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Abstract: A novel adaptive displacement-controlled test setup was developed for fatigue testing on
mini specimens. In property characterization of additive manufacturing materials, mini specimens are
preferred due to the specimen preparation, and manufacturing cost but mini specimens demonstrate
higher fatigue strength than standard specimens due to the lower probability of material defects
resulting in fatigue. In this study, a dual gauge section Krouse type mini specimen was designed to
conduct fatigue tests on additively manufactured materials. The large surface area of the specimen
with a constant stress distribution and increased control volume as the gauge section may capture
all different types of surface and microstructural defects of the material. A fully reversed bending
(R = −1) fatigue test was performed on simply supported specimens. In the displacement-controlled
mechanism, the variation in the control signal during the test due to the stiffness variation of
the specimen provides a unique insight into identifying the nucleation and propagation phase.
The fatigue performance of the wrought 304 and additively manufactured 304L stainless steel was
compared applying a control signal monitoring (CSM) method. The test results and analyses validate
the design of the specimen and the effective implementation of the test bench in fatigue testing of
additively manufactured materials.

Keywords: adaptive control; fatigue testing; simply supported bending; mini specimen; additive
manufacturing; 304L stainless steel

1. Introduction

Fatigue is a progressive and permanent structural change due to fluctuating stresses or strains
subjected to a material. 50% to 90% of mechanical failures of structures are due to fatigue [1,2]. Fatigue
test is indispensable in the characterization of materials but the test is both time-consuming and
very expensive [3,4]. In this research, a unique test setup was designed and developed to reduce
the test cost using mini specimen. The measured strength of a material subjected to monotonic or
cyclic loading depends inversely on the specimen size. The impact of the size effect on mechanical
properties depends on the type and local feature of the material structure i.e., grain size, microcracks,
inclusions, discontinuities, dislocations, and other defects [5–7]. Extended studies were carried
out to investigate the effect of specimen size and loading condition on fatigue behavior of metallic
materials [8–15]. Statistically, large specimens contain more extreme defects. The presence of larger
defects leads to crack growth and failure at lower stress levels. Sun [16] proposed a probabilistic
method to correlate the effects of specimen geometry and loading condition on the fatigue strength
based on the Weibull distribution. Tomaszewski [4] performed comparative tests on mini specimens
and normative specimens, and verified the monofractal approach based on Basquin’s equation along
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with the Weibull weakest link model. There are some other statistical methods proposed to evaluate
the size effect on the fatigue test [17–21]. All of these approaches epitomize that standard specimens
demonstrate lower fatigue strength than mini specimens due to the higher probability of larger material
defects. Additively manufactured materials have a higher probability of defects compared to wrought
materials. In this paper, the implementation of a dual gauge section Krouse type mini specimen
increases the surface area to capture all different types of surface and microstructural defects since
most of the fatigue failures are initiated at the surface or subsurface due to the presence of defects.

Geometrically, the size effect is related to the nonlinear distribution of the stress [22–24]. The stress
gradient occurring under bending and shear stress has a higher influence on the size effect for a bending
type test compared to axially loaded cyclic test but the axial fatigue test on mini specimens suffers
buckling. In this study, the transverse bending test with a constant stress distribution within the gauge
section in a specimen eliminates the stress gradient effect.

There are several techniques already developed to monitor the crack nucleation and propagation
during the fatigue test. These techniques include the acoustic emission diagnostic method [25–27],
electrical resistance change method [28,29], meandering winding magnetometer (MWM)-array eddy
current sensing [30], and thermographic method [31]. All of these techniques require an additional
sensor with intensive signal processing. In the current work, we introduce a simple but effective
control signal monitoring (CSM) method to identify the nucleation and propagation phase. In a
displacement-controlled mechanism, the control signal decreases with the decrease in the structural
stiffness of the specimen. The change in the control signal provides insight in estimating the nucleation
and propagation phase. In this study, the fatigue test was conducted on wrought 304 and additively
manufactured 304L stainless steel specimens. The CSM method was applied to identify the nucleation
and propagation phase. The test results were compared to validate the design of the specimen and the
test setup performance in high cycle fatigue testing.

