
applied  
sciences

Article

Design and Experiment of a Large-Aperture Hollow
Traveling Wave Ultrasonic Motor with Low Speed
and High Torque

Jun Liu 1 , Zi-Jie Niu 2, Hua Zhu 1,* and Chun-Sheng Zhao 1

1 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics
and Astronautics, Nanjing 210016, China; junl106@nuaa.edu.cn (J.L.); cszhao@nuaa.edu.cn (C.-S.Z.)

2 College of Mechanical and Electronic Engineering, Northwest Agriculture and Forestry University,
Xi’an 712100, China; niuzijie@nwsuaf.edu.cn

* Correspondence: hzhu103@nuaa.edu.cn; Tel.: +86-135-0514-2058

Received: 17 May 2019; Accepted: 18 September 2019; Published: 23 September 2019
����������
�������

Abstract: To realize applications involving low speed and high torque in the high-performance
actuator industry, especially in the aerospace field, we propose a novel 70H traveling wave rotary
ultrasonic motor (TRUM) with an outer diameter of 70 mm and an aperture ratio of 53% (the ratio
between the aperture and outer diameter). The power transmission mechanism between the stator
and the rotor is analyzed, and a method for realizing low-speed–high-torque characteristics of TRUMs
is proposed. ANSYS software is used to simulate the modal parameters of the stator, and the ratio
β between the normal amplitude and the tangential vibration velocity of the stator is proposed.
The larger the value of β, the lower the speed and the higher the torque. Furthermore, two prototype
motors are fabricated, namely, 70HA and 70HB. Compared with 70HA, the maximum no-load speed
of the improved 70HB (50 rpm) is decreased by 23.1% and the maximum stall torque (2.4 N·m)
is increased by 100%. Besides this, with a smaller mass of 210 g and a higher torque density of
11.43 N·m/kg, 70HB has fundamentally different mechanical characteristics.

Keywords: hollow traveling wave ultrasonic motor; low speed and high torque; finite element
method; elliptical motion trajectory; mechanical characteristics

1. Introduction

Traveling wave rotary ultrasonic motors (TRUMs) have been widely developed worldwide.
Compared with electromagnetic motors, TRUMs have drawbacks of lower efficiency and durability,
but there are still some unique advantages. For instance, TRUMs can be used for direct drive with low
mass and speed and high torque and power density, and they have a high holding torque when the
power is off. As such, TRUMs are widely applicable as high-torque drivers, especially in short-term,
non-sustainable workplaces. However, because of the limitation of their driving mechanism, TRUMs
have poorer low-speed–high-torque characteristics compared with those of standing wave ultrasonic
motors (SUMs). Currently, the maximum no-load speed of TRUMs of various sizes is hundreds of
rotations per minute and the maximum stall torque is only around 1 N·m. By contrast, for a SUM with
the same outer diameter as a TRUM, the maximum no-load speed is 10–20% that of the TRUM, while
the maximum stall torque is 5–10 times that of the TRUM [1,2]. To date, two main methods have been
used to reduce the speed and increase the output torque of TRUMs. Previous studies have shown
that the TRUM limiting speed is inversely proportional to the square of the outer diameter and the
output torque is proportional to the square of the outer diameter; therefore, the first method involves
increasing the outer diameter [3–5]. The second method is to use novel structures, such as double-stator
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motors or single-stator with two-sided piezoelectric ceramics motors, to increase the input and output
power and the output torque of TRUMs [6–8]. Nevertheless, those methods saddle TRUMs with
disadvantages, such as large volume, complicated structure, and high power consumption, making
them unsuitable for aerospace applications.

