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Abstract: Stabilized base/subbase materials provide more structural support and durability to both
flexible and rigid pavements than conventional base/subbase materials. For the design of stabilized
base/subbase layers in flexible pavements, good performance in terms of resilient modulus (M;)
under wet-dry cycle conditions is required. This study focuses on the development of a Particle
Swarm Optimization-based Extreme Learning Machine (PSO-ELM) to predict the performance
of stabilized aggregate bases subjected to wet-dry cycles. Furthermore, the performance of the
developed PSO-ELM model was compared with the Particle Swarm Optimization-based Artificial
Neural Network (PSO-ANN) and Kernel ELM (KELM). The results showed that the PSO-ELM model
significantly yielded higher prediction accuracy in terms of the Root Mean Square Error (RMSE),
the Mean Absolute Error (MAE), and the coefficient of determination (r?) compared with the other
two investigated models, PSO-ANN and KELM. The PSO-ELM was unique in that the predicted M;
values generally yielded the same distribution and trend as the observed M, data.

Keywords: artificial neural network; extreme learning machine; particle swarm optimization; resilient
modulus; durability

1. Introduction

Stabilized base or subbase materials are a mixture of aggregates, water, and cementitious materials
and/or emulsified asphalt. The use of stabilized materials in the construction of bases can reduce the
occurrence of failure-related cracking (i.e., fatigue cracking at the bottom of the asphalt layer) owing to
the relative higher stiffness of these materials compared with conventional materials [1]. However,
cracks (i.e., reflective cracks) that occur in the asphalt layer are usually due to a source of cracking that
may be present in a stabilized base layer. The proper design and construction of a stabilized base layer
can last through asphalt maintenance and/or asphalt overlays, or a stabilized subbase layer can be
used instead underneath a conventional base layer [2].

Stabilized materials should be sound and durable enough to resist the traffic load and
changes in climate; in particular, Wet-Dry (W-D) and freeze-thaw effects [3]. According to the
Mechanistic-Empirical Pavement Design Guide, among other factors, W-D and freeze—thaw cycles
are important parameters that degrade the base/subbase materials and may contribute to premature
failure of pavements [4]. There is a significant correlation between the W-D and freeze-thaw conditions

Appl. Sci. 2019, 9, 3221; doi:10.3390/app9163221 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9077-7224
https://orcid.org/0000-0002-2399-2271
https://orcid.org/0000-0001-6081-4469
http://www.mdpi.com/2076-3417/9/16/3221?type=check_update&version=1
http://dx.doi.org/10.3390/app9163221
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 3221 20f13

in terms of durability and the resilient modulus (M;) or equivalent elastic modulus, which measures
the performance of base materials in a pavement structure [4-7]. M; values can be measured in the
laboratory in accordance with the AASHTO T307 [8] or predicted by soft computing models [3,9].
A number of studies, e.g., Khoury et al. [10] and Solanki and Zaman [7], have been conducted to
measure the influence of W-D cycles on the resilient modulus of stabilized base materials in the
laboratory. They found that the addition of cementitious additive to base materials increased the
durability of the stabilized specimens against W-D cycles, and hence increased the resilient modulus.
On the other hand, Khoury [1] and Khoury and Zaman [11] recommended a regression model for
predicting the M, of stabilized base aggregates based on the number of W-D cycles, ratio of oxide
compounds in the cementitious materials (CSAFR), physical properties of the mixture, and stress levels.
This model is described as M; = f (W-D, CSAFR, DMR, o3, 6;7), where CSAFR is the amount of free
lime, silica, alumina and ferric oxide compounds in the cementitious materials, DMR is the ratio of
maximum dry density to the optimum moisture content, and the attributes, 03 and o are the confining
pressure and the deviator stress, respectively. Maalouf et al. [4] used Support Vector Regression (SVR)
to model the M, of stabilized base aggregates subjected to W-D cycles, and they found that the SVR
prediction model outperformed the regression and least square methods.