2. Methodology

In this study, a fully reversed bending (R = −1) fatigue test was performed on simply supported
specimens. A simply supported testing methodology has several advantages over a fully clamped
type of loading mechanism. The maximum deflection in a simply supported and a fully clamped beam
with a concentrated load F at the center are given by Equations (1) and (2) respectively [32,33],

δmax =
Fl3

48EI
(1)

δmax =
Fl3

192EI
(2)

where F, δmax, l, E, and I are the applied force, maximum deflection, length, modulus of elasticity, and
moment of inertia of the beam respectively. For a given load, the displacement is four times higher in
a simply supported bending than in a fully clamped bending. During the fatigue test, investigators
attempt to actuate the specimen at its natural frequency to achieve maximum displacement. However,
the dynamics of the actuator coupled with the specimen limit the operation. Therefore, as an alternate,
we adopted a simply supported bending mechanism as the testing methodology.

3. Specimen Design, Analysis and Preparation

3.1. Design of the Specimen

A dual gauge section Krouse type mini specimen was designed for simply supported loading.
The specimen is a modified form of the ASTM (American Society for Testing and Materials)
International standard B593-96(2014)e1, definition E206, and practice E468 [34]. Some authors already
reported on the modification and implementation of the specimen in miniature form [35–38]. Since
the specimens are miniature size, Haydirah [39] performed an error analysis based on the effect of
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specimen’s dimension. Figure 1 shows the dimension of our specimen. The effective length between
both clamping ends is 25.4 mm. Each gauge is 4.34 mm long. The total gauge covers 34.17% of the
total effective length of the specimen. The dual gauge increases the overall surface area. The failure is
expected to be within the gauges. Another reason for choosing the dual gauge is to maintain symmetry.
In a single cantilever beam, the actuator follows a curved path during excitation. To keep the path
of the actuator one dimensional, and to distribute the load symmetrically along with the specimen,
the dual gauge concept is opted.

Figure 1. Drawing of the dual gauge section Krouse type mini specimen, all units are in mm.

3.2. Stress Calculation

Previous studies showed that simple beam equation is applicable to calculate the stress in
miniature wedge shaped specimen [34–39]. The stress in a simply supported bending beam with
a point load at the center can be expressed as [40],

σ =
M(x)
I(x)

h
2

(3)

where, σ, M(x), I(x), and h are the stress, moment, second moment of inertia, and the thickness of the

specimen, respectively. For a simply supported beam, M(x) = Fx
2 , and I(x) = b(x)h3

12 where, F, and b are
the point load, and the width of the specimen, respectively. For a Krouse type specimen b(x) = 2kx
where, k is the slope of the specimen. Inserting M(x), andI(x) in Equation (3), we get,

σ =
3F

2kh2 = j(F, h) (4)

where, j is the stress function. The nominal stress σ within the gauge in Equation (4) depends on
the force applied and the thickness of the specimen, not on the distance x. Ideally, a constant stress
distribution is expected but in reality at the defect zone or at the lower strength site, the actual local
stress will be higher than the nominal stress.

3.3. Sensitivity and Uncertainty Analysis

The specimen is a miniature size compared to the standard one. The necessity of sensitivity
and uncertainty analysis is inevitable to determine the optimal thickness of the specimen. The stress
calculation is sensitive to the force and thickness of the specimen according to Equation (4). Uncertainty
in force measurement depends on the sensor’s accuracy, calibration, and set up. The thickness is
sensitive to the machining and polishing process. For a higher thickness, a higher force is required to
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attain particular stress. This leads to the necessity of a high power system and actuator. An optimal
thickness was determined to eliminate the necessity of high power fatigue machine and external
cooling. Partially differentiating Equation (4) we get,

∇ j̄ =

[
F
σ ×

∂σ
∂F

h
σ ×

∂σ
∂h

]
=

[
1
−2

]
(5)

From Equation (5), we can see 1% variation in specimen thickness produces 2% change in stress
value. To estimate the thickness uncertainties, 10 specimens were prepared. The thickness was
measured using a high precision laser displacement sensor. The uncertainty was calculated obtaining
overall standard deviation (std) using Equation (6).

std =
1
n

n

∑
j=1

(xj − x̄)2 =
1
n

[
g

∑
i=1

niS2
i +

g

∑
i=1

(x̄i − x)2

]
textrmwhere,x̄ =

∑
g
i=1 nixi

n
(6)

where, x̄i, Si, and ni are the mean, standard deviation, and the number of scanned data points of i th
specimen respectively. x̄ is the overall mean, and n is the total number of data points. For ±5% stress
variation, the calculated optimal thickness of the specimen was 0.509 mm with three sigma quality
level. Including a factor of safety, the specimen thickness used in this study is 0.65 mm.