Previous studies of low-speed–high-torque TRUMs have yielded the following results: An et al.
developed a ∅60 mm dual traveling wave rotary ultrasonic motor with a maximum speed and
stall torque of 60 rpm and 0.85 N·m, respectively [9]. Glenn et al. developed a ∅80 mm two-sided
piezoelectric rotary ultrasonic motor with a maximum speed and stall torque of 40 rpm and 1.7 N·m,
respectively [10]. Kawai et al. developed a ∅70 mm double-piezoelectric-ceramic motor with a
maximum speed and stall torque of 200 rpm and 2.1 N·m, respectively [11]. Li et al. developed a
∅60 mm double-piezoelectric-actuator motor with a maximum stall torque reaching 1.2 N·m [12].
Tian et al. developed a ∅90 mm hollow-ring motor with a maximum speed and stall torque of 106 rpm
and 1.8 N·m, respectively [13]. Hu et al. developed a ∅100 mm large-torque pressure-equalizing motor
with a maximum speed and stall torque of 58 rpm and 2.2 N·m, respectively [14]. Finally, Chen et al.
developed a ∅100 mm novel motor using the usual piezoelectric elastic body as the rotor, and the
maximum speed and stall torque were 20 rpm and 4 N·m, respectively [15].

In the present paper, we propose the 70H: a hollow TRUM with an outer diameter of ∅70 mm
and an aperture ratio of 53% for low-speed–high-torque applications. Combined with the advantage
of the motion mechanism of a standing wave longitudinal–torsional hybrid motor [16], the stator was
improved by ANSYS simulation and then fabricated. Two prototype motors were assembled, referred
to as 70HA and 70HB, respectively. Tests of the mechanical characteristics showed that 70HB had
lower speed and higher torque.

2. Structure of TRUM-70H

Figure 1 shows the structure of the 70H prototype motor via a three-dimensional model and a
sectional view. The motor comprises a stator, a rotor, a base, and a preload nut. The stator is fixed
to the base with a locknut. The rotor is located in a bearing that is assembled in the base and is in
contact with the stator. The preload nut provides a preload between the stator and the rotor through
the threads on the rotor. The piezoelectric ceramics (PZT-8, 0.5 mm thick) and the friction materials
(PTFE composites, 0.25 mm thick) are glued to the stator and the rotor with epoxy adhesive. Compared
with the mainstream solid-shaft traveling wave motor, 70H has a larger inner hole with the ratio of
aperture to outer diameter reaching 53%. Therefore, the design is more difficult because the design
space of the stator and rotor is relatively smaller, the supporting web of the stator is narrower, and the
amplitude of the stator may be smaller. However, 70H has obvious advantages too: the structure is
more compact, the volume and mass are smaller, and the torque density is greater. In Figure 1, H is
the stator thickness, H1 is the stator tooth height, h = (H + H1)/2 is the distance from the stator tooth
surface to the neutral plane, H2 = H − H1 is the stator base thickness, rh is the rotor inner radius, and rd
is the stator inner radius.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 2 of 16 

 

increase the input and output power and the output torque of TRUMs [6–8]. Nevertheless, those 
methods saddle TRUMs with disadvantages, such as large volume, complicated structure, and high 
power consumption, making them unsuitable for aerospace applications. 

Previous studies of low-speed–high-torque TRUMs have yielded the following results: An et al. 
developed a ∅60 mm dual traveling wave rotary ultrasonic motor with a maximum speed and stall 
torque of 60 rpm and 0.85 N∙m, respectively [9]. Glenn et al. developed a ∅80 mm two-sided 
piezoelectric rotary ultrasonic motor with a maximum speed and stall torque of 40 rpm and 1.7 N∙m, 
respectively [10]. Kawai et al. developed a ∅70 mm double-piezoelectric-ceramic motor with a 
maximum speed and stall torque of 200 rpm and 2.1 N∙m, respectively [11]. Li et al. developed a ∅60 
mm double-piezoelectric-actuator motor with a maximum stall torque reaching 1.2 N∙m [12]. Tian et 
al. developed a ∅90 mm hollow-ring motor with a maximum speed and stall torque of 106 rpm and 
1.8 N∙m, respectively [13]. Hu et al. developed a ∅100 mm large-torque pressure-equalizing motor 
with a maximum speed and stall torque of 58 rpm and 2.2 N∙m, respectively [14]. Finally, Chen et al. 
developed a ∅100 mm novel motor using the usual piezoelectric elastic body as the rotor, and the 
maximum speed and stall torque were 20 rpm and 4 N∙m, respectively [15]. 