Recently, highly advanced learning algorithms were introduced for the modeling of engineering
applications. Among these methods, Artificial Neural Network (ANN), the Particle Swarm Optimization
algorithm (PSO), and the Extreme Learning Machine (ELM) are highly common methods utilized
in designing prediction models. ANN has been widely used to predict the M; values for pavement
materials. For instance, Ghanizadeh and Rahrovan [12] utilized the ANN to predict the M, for stabilized
base aggregates, which were compared with those of the SVR model. They concluded that the ANN
was superior to the SVR model for predicting the M; values of stabilized bases. Arisha [13] used ANN
to model the M; values of recycled concrete aggregates for the construction of bases and subbases.
They found that the ANN model could be used to predict an accurate M; for recycled materials.
Zaman et al. [14] found that the ANN model was able to correlate M, with routine properties and
stress states for subgrade soils. More studies using ANN to predict M; for other pavement applications
can be found in [15-18]. In addition, similar applications for ANN in predicting concrete strength and
the mechanical properties of materials can be found in [19,20]. However, when using a gradient-based
approach during the learning process of single hidden layer feed-forward neural networks (i.e.,
ANN/ELM), the network may fall into local minima, thus necessitating a long training time and some
terminating criteria [21]. Therefore, an evolutionary algorithm may be used to find an approximate
global solution for better network prediction and to maintain good generalization capability for
the network.

Although PSO and ELM have been found to be powerful methods in modeling different engineering
applications [22,23], very few studies have been conducted on modeling M; in pavement applications.
Pal and Deswal [24] used and evaluated ELM for predicting M; for subgrade soils, and concluded
that high correlation in terms of coefficient of determination, r? (0.991), could be observed between
the measured and predicted values of M;. In addition, the Kernel ELM (KELM) approach performed
well in predicting the M, of subgrade soils as compared to the sigmoid ELM and SVR approaches.
Ghanizadeh and Amlashi [25] used hybrid algorithms, ANN, Support Vector Machine (SVM), and
hybrid adaptive neuro-fuzzy inference system methods with PSO algorithm for the M, prediction of
fine-grained soils. They found that the PSO-ANN was superior to the other methods for M; prediction.

This research study aims to develop and design a hybrid algorithm (PSO-ELM) for predicting M, of
stabilized base aggregates subjected to W-D cycles based on the M, data presented in Maalouf et al. [4].
Furthermore, the developed PSO-ELM was compared with other methods, such as PSO-ANN and
KELM. The performance of these models was statistically assessed and validated for predicting the M,
of stabilized base aggregates based on the data presented in Maalouf et al. [4]. The following sections
present the background of the developed methods, the data and performance evaluation criterion, and
the results and discussion of the models” performance.
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2. Research Data and Methods

2.1. Description of Used Data and Variables

Khoury [1] and Khoury and Zaman [11] used cementitious materials to stabilize four base
aggregates—Meridian limestone with 97% of CaCOs, Richard Spur limestone with 87% of CaCOs,
Sawyer sandstone with 94% of SiO;, and Rhyolite—which were subjected to W-D cycles, and then
tested for M;. M, samples were cured for 28 days in a control room after compaction at optimum
moisture content and maximum dry density. Then, cured samples were subjected to 8, 16, and 30 W-D
cycles. More details for test stress states and data are presented in [1,4,10,11].

Khoury [1] and Khoury and Zaman [11] developed a regression model (M; = f (W-D, CSAFR,
DMR, o3, 0,4)) that correlated the resilient modulus M, with five parameters: W-D, CSAFR, DMR,
o3 and o,4. The sensitivity of the input variables for predicting M, was studied by Maalouf et al. [4].
They used least square (LS) and SVR methods to study the effectiveness of the input variables at
predicting M;. Based on their results, the five input variables improved the predicted values of M;
significantly, given that the values of r? for the LS and SVR methods were 0.69 and 0.97, respectively,
while the 12 values for predicting M, using only three or four input variables were within the range of
0.65~0.68 and 0.90~0.96 for the LS and SVR methods, respectively. Thus, five input variables (W-D,
CSAFR, DMR, 03 and o) were adopted in this study. These input variables, and M, as the output
variable, were employed to design the PSO-ELM model and to compare it with the PSO-ANN and
KELM models.