3.4. Finite Element Analysis

Finite element analysis was performed using ABAQUS 2018 software (Dassault Systèmes Simulia
Corp; Providence, RI, USA) to demonstrate the constant stress distribution within gauge sections.
According to the specimen design, as shown in Figure 2, the 3D prototype of the specimen was simply
supported at both sides which are marked by red lines (Uz = 0). To ensure a symmetric deformation,
the displacement on center-lines along the x -axis (green line) and y-axis (blue line) are restricted in y
direction (Uy = 0) and x direction (Ux = 0), respectively. A constant displacement Uz = 0.150 mm
was applied on the 3 mm × 7 mm dark grey rectangular area at the center of the specimen, which
indicates the rectangular plate washer in the machine setup. Boundary conditions are listed in the
box under the 3D prototype of the specimen. The Young’s modulus and Poisson’s ratio set for the
wrought 304 stainless steel were 200 GPa and 0.3 respectively. A linear elastic model was applied to
observe the mechanical response under this static condition, as the deformation is within the elastic
regime. The distribution of the nominal stress S11 on the whole specimen is then obtained by the
simulation, as shown in Figure 3. A constant nominal stress within triangular gauge sections can be
observed, and it reaches the maximum value at the surface. Convergence study was also performed by
selecting 6 different mesh sizes which result in the number of elements ranging from 1263 to 166,506.
The data points in Figure 4 shows that the nominal stress converges to approximately 177.7 MPa as
the number of elements increases to 166,506, since when the number of mesh elements increases from
76,698 to 166,506, the change in nominal stress value is less than 0.2%. Figure 3 exhibits the nominal
stress distribution with the number of elements of 166,506. The sole purpose of using FEA analysis is
to demonstrate the stress distribution within the gauge.
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Figure 2. FEA simulation setup for wrought 304 stainless steel specimen.

Figure 3. FEA simulation result of the specimen. The red zone on the top surface shows the stress
distribution is constant within the gauges.

Figure 4. Convergence analysis of the FEA simulation results.
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3.5. Materials and Specimen Preparation

The materials tested in this study are hot rolled and annealed 304 stainless steel bulk material and
additive manufacturing (AM) fabricated 304L SS bar. These materials were chosen because they are
economical and widely used due to their strength and high resistance to corrosion. The chemistry of
both the wrought material and powder used as the feedstock for AM is listed in Table 1. The relatively
close chemistry of both materials except Ni which is 2% higher but not expected to make a significant
difference in the test results may aid a better understanding of the comparative study. Rough finish
(average Ra = 3.82 µm) and fine finish (average Ra = 0.482 µm, average Rz = 4.242 µm) wrought
specimens were machined using W-EDM, while additively manufactured fine finish specimens were
cut along Z axis from a bar fabricated using the selective laser melting (SLM) process. A Renishaw
AM250 machine was used to build the part. An optimal process parameter listed in Table 2 was applied
to yield maximum part density. A total of 10 specimens for each type were manufactured with no
additional surface preparation.

Table 1. Chemical properties (wt%) of 304L stainless steel powder and bulk 304 stainless steel.

Material C Mn Si S P Cr Ni Cu Mo Co N O

Wrought 0.023 1.69 0.43 0.020 0.034 18.10 8.02 0.63 0.24 0.15 0.084 -
Powder 0.015 1.40 0.63 0.004 0.012 18.50 9.90 <0.1 - - 0.090 0.02

Table 2. Parameters used to build additively manufactured part using selective laser melting
(SLM) process.