In the present paper, we propose the 70H: a hollow TRUM with an outer diameter of ∅70 mm 
and an aperture ratio of 53% for low-speed–high-torque applications. Combined with the advantage 
of the motion mechanism of a standing wave longitudinal–torsional hybrid motor [16], the stator was 
improved by ANSYS simulation and then fabricated. Two prototype motors were assembled, 
referred to as 70HA and 70HB, respectively. Tests of the mechanical characteristics showed that 70HB 
had lower speed and higher torque. 

2. Structure of TRUM-70H 

Figure 1 shows the structure of the 70H prototype motor via a three-dimensional model and a 
sectional view. The motor comprises a stator, a rotor, a base, and a preload nut. The stator is fixed to 
the base with a locknut. The rotor is located in a bearing that is assembled in the base and is in contact 
with the stator. The preload nut provides a preload between the stator and the rotor through the 
threads on the rotor. The piezoelectric ceramics (PZT-8, 0.5 mm thick) and the friction materials (PTFE 
composites, 0.25 mm thick) are glued to the stator and the rotor with epoxy adhesive. Compared with 
the mainstream solid-shaft traveling wave motor, 70H has a larger inner hole with the ratio of 
aperture to outer diameter reaching 53%. Therefore, the design is more difficult because the design 
space of the stator and rotor is relatively smaller, the supporting web of the stator is narrower, and 
the amplitude of the stator may be smaller. However, 70H has obvious advantages too: the structure 
is more compact, the volume and mass are smaller, and the torque density is greater. In Figure 1, H 
is the stator thickness, H1 is the stator tooth height, h = (H + H1)/2 is the distance from the stator tooth 
surface to the neutral plane, H2 = H − H1 is the stator base thickness, rh is the rotor inner radius, and rd 
is the stator inner radius. 

  
(a) (b) 

Figure 1. Hollow ultrasonic motor, ∅70 mm: (a) 3D structure of 70H; (b) some essential size 
parameters of 70H. 

3. Motion and Power Transmission 
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3. Motion and Power Transmission

3.1. Particle Elliptical Motion of the Stator

The research to date on the TRUM motion mechanism is relatively mature. Applying two-phase
excitation signals that differ in time phase by π/2 to the two sets of piezoelectric ceramics polarized in a
specific manner can excite B0n bending modes in the stator elastic body that differ in space phase by π/2.
The two orthogonal modes with the same frequency and shape are superimposed to form a traveling
wave that propagates in a certain direction in the stator elastic body, thereby causing any particle on
the surface of the stator to move elliptically [17,18]. At this time, the rotor with some friction material
is in contact with the stator under a certain preload, and the elliptical motion of the stator drives the
rotation of the rotor, thereby determining the motor output speed and torque (shown in Figure 2).
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According to the literature [19], the displacement of point P in the directions of z and x will be{
ξp = w0 sin(kx−ωnt)
ζp = −w0hk cos(kx−ωnt)

(1)

Then, the elliptical motion trajectory of any particle P on the stator surface can be expressed by(
ξp

w0

)2

+

(
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where ξp is the normal displacement of point P, ζp is the tangential displacement, w0 is the normal
amplitude of the stator, n is the working mode order, h is the distance from the stator tooth surface to
the neutral surface, rc is the outer radius of the stator, and k = 2π/λ = n/rc.