A total of 704 experimentally conducted M; tests were used, and these were divided into training
(70%) and testing (30%) datasets, as presented in the Supplementary Materials. Table 1 shows the
statistical evaluation of the training and testing stages. In Table 1, the terms mean, median, min,
max, SD, SK and KU indicate the mean, median, minimum, maximum, standard deviation, skewness,
and kurtosis coefficients, respectively. It can be seen from the table that for the whole dataset, the
minimum and maximum of W-D were 0 and 30 cycles, respectively. The minimum and maximum of
the ratio of oxide compounds in the cementitious materials (CSAFR) were 0.11 and 0.51%, respectively.
The minimum and maximum of the ratio of maximum dry density to the optimum moister content
(DMR) were 2.34 and 4.63% kN/m>. The maximum and minimum values of o3 and o, for the whole
dataset were 138, and 0.00 kPa; and 277 and 69 kPa, respectively. In addition, the correlation coefficient
between the input variables and M, was calculated. The correlation between M; and W-D was —0.29,
and between M; and CSAFR was 0.46. Moreover, the correlations between M, and DMR, o3, and
o4 were 0.71, 0.08, and 0.14, respectively. In summary, inverse correlation was yielded with W-D,
whereas high correlation was observed with DMR. M, had the greatest kurtosis and positive skewness.
All data were skewed distributions, and were not normal distributions, since they had considerably
high skewness values.

Table 1. Statistical evaluation of training and testing datasets.

Dataset Variable Mean Median Min. Max. SD SK KU

W-D 12.57 8.00 0.00 30.00 11.19 -1.13 0.49

CSAFR 0.25 0.13 0.11 0.51 0.18 -1.47 0.73

Training DMR 3.26 3.37 2.34 4.63 0.71 -0.94 0.39
03 69.35 69.00 0.00 138.00 49.60 -1.34 -0.02
04 173.50 208.00 69.00 277.00 78.73 -1.40 -0.02

M; 3690.88 3422.00 585.00 9803.00 1862.06 1.42 1.12

W-D 13.32 16.00 0.00 30.00 11.10 -1.19 0.35

CSAFR 0.26 0.13 0.11 0.51 0.19 -1.67 0.58

Testi DMR 3.28 3.37 2.34 4.63 0.73 -1.07 0.34

esting

03 71.94 69.00 0.00 138.00 47.16 -1.22 —0.04

04 167.89 138.00 69.00 277.00 75.06 -1.26 0.11

M; 3668.12 3443.00 773.00 9644.00 1861.16 1.65 1.15
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2.2. Theoretical Backgrounds and Model Development

2.2.1. PSO

Particle swarm optimization (PSO) is defined as a stochastic optimization technique introduced
and developed by Eberhart and Kennedy [26]. The general description and application of this method
are presented in [27-29]. A summary of this method can be presented in six steps as follows [28,30]:

Step 1: a population of random potential solution is designed as a searching space. Suppose D and
N are the dimensions of the searching space and the number of particles, respectively. Each potential
solution is assigned a random “position” (xf?) and “velocity” (vi.‘) of the i particle at iteration k.
These particles are then “flown” through the search space of potential solutions as follows:

Uf(t +1) = wvi.‘(t) + cl.mnd()(p;‘(t) - xf(t)) + cz.mnd()(gk(t) - xf(t)) (1)

i
Et+1) =) +of(t+1)1<i<N,1<k<D 2)

where w represents the iteration weight; ¢; and c; stand for the different acceleration coefficients. “rand
()” denotes a constant value in the interval [0, 1] and is set randomly. pi.‘ and gf are the best position of
the i particle in the search stage, and the global best position found in the population, respectively.