Parameter Power Hatch Space Point Distance Exposure Time Energy Density Raster Rotation
Set (watt) (µm) (µm) (millisecond) (MJ/m3) (degree)

Nominal 200 85 60 75 58.8 67

4. Experimental Setup

4.1. Mini Fatigue Testing Machine

The mini fatigue testing machine consists of six major parts: (i) an electromagnetic actuator,
(ii) a non-contact displacement sensor, (iii) a load cell, (iv) a controller, (v) a power amplifier or
driver, and (vi) a test bench. The voice coil of a subwoofer was used as the actuator. The sub-woofer
behaves as a low audio frequency shaker. The mathematical model of an electrodynamic shaker
and a sub-woofer is relatively similar though the moving elements of a shaker are more rigid than
a subwoofer. Higher rigidity multiplies the power requirements. To design a low power system,
a soft mechanical suspension of the sub-woofer was implemented to transfer maximum energy to the
specimen. The actuator is made of a high Curie temperature ferrite magnet with a cast aluminum
frame of 10 inches diameter. The larger diameter of the voice coil (3 inches) than the length (1 inch) of
the specimen supports the one-dimensional movement. The dust cap of the voice coil was replaced
with a plastic flange. A load cell was mounted in-line between the central clamp and the flange to
measure the tensile and compressive force. To measure the displacement of the specimen, a high-speed
non-contact laser displacement sensor was fixed with a guide rail. Figure 5 illustrates the test bench
setup. First, the specimen was clamped at the center. The specimen sits on the bearings at both ends
as shown in Figure 5. Spacers were used at both ends to ensure no preload on the specimen. Then,
the other bearing holders were placed and clamped using heavy load toggle clamps on top. To ensure
line contact at both ends, bearings were used. Bearings also minimize the friction during the simply
supported vibration test. By sliding the displacement sensor using the guide rail, the sensor was
pointed at the center of the specimen. The displacement measured by the sensor was processed using
a microcontroller to determine the amplitude and mean of the displacement. The data was sent to
a computer from the microcontroller using a serial port. An adaptive controller was implemented in
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the Python development environment to estimate the required amplitude of the sinusoidal control
signal. The signal from the computer was sent to a waveform generator via Ethernet. A linear power
amplifier connected with the waveform generator drives the actuator. All process and manipulated
variables were stored for further analysis to identify the nucleation and propagation phase.

Figure 5. Fatigue test bench with a specimen mounted.

4.2. Adaptive Controller Design

An adaptive proportional and derivative (PD) controller was designed to control the displacement
amplitude. A conventional PID controller was avoided since the system parameters change due to the
structural stiffness change of the specimen during the test. Material hardening or softening may occur
too. There may also be a possibility of overshoot above the set point during the transient condition.
Overshoot may affect the test results. Therefore, an adaptive controller was designed. The design of an
adaptive controller follows Equation (7).

u(k) = u(k− 1) + P ∗ error + D ∗ error(k)− error(k− 1)
∆t

(7)

where, u(k), and u(k − 1) are the control signal amplitudes at time k, and (k − 1) respectively. P,
and D are the proportional and derivative gain respectively, and ∆t is the time step. The proportional
controller offsets the current value linearly with the error, and the derivative controller adds in
controlling the actuation based on the rate of the change of error. The error is defined as,

error = dset
p−p − dcurrent

p−p (8)

where, dset
p−p and dcurrent

p−p are the desired and current displacement amplitude respectively. The controller
values were chosen by manual tuning with caution that no overshoot occurs above the set point.
The controller values need to be varied with the test frequency and test material as well. The P and D
controllers were set at 5.0 and 0.5 respectively for 304 materials at 56 Hz test frequency.