3.2. Limiting Speed and Stall Torque of the Motor

According to Equation (1), the speed of point P in the x direction can be obtained:

Vτ =
dξp

dt
= −w0hkωn sin(kx−ωnt) (3)

When the stator and rotor are in contact with the traveling wave crest, the maximum tangential
velocity of a stator particle can be regarded as being equal to the linear velocity of the rotor if there is
no relative sliding between the stator and the rotor. Therefore, the theoretical limiting speed of the
motor can be expressed as

Nmax = Vτmax = −w0hkωn = −
60hn fmw0

rc2 (4)

where ωn is the vibration angular frequency and fm is the modal frequency.
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When the motor is working, the rotor with friction material is pressed against the traveling wave
stator under the preload. Because the friction layer is softer than the rotor material, it can be assumed
that only the friction layer is subjected to contact deformation, with the rotor itself not undergoing
elastic deformation. When the motor is not working, the compression of the friction layer is

∆w = Fn/kn (5)

where Fn is the preload acting on the rotor and kn is the equivalent stiffness coefficient of the friction layer.
According to contact force analysis, the force between the stator and rotor can be decomposed into

a normal contact force and a tangential friction force. In the range of elastic contact, it can be assumed
that (i) the normal contact force is proportional to the compression of the friction layer and (ii) the
tangential friction force obeys Coulomb’s law of friction. If the average dynamic friction coefficient is
µd, then the theoretical limits of the normal contact force and the tangential friction force are

fnmax = kngm = kn(w0 + ∆w) (6)

fτmax = µd fnmax (7)

The limiting stall torque of the motor is

MTmax =
Z∑

e=1

x

fτ(e)

rd fτ =
Z∑

e=1

x

S(e)

r fτmax

S(e)
dS =

Z∑
e=1

x fτmax

π(rc2 − ri2) −Zl∆r
r2dθdr (8)

where ri is the inner radius of the friction layer, Z is the number of contacted stator teeth, l is the tooth
spacing, ∆r is the radial width of the friction layer, and θ is the circumferential angle of a single tooth.

Equations (4) and (8) show the following. (i) Increasing the normal amplitude can increase both
the stall torque and the limiting speed of the motor. (ii) Decreasing the axial distance h between point P
and the neutral layer will reduce the tangential displacement ζp so as to achieve a lower rotation speed
of the motor. (iii) The tangential speed Vτ is inversely proportional to the wavelength λ; therefore,
decreasing the modal frequency can enlarge the wavelength and reduce the speed.

4. Optimization of Stator Characteristic Parameters

4.1. Realization of Low-Speed–High-Torque Characteristics

For all types of ultrasonic motor, the stator amplitude is an important indicator of motor performance:
the larger the amplitude, the greater the mechanical energy converted from electrical energy [20].
In practice, the speed is regulated mainly by driving signal frequency and voltage, which is essentially
controlled by changing the amplitude [21]. If the motor structure is constant, then the driving frequency
is adjusted from high to low in the design band; if the voltage is constant, then the motor speed is
adjusted from low to high. The closer the driving frequency to the modal frequency, the larger the stator
amplitude and the higher the motor speed. The stall torque measured at the maximum speed point is
also the largest. Similarly, if the driving frequency is constant, then within a certain range, the larger the
driving voltage, the larger the stator amplitude, the motor speed, and the stall torque.

At present, low-speed–high-torque characteristics are reflected mainly in standing wave motors,
especially the longitudinal–torsional hybrid motor, and are difficult to achieve in traveling wave
motors because the normal and tangential vibrations of the stator elliptical motion of a hybrid motor
are independent. However, the normal and tangential vibrations are coupled in a traveling wave
motor; that is, the tangential displacement of a stator surface particle is induced by the normal bending
vibration [22,23]. Therefore, increasing (respectively, decreasing) the normal motion component, which
means the normal amplitude and can represent the maximum stall torque, will inevitably increase
(respectively, decrease) the tangential motion component, which means the tangential velocity can
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represent the limiting speed. From the perspective of the mechanism of elliptical motion, when the
external drives are adjusted, an increase or decrease of the amplitude can be considered as enlargement
or reduction of the elliptical motion trajectory, as shown in Figure 3a.