Step 2: Evaluate the fitness of each particle in the swarm. Step 3: For every iteration, compare
each particle’s fitness with its previous best obtained fitness (pi.‘). If the current value is better than pi?,
then set pf to be equal to the current value and the pf location to be equal to the current location in
the d-dimensional space. Step 4: Compare the pé‘ of particles with each other and update the swarm
global best location with the greatest fitness (gi.‘). Step 5: The velocity of each particle is changed
(accelerated) towards its pi.‘ and gi,‘ . This acceleration is weighted by a random term. A new position in
the solution space is calculated for each particle by adding the new velocity value to each component
of the particle’s position vector. Step 6: Repeat steps (2)—(5) until convergence is reached based on the
desired criteria. The rudimentary structure of the PSO algorithm is shown in Algorithm 1.

Algorithm 1: The PSO algorithm for optimization problem of d-dimensional decision variables.

Initialize P number of particles with some random position;
Evaluate the fitness function of particles;
gbest = global best solution;
For 1 = 1 to maximum number of iterations do
Forj=1to Pdo
Update the velocity and position for the /™ particle using Equations (1) and (2), respectively;
Evaluate the fitness function of j" particle;
Update the personal best (pbest) of jth particle;
Update the gbest;
Keep gbest as the best problem solution;
11. End for
12.  End for

0 0 N o U »N

—
©

2.22. ANN

ANN:Ss are successfully utilized to predict different cases in pavement applications [13,15,31,32].
Their capability to recognize complex nonlinear performances among input and output datasets can
be considered to be their key benefit. Detailed and in-depth state-of-the-art reports on the concepts,
theory and civil engineering applications of ANN can be found in [31-34]. In general, ANN possesses
three layers: input, hidden, and output. The hidden layer includes neurons linked between the input
and output layers by nonlinear or linear transfer functions. The weighted input from a previous layer
is received and treated by each hidden layer node, whose output is then delivered to the nodes in
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the following layers (hidden/output) through a transfer function. In this study, the PSO was used to
optimize the network weights and biases. The data were typically scaled to lie in a fixed range of 0 to 1,
as the hidden layer activation function was a sigmoid. Determination of a suitable architecture for a
neural network for a definite problem is an imperative factor, as the network topology affects directly
the complexity of the computations. Figure 1 shows a single hidden layer of ANN.

biases «.__

weights

Input features

Figure 1. A single layer architecture of ANN.

2.2.3. ELM

An Extreme Learning Machine (ELM) can be described as a least square-based single hidden
layer feed-forward neural network (SLFN) for both classification and regression problems [24].
Huang et al. [35] replaced the hidden layer with large number of nodes with a kernel function in
the design of an ELM. Pal and Deswal [24] and Huang et al. [35] both proposed techniques, and the
following is a summary of those methods:

ELM for training data, N, hidden neurons, H, and activation function f(x) can be represented
as follows:

H
6]' :Z;aif(wi,ci,xj)j: 1...N (3)
i=

where w; and a; are the weight vectors of the connecting inputs—-hidden layers (input weights), and
hidden-outputs layers, respectively. x; represents the input variables. C; is the hidden bias of the ith
hidden neuron, and ¢; is the output from ELM for the data points, j. The input weights are randomly
generated and are based on a continuous probability distribution [24].
The output weights are calculated using a linear equation (Equation (4)), which can be simplified
as follows:
p=AtY 4)

where A is the output matrix of the hidden layer (Equation (5)), At represents the Moore-Penrose
generalized inverse of A, and Y represents the target values of ELM. Equation (4) can be rewritten in a
compact form as Aa = Y, where A is the hidden layer output matrix of the neural network, and Y is
the output variable vectors. The three matrices in the compact form can be presented as follows:

h(x1) f(wy,e1,x1) . fwy, cp, x1) al yT
A= : = : .. : , a=| : |,andY =] (5)
h(xn) f(wl,cl,xj) . f(wH,cH, xj) aﬁ y{,

where hi(x) is the hidden layer feature mapping.
The output of the ELM algorithm is mainly based on matrix A. In the case of using the traditional
solution, the neural network is used in the hidden layer, and matrix A can be solved using gradient-based