5. Results and Discussion

The closed-loop displacement-controlled fatigue test was performed on wrought 304 and SLM
fabricated 304L SS specimens. The sinusoidal excitation frequency was set at 56 Hz. Figure 6 shows



Appl. Sci. 2019, 9, 3226 8 of 17

the displacement amplitude of a specimen actuated at 0.100 volts control signal amplitude for different
frequencies. The system response is a window function with 39 Hz cutoff frequency. In terms of
system dynamics, the fatigue test is a harmonic forced vibration of two mass-spring systems. One is
the actuator, and another is the specimen. At cutoff frequencies, the system behaves like a shock
absorber. A detailed explanation can be found in the literature [41]. The frequency response shows
that the displacement amplitude is maximum at 56 Hz, 95 Hz, and 134 Hz. The test frequency was
chosen 56 Hz since external cooling may be required at higher frequencies. All experiments were
conducted for simply supported fully reversed bending test at room temperature. During the test,
the temperature of the specimen was monitored using an infrared temperature sensor. The deviation
in the temperature remains within ±2 ◦C at 56 Hz test frequency.

Figure 6. The frequency response of a specimen actuated at 0.100 volts control signal amplitude.

In a Krouse type specimen, the fatigue failure can occur at any location within the gauge. All the
specimens tested in this study failed within the gauge as expected. The random failure location is
due to the defects present randomly within the gauge. The nominal stress distribution is supposed
to be constant while the local stress is expected to be high at the defect zone. Figure 7 exhibits
the failure location of wrought specimens. Figure 8 illustrates the displacement and control signal
amplitude for the wrought specimen actuated at 0.200 mm amplitude which corresponds to 514.26 MPa
nominal stress. During the test, the stiffness of the specimen decreases as the crack grows, propagates,
and final failure occurs. The control signal amplitude decreases with the reduction of stiffness to
maintain the desired set displacement. The displacement amplitude increases suddenly during the
final failure. The test was stopped automatically when the amplitude was above a threshold. The test
result at different displacements illustrated in Figure 9 validates the effective performance of the
adaptive controller.

Figure 7. Fatigue failure of specimens actuated at different displacement amplitude.
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Figure 8. Displacement and control signal amplitude up to the entire fatigue life cycle of a fine finished
wrought specimen.

Figure 9. Displacement amplitude control of fine finished wrought specimens up to the entire fatigue
life cycle.

In this study, we introduce a control signal monitoring (CSM) method to identify the nucleation
and propagation stage. During the fatigue test, the crack first grows slowly, which is termed as
nucleation. When the nucleation process ends, the crack starts propagating and the final failure occurs.
The stiffness of the specimen decreases at all stage, but the rate of the stiffness change is different.
Wang [42] reported for carbon fiber polymer-matrix composite that the stiffness of the material has
an inverse analogous relation with the change in resistance up to the end of nucleation phase while
performing the electrical potential technique on fatigue test to identify the nucleation and propagation
phase. Grammatikos [31] implemented the linear regression analysis on the relative potential change
as a function of fatigue life fraction to identify different stages. Similarly, this is possible to identify the
phases using linear regression analysis on the control signal. First linear regression was applied on
the control signal. Then the peak amplitude of the signal near the end of regression line was marked
as the end of nucleation phase, as shown in Figure 10. Here the regression helps in choosing the
peak of the signal. Current study demonstrates the implementation of CSM method. Future study
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includes the sensitivity analysis on the monitoring signal. The implementation of the CSM method on
other wrought and SLM specimens is shown in Figure 11. To determine the maximum nominal stress,
the average of the peak load was calculated up to the end of the nucleation phase. Inserting the average
in Equation (4), the nominal stress was calculated. Figure 12 shows the tensile and compressive load
response up to the final failure for the wrought specimen displaced at 0.200 mm amplitude.

The fatigue life of a specimen in terms of the number of cycles is the sum of cycles during
nucleation and propagation stages. Materials demonstrate a higher life cycle at low-stress value.
Figure 13 shows the end of the nucleation phase cycle and cycles to failure for fine finished wrought
and SLM specimens. The trend of nucleation and propagation presented in the literature [43,44]
supports the results. Both the wrought and SLM specimens demonstrate an increase in the nucleation
and propagation cycle as the stress goes low, but for a particular stress value, both the nucleation and
propagation cycles for the SLM material is lower than those for the wrought material. A possible
reason is that additively manufactured materials have a higher probability of different types of defects.
The fracture surface analysis of wrought and SLM specimens is shown in Figure 14. In the SLM
specimen, the crack is initiated at the lack of fusion defect near the top surface while surface defect is
the crack initiation source for wrought specimens. We observed similar type of defects to be the crack
nucleation site for other SLM specimens. The crack starts growing earlier in SLM materials than in
wrought materials. Therefore, the nucleation life cycle is less. The presence of other defects such as
micro-cracks, pores, and lack of fusion within the volume enhance the propagation rate. Additionally,
some authors reported that inter-layer bonding is weak in SLM materials [45,46]. Therefore, SLM
fabricated 304 L SS demonstrate lower fatigue strength than bulk material.