However, for the longitudinal–torsional hybrid motor, the normal vibration and tangential
vibration can be adjusted independently so that the size and shape of the elliptical motion trajectory
can both change. Inspired by this, the size and shape of the elliptical motion in traveling wave motors
should be changed to achieve low-speed–high-torque characteristics. Specifically, we should try to
increase the normal amplitude as much as possible while reducing the tangential amplitude. That is
to say, we must increase the ratio of the long axis (normal) to the short axis (tangent) of the elliptical
motion trajectory. However, the stator characteristic parameters affect not only the elliptical motion
directly, but also the amplitude. In other words, the amplitude is an intermediate dependent variable
that affects the motor speed and output torque, whereas the characteristic parameters of the external
drives and the stator are independent variables. According to the above analysis, adjusting the external
drives can change only the size of the elliptical motion but not its shape. Therefore, to change the ratio
of the long axis to the short axis, the stator characteristic parameters must be changed to make the
elliptical motion trajectory tall and thin, as shown in Figure 3b.
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Accordingly, in the case of the same external drives and stator and rotor inner and outer diameters,
to achieve low-speed–high-torque characteristics in a traveling wave motor, we should increase the
stator amplitude w0 as much as possible for higher mechanical output power but reduce n, h, l, and fm.
In the final analysis, we adjust the four stator characteristic parameters of (i) modal order n, (ii) stator
base thickness H2, (iii) stator tooth height H1, and (iv) tooth spacing l.

4.2. Finite Element Modeling

Using the modal analysis and harmonic response analysis of ANSYS 15.0 finite element software,
the stator modal shape, modal frequency, normal amplitude, and tangential velocity can be obtained
intuitively. Herein, we define the ratio β between the normal amplitude and tangential vibration
velocity at the same modal frequency and use it to measure the low-speed–high-torque characteristics
of the motor; the larger β is, the more remarkable those characteristics are.

The material properties of the 70H stator are given in Table 1. Piezoelectric ceramic is a smart
material that has elastic constants, piezoelectric constants, and permittivity constants. The damping
ratio was set to 0.8% and the driving voltage was set to 100 Vpp [24,25]. The working mode of the finite
element method (FEM) simulation is shown in Figure 4a. The simulated vibration modal frequency of
the stator was 51.2 kHz, the amplitude was 1.41 µm, the tangential velocity was 0.2435 m/s, and β was
5.79, as shown in Figure 4b.
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4.2.1. Influence of the Vibration Mode on the Motor

The working mode of a traveling wave motor is represented by B0n, where n is the number
of traveling wave wavelengths as well as the modal order. To better generate a traveling wave,
the sum of the bending waves of the piezoelectric ceramic is designed to be the same as the expected
mode. Therefore, an odd-order working mode is generally selected for the stator. Furthermore,
the piezoelectric ceramic should be adjusted accordingly when the working mode changes, as shown
in Figure 5. The influence of n on the stator vibration parameters can be simulated by finite element
analysis, as shown in Figure 6. There are clearly many design choices for the motor working mode.
The smaller the value of n, the lower the working mode order, the lower the stator modal frequency,
the larger the amplitude, the smaller the tangential speed, and the larger the value of β. However,
if the working mode order is too low, the modal frequency may be lower than the lower limit of the
ultrasonic frequency (20 kHz). Therefore, the B09 working mode was adopted for lower speed and
higher torque.
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4.2.2. Influence of the Stator Structure Size on the Motor

We adopted the B09 mode in the finite element geometrical model of the 70HA stator. When the
tooth spacing was changed, the modal frequency, amplitude, and tangential velocity of the stator changed
little. As the tooth spacing was decreased, the amplitude–velocity ratio of the stator increased slightly, as
shown in Figure 7. In addition, the smaller the spacing, the larger the actual contact area between the
stator and the rotor, which helps improve the rotational stability and output torque of the motor.