Appl. Sci. 2019, 9, 3221 60f13

algorithm optimization as presented in [24]. Otherwise, the kernel function (k(xi, x]-)) is used to solve
the ELM, and feature mapping can be used to calculate the kernel matrix as follows [5,24,35]:

k(x,-, x]) = h(xl)h(x]) (6)

In this study, KELM was applied to study the effect of the kernel on the M, prediction, and
ELM was integrated with PSO to design a new model for M; prediction of stabilized base aggregates.
The ELM has a faster learning rate, better generalization ability, and better predictive performance
than traditional neural connections. Basic ELM randomly produces the values of input weights and
hidden biases, and determines the weights of the output layer using the Moore-Penrose generalized
inverse method [36,37]. Figure 2 shows the SLFN with a number of input layer neurons ‘n’, a number
of hidden layer neurons, and a number of output layer neurons ‘m’. For example, if the training dataset
is {X;, Y;}, then the input dataset is X; = [Xj1, Xjo, ... , Xin], and the output dataset is Y; = [Yj1, Yio, ...,
Yimlandi=1,2,...,n. mis the number of training samples.

Input Layer Hidden Layer Output Layer
Figure 2. Single hidden layer feed-forward neural network called ELM.
2.2.4. Hybridization (PSO-ANN, PSO-ELM)

Huang et al. [38] showed a theory-based proof of the ability of ELM to perform as a universal
approximator and can use several activation functions. ELM is extensively applied in the prediction task
due to its fast learning capability, and adequate generalization performance [39,40]. The combination
of ELM with other techniques can enhance the generalization ability of ELM [41-43]. Some researchers
have successfully used nature-inspired algorithms to optimize ELM. Mohapatra et al. [44] developed
hybrid combination of cuckoo search and ELM to classify medical data. Satapathy et al. [45] utilized a
firefly algorithm to optimize ELM and to be applied in the stability analysis of photovoltaic interactive
microgrid. The whale optimization algorithm was used to optimize ELM and was utilized for aging
degree evaluation of insulated gate bipolar transistor [46]. The experimental results showed that
optimized ELM gave good prediction accuracy compared to singleton ELM.

Generally, due to the stochastic initialization of the network input weights and hidden biases in
the basic ELM, ELM solution models can easily fall into local minima [36]. Therefore, this research
paper utilized PSO to optimize the parameter set (input weights and hidden biases) of ELM to achieve
better learning ability of ELM. According to literature studies, PSO with a combination of ELM models
has been considered and developed in many areas with high reliability [47-49]; however, they have still
not been considered and prepared for predicting M, values. The development of the hybrid PSO-ELM
was used to design a prediction model for M,, which was compared with the hybrid PSO-ANN [23]
and KELM [22] to assess the performance of the designed model. Algorithm 2 describes the PSO-ELM
model process. In PSO-ANN, all the parameters of the single hidden layer of ANN (input weights,
hidden biases, hidden-output weights, and output neuron bias) were tuned using PSO.
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Algorithm 2: The algorithmic flow of PSO-ELM.