Further analysis was performed to evaluate the CSM method in identifying nucleation and
propagation phase. Rough finished and notched rough finished wrought specimens were prepared
to conduct fatigue test. Rough finished specimens were chosen because these are easy to prepare.
Figure 15 shows the notch location in the specimen. Figure 16 illustrates the nucleation and propagation
phase identified using the CSM method for the specimens. As we know, notched specimens have
higher stress concentration, hence, they fail earlier. The number of cycles decreases more in nucleation
phase due to the notch while the influence of notch on the propagation is minimal. This attributes to
the proper implementation of the CSM method in identifying the end of nucleation phase. In future,
the method will be validated determining the crack length at the end of nucleation phase.

Figure 10. Nucleation and propagation stage of a fine finished wrought specimen displaced at
0.200 mm amplitude.
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Figure 11. Nucleation and propagation stage of fine finished specimens, (a) wrought specimen
displaced at 0.300 mm amplitude; (b) wrought specimen displaced at 0.225 mm amplitude; (c) SLM
specimen displaced at 0.200 mm; (d) SLM specimen displaced at 0.175 mm amplitude.

Figure 12. Load values for the specimen displaced at 0.200 mm amplitude.
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Figure 13. End of nucleation phase and cycles to failure for fine finished wrought and SLM
fabricated specimens.

Figure 14. Fracture surface analysis of fine finished wrought and SLM fabricated materials, (a) crack
nucleation site; and (b) crack propagation site of a wrought specimen, the nominal stress is 411.67 MPa;
(c) crack nucleation site of SLM fabricated specimen, the nominal stress is 394.76 MPa; (d) presence
of lack of fusion at the surface initiating the crack; (e) presence of lack of fusion within the volume
enhancing crack propagation rate.
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Figure 15. Notched rough finished wrought specimens prepared with a W-EDM wire radius of
0.125 mm. The average radius of the notch measured was 0.180 mm.

Figure 16. Nucleation and propagation phase of rough finished wrought and notched rough finished
wrought specimens.

The Wohler curve for fine finished and rough finished wrought specimens, and fine finished SLM
specimens was plotted as shown in Figure 17. Both fine finished SLM and rough finished wrought
materials exhibit low fatigue strength compared to the fine finished wrought material. The endurance
limit (107) of the fine finished, rough finished wrought specimen and fine finished SLM specimen
reported here are 404.26, 344.62 and 336.52 MPa respectively. The yield tensile strength (YTS) and



Appl. Sci. 2019, 9, 3226 14 of 17

ultimate tensile strength (UTS) for the wrought material used in this study are 582.5 and 780.9
respectively while for the SLM material with the same process parameter used, they are 368.4 and
536.7 MPa respectively [47]. These results are in good agreement with the general relationship between
fatigue limit and ultimate tensile strength [43]. The endurance limit is also comparable with the results
reported by other authors [38,48].

Figure 17. Wohler curve plot of wrought and SLM fabricated specimens.

6. Conclusions

In this study, a dual gauge section Krouse type mini specimen was designed to achieve a constant
stress distribution with increased volume to conduct fatigue test. The test was performed with
a simply supported loading mechanism on wrought and additively manufactured materials using
a unique adaptive displacement controlled mini fatigue test set up. A new diagnosis method named
control signal monitoring (CSM) was employed to identify the nucleation and propagation stages.
The test results and analyses illustrate that SLM fabricated 304L stainless steel demonstrate lower
fatigue strength in terms of both the nucleation and propagation cycles compared to bulk wrought
material. The test method developed here can be applied in the extensive study on other additively
manufactured materials in the future.
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