With the tooth spacing determined, the simulated effects of tooth height and base thickness on the
stator vibration parameters could be ascertained and are shown in Figure 8. The thicker the stator
base, the higher the modal frequency with a relationship that is approximately linear. When the base
thickness was kept constant, the modal frequency and the amplitude decreased and the tangential
velocity increased as the tooth height increased. In addition, as the base thickness was increased,
the amplitude decreased sharply initially and then gently, and the tangential velocity increased initially
and then decreased, which shows that the rotational speed is the result of multivariable coupling of the
stator. The tooth height has an obvious influence on the tangential velocity. When the base thickness is
small, the amplitude difference is also obvious whether there are stator teeth or not. When the base
thickness and tooth height are smaller, the amplitude–velocity ratio is larger.
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4.3. Determination of Improved Stator Characteristic Parameters

In summary, the conditions of the low-speed–high-torque characteristics of TRUM-70HB can be
further parameterized: when the outer diameter and the external drives are certain, ensure that the
working modal frequency of the motor is slightly higher than 20 kHz. By analyzing the influence
of each parameter on the stator vibration characteristics, the stator base thickness and the tooth
height should be reduced first, and then the stator working mode order and tooth spacing should be
reduced. Considering the factors of processing technology and cost, the variable design space can be
reduced further. Thus, the enumeration method was used to select several sets of suitable parameters
for simulation comparison, and finally, a set of parameters was determined. The improved motor
was named 70HB, and its stator characteristic parameters are compared in Table 2 with those of the
conventional 70HA.

Table 2. Comparison of the stator characteristic parameters of 70HA and 70HB.

Stator Parameters 70HA 70HB Design Space

Outer radius rc (mm) 35 35 {35}
Inner radius rd (mm) 24 24 {24}

Base thickness H2 (mm) 2.5 1.5 [1, 5]
Tooth height H1 (mm) 1 0.8 [0.5, 2.5]
Tooth spacing l (mm) 0.8 0.3 [0.3, 1.5]

Working mode order n 11 9 {7, 9, 11}
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The simulation gave a 70HB vibration modal frequency of 23.6 kHz, an amplitude of 3.68 µm,
a tangential velocity of 0.1999 m/s, and an amplitude–velocity ratio of 18.41, as shown in Figure 9.
Furthermore, using ANSYS for phase response analysis, the motion trajectory of the outer edge of the
stator teeth surface in one vibration period could be obtained. When the rotor was not considered,
the normal and tangential amplitudes of 70HA were 1.41 µm and 0.743 µm, respectively, and the
normal and tangential amplitudes of 70HB were 3.68 µm and 0.716 µm, respectively, as shown in
Figure 10a. When considering the rotor preload (550 N), the normal and tangential amplitudes of
70HA were 0.341 µm and 0.397 µm, respectively, and the normal and tangential amplitudes of 70HB
were 0.965 µm and 0.316 µm, respectively, as shown in Figure 10b. The simulation results show that the
normal and tangential amplitudes of the stator will decrease when the preload exists, and the normal
amplitudes will decrease greatly. The elliptical motion trajectory of the stator changes greatly when
the stator characteristic parameters are changed: that of 70HA appears short and fat whereas that of
the improved 70HB appears tall and thin. Due to the existence of the stator teeth, the deformation of
the tooth structure at different positions may have a phase difference which is nonzero at the outer
edge of the teeth. Therefore, the elliptical trajectory appears to be inclined.
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5. Experiments on Prototype Motors

Following the simulation analysis, two sets of prototype motors were fabricated and named
70HA-1, 70HA-2, 70HB-1, and 70HB-2, respectively, as shown in Figure 11. Then, the vibration
characteristics and the mechanical characteristics were tested. The experiment’s final results showed
that the consistency of 70HA and 70HB was good.
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5.1. Test of Vibration Characteristics