1. Obtain the training and testing dataset

2. Begin ELM train

3. Set ELM parameters

4. Set mean square error (MSE) as a fitness function

5. Initialize PSO population (P)

6. Calculate the fitness value of each candidate solution
7. S=global best solution

8. For it = 1 to maximum iteration number do

9. Fori=1toP do

10. Update the velocity and position of the it particle
11. Evaluate the fitness of the it particle

12. Update personal best solution of the i particle
13. S=current global best solution

14. End for

15. End for

16. End

17.  Obtain the optimal input weights and hidden biases of hidden layer neurons using S
18.  ELM test

2.2.5. Model Development and Performance Assessment

The training dataset contains five input neurons as predictors. Initially, the ELM model was
configured by the matrix of input weights and hidden biases. The output weight matrix was calculated
from the input weights and biases using the basic ELM algorithm. Since the performance of the ELM
is based on the number of neurons in the hidden layer and number of training epoch, a trial was
conducted with 100 epochs between the number of hidden units in the single hidden layer versus the
Root Mean Square Error (RMSE) to determine the best number of hidden neurons. The final structure
of the developed optimized ELM model was obtained as 5 input neurons, 150 hidden neurons, and
output neurons based on the number of training samples. The PSO algorithm was used to find the
optimal values of the input weights matrix (5 x 150) and bias matrix (150 X m) based on the minimal
RMSE value. The number of decision variables for the PSO population was determined from the ELM
learning parameters, which was set as 900 (5 X 150 + 150). These learning parameters were optimized
during the training phase to obtain the optimal input weights and hidden biases. The PSO is influenced
by its intrinsic parameters, such as the number of populations, acceleration coefficients, and inertia
weight. After some initial trials, the swarm size was set as 30, C; = 1, C; = 2, and inertia weight = 0.9
for both PSO-ELM and PSO-ANN. In addition, the KELM (RBF-ELM) model was trained using the
radial basis function (RBF) as the activation function, in which users do not need to know the number
of hidden units, and the hidden layer feature mapping is not required to be known by the user [50].

Maalouf et al. [4] evaluated the normalized and non-normalized data for predicting M;, and
they found that the SVR model outperformed the LS method for the normalized data. Herein, the
whole dataset was initially normalized and back transformed to obtain original values after prediction.
T normalization of the data (Cn) can be performed using the following equation:

Cn = (C - Cmin) )
(Cmux - Cmin)
where C, Cyay, and Cp;, represent the data value, maximum of used data, and minimum of used
data, respectively.
To assess the model performance of the developed models, goodness of fit statistics such as 12,
RMSE, and mean absolute error (MAE) were used. The corresponding fitness indices were represented
by Equations (8)—(10).
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25:1 (MrEi - MrE_)(Mi’oi - Mrd-)

.\ ®)
e (g P (v~
)i (MrEi - MToi>2
RMSE = | & 7 ©
!
MAE = %§|Mroi + Mrg)| (10)

where Mrg, denotes the i predicted resilient moduli of stabilized base aggregates; Mro, represents the
i observed resilient moduli of stabilized base aggregates; Mrg is the average of the predicted resilient
moduli of the stabilized base aggregates; Mrg is the averagelof the observed resilient moduli of the
stabilized base aggregates; and ! is the number of observations.

3. Results and Discussion

To check the performance of the developed PSO-ELM model, two well-known soft computing
models (PSO-ANN, and KELM) were also tested for comparison and performance validation. Table 2
shows the goodness of fit measures of the investigated three models. It is evident from the table that the
PSO-ELM model was superior in prediction accuracy to the other two models, PSO-ANN and KELM.
During the training phase, the highest r? was observed for PSO-ELM (r? = 0.981) followed by KELM
(r> = 0.693) and PSO-ANN (r? = 0.64). Meanwhile, during the testing phase, the prediction accuracy
was slightly lower than that obtained during training phase for all of the investigated models. In terms
of RMSE, a lower value of RMSE was observed for PSO-ELM (RMSE = 369.592) when compared to
KELM (RMSE = 1075.378) and PSO-ANN (RMSE = 1184.155).

Table 2. Performance measures for the investigated models.

