 8.950 2.820 3.174
22 71.17 0 6.0 0 9.064 3.150 2.878
23 71.17 0 6.5 0 9.324 3.430 2.718
24 71.17 0 7.0 0 8.901 3.580 2.486
25 71.17 0 7.5 0 8.601 3.850 2.234
26 71.17 0 5.5 0.2 9.088 3.030 2.999
27 71.17 0 6.0 0.2 9.361 3.110 3.010
28 71.17 0 6.5 0.2 8.976 3.230 2.779
29 71.17 0 7.0 0.2 8.604 3.380 2.546
30 71.17 0 7.5 0.2 8.505 3.650 2.330
31 71.17 0 5.5 0.3 9.471 3.180 2.978
32 71.17 0 6.0 0.3 10.595 3.210 3.301
33 71.17 0 6.5 0.3 11.318 3.280 3.451
34 71.17 0 7.0 0.3 9.011 3.530 2.553
35 71.17 0 7.5 0.3 7.999 3.650 2.192
36 71.17 0 5.5 0.5 8.955 3.260 2.747
37 71.17 0 6.0 0.5 8.994 3.310 2.717
38 71.17 0 6.5 0.5 9.326 3.430 2.719
39 71.17 0 7.0 0.5 8.904 3.470 2.566
40 71.17 0 7.5 0.5 8.605 3.780 2.276
41 74.2 5.7 0 0 6.520 3.220 2.025
42 74.2 6.0 0 0 6.860 3.480 1.971
43 74.2 6.3 0 0 7.100 3.550 2.000
44 74.2 6.6 0 0 6.730 3.790 1.776
45 74.2 6.9 0 0 6.580 4.500 1.462
46 74.2 5.7 0 0.2 7.450 2.700 2.759
47 74.2 6.0 0 0.2 7.630 2.820 2.706
48 74.2 6.3 0 0.2 7.890 2.880 2.740
49 74.2 6.6 0 0.2 7.850 2.930 2.679
50 74.2 6.9 0 0.2 7.210 3.400 2.121
51 74.2 5.7 0 0.3 7.940 2.550 3.114
52 74.2 6.0 0 0.3 8.190 2.800 2.925
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Table A1. Cont.

Samples Coarse
Aggregate (%)

Bitumen
60/70 (%)

Bitumen
PMB I (%)

Cellulose
Fibers (%)

MS
(kN)

MF
(mm)

MQ
(kN/mm)

53 74.2 6.3 0 0.3 8.460 2.870 2.948
54 74.2 6.6 0 0.3 8.310 2.940 2.827
55 74.2 6.9 0 0.3 7.880 3.350 2.352
56 74.2 5.7 0 0.5 7.100 2.680 2.649
57 74.2 6.0 0 0.5 7.460 2.740 2.723
58 74.2 6.3 0 0.5 7.740 2.810 2.754
59 74.2 6.6 0 0.5 7.670 2.900 2.645
60 74.2 6.9 0 0.5 7.220 3.340 2.162
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