Model r? RMSE MAE
PSO-ANN (Train) 0.640 1117.367 881.90
PSO-ANN (Test) 0.597 1184.155 929.18
KELM (Train) 0.692 1064.782 804.90
KELM (Test) 0.674 1075.378 815.94
PSO-ELM (Train) 0.981 253.439 191.66
PSO-ELM (Test) 0.963 369.592 280.00

Figure 3 shows the relationship between the observed and predicted resilient moduli for the
investigated three models. The slopes of linear fitting of the PSO-ELM model were 0.98 and 1.01
for the training and testing stages, respectively. Comparison between the linear fitting slopes of the
investigated three models shows that the slope of the linear fitting of data for the PSO-ELM model was
closer to unity than that of the other models, indicating lower bias. It is evident from both Table 2 and
Figure 3 that the PSO-ELM model showed the best fit of the M; data along the equality line among the
three models during both the training (Figure 3a) and testing (Figure 3b) phases. In addition, in order
to study the influence of input variables on predicting M, values, four different models with changing
input variables were built and studied in the training stage, as presented in Table 3. Little significant
effect was observed on the prediction of M, as a result of changing the input variables, indicating that
all input variables could be considered when modelling M,. The influence of correlation between M,
and input variables depends on the variation in the used data, test protocol stress states, material type,
and sample preparation and conditioning.
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Figure 3. Scatter plot of the three investigated models: (a) training, (b) testing.

Table 3. Input variable effect on the PSO-ELM model.

Model Input Variables 2 RMSE MAE
1 W-D, CSAFR, DMR, o3 and o, 0.981 253.439 191.66
2 W-D, CSAFR, DMR and o3 0.948 415.554 299.43
3 W-D, CSAFR, DMR and o 0.973 304.451 204.98
4 W-D, CSAFR and DMR 0.921 521.08 378.71

For better representation, a mathematical graphical Taylor diagram was also plotted, as seen
in Figure 4, using R software [51]. It evaluates the degree of correspondence between the observed
and predicted M; values in terms of the r2, standard deviation, and RMSE in a single plot [52].
From Figure 4, it can be seen that the developed model (PSO-ELM) had the highest prediction accuracy
by a significant margin, when compared with the other investigated models. Furthermore, a new
generation violin plot was also drawn, as can be seen in Figure 5, in order to understand the model
prediction distribution behavior or variation over the predicted M; data. This violin plot is a hybrid of



Appl. Sci. 2019, 9, 3221 10 0of 13

a box plot and a kernel density plot, which shows the multimodal distribution and peaks in the data.
The figure contains the violin plot of the observed and predicted M, values of the three investigated
models during the testing phase. It is obvious that the PSO-ELM model is the model with the best
distribution and harmonization of predicted M; values to observed M, data, when compared with
the other two investigated models (PSO-ANN and KELM). The M, values predicted by these models
are concentrated more towards the mean and median of the dataset. This analysis indicates that the
PSO-ELM model has good generalization capability for the M; prediction of stabilized base aggregates
under W-D cycles. Therefore, based on the above analysis, it can be concluded that the PSO-ELM
model can be used as a reliable soft computing technique for predicting precise M, values for the used
M; data.
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Figure 4. Statistical Taylor diagram for comparative study of the three investigated models during
training and testing phases.
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Figure 5. Violin testing plot for the three investigated models.
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4. Concluding Remarks

This study developed a new reliable advanced soft computing technique, PSO-ELM, for the
prediction of M, values for stabilized base aggregates under W-D conditioning. Two other computing
models, PSO-ANN and KELM, were also investigated in this research to validate and assess the
performance of the developed PSO-ELM model. Based on the goodness of fit criteria, the PSO-ELM
model is highly suitable for implementation in predicting the M, values of stabilized base aggregates
subjected to W-D cycles. Moreover, the PSO-ELM showed the highest prediction accuracy, having r? of
0.96 in the testing phase, with lower bias and higher precision than the other two models investigated,
PSO-ANN and KELM. Moreover, the PSO-ELM model was the only model whose predicted M; values
agreed generally with the observed M, values. Finally, based on the range of the tested data, the
PSO-ELM can be used as a new reliable soft computing technique for predicting M; values. A larger
dataset is further required in order to validate the model performance using a cross-validation (i.e.,
3-fold or 5-fold) procedure considering the computational complexity and time process.
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