In this study, vibration tests of the stators were conducted using a scanning Doppler laser vibration
measurement system (PSV-300; Polytec Co., Karlsruhe, Germany). The instrument and the software
interface are shown in Figure 12. The driving voltage was set to 100 Vpp. The actual modal frequency
of 70HA-1 was 49.52 kHz and the actual amplitude was 1.4 µm; the corresponding values for 70HA-2
were 49.58 kHz and 1.4 µm, respectively; the corresponding values for 70HB-1 were 22.07 kHz and
3.5 µm, respectively; and the corresponding values for 70HB-2 were 22.12 kHz and 3.6 µm, respectively.
In addition, some of the electrical properties of the stator were also tested using an impedance analyzer
(Agilent 4294A; Agilent Technologies Inc., Shanghai, China). The measured results agree well with
those from the simulation, as shown in Table 3, thereby verifying the accuracy of the simulation design.
The test also showed that the individual differences in the prototypes are very small. Therefore, in the
subsequent mechanical characteristics test, comprehensive performance data can be used to reflect the
characteristics of the two types of motors.
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70HA; and (c) measured mode of 70HB.

Table 3. Vibration characteristics measurement of 70HA and 70HB.

Motor Type 70HA-1 70HA-2 70HB-1 70HB-2

Modal frequency fm (kHz),
simulation/measurement 51.2/49.52 51.2/49.58 23.6/22.07 23.6/22.12

Amplitude w0 (µm),
simulation/measurement 1.41/1.4 1.41/1.4 3.68/3.5 3.68/3.6

Error of fm 3.39% 3.16% 6.93% 6.27%
Error of w0 0.71% 0.71% 5.14% 2.17%

Static capacitance of PZT C0 (nF) 12.51 12.42 12.18 12.21
Resonant frequency of stator fr (kHz) 51.09 50.86 21.58 21.72

Anti-resonant frequency of stator fa (kHz) 51.80 51.52 22.39 22.49

In order to test the amplitude of the stator with preload, a rotor with an outer diameter 4 mm
smaller than that of the stator was made. Thus, the vibration of the stator teeth surface could be
measured by laser scanning. When the excitation voltage was 100 Vpp, the normal amplitudes of
70HA and 70HB without preload were 1.4 µm and 3.5 µm, respectively; their amplitudes with a
preload of 800 N were 0.2 µm and 0.5 µm, respectively. When the excitation voltage is 400 Vpp,
the stator deformation will be larger without the compressed rotor, which will lead to ceramic breakage.
Therefore, the minimum preload was set to 200 N. At this level, the normal amplitudes of 70HA and
70HB were 3.5 µm and 8.0 µm, respectively. An accompanying noise indicated that the preload was
still too small. The amplitudes with a preload of 800 N were 0.6 µm and 2 µm, respectively. As shown
in Figure 13, the test results show that the normal amplitude of the stator teeth surface decreases
with increasing preload and increases with increasing excitation voltage. The stator amplitude during
operation of the motor was maintained above 1 µm, and the larger the stator amplitude without the
rotor, the greater the preload that can be applied.
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5.2. Test of Mechanical Characteristics

A system was built to test the mechanical characteristics of the motors, as shown in Figure 14.
The motor driver was composed of a TMS320F28335 DSP main processor with peripheral circuits,
including a power module, signal processing module, two-phase power amplifier module, impedance
matching module, and feedback signal acquisition module. The driver controlled the motor speed
by frequency modulation, and the driving frequency was 22~30 kHz. The input voltage was 24 V
DC and the output voltage was 350~450 Vpp AC. The motor could realize millisecond start–stop and
forward–reverse motion. The load device provided a load change of 0–3 N·m in 3 s. The mechanical
characteristics of 70HA and 70HB were measured and compared with those of the USM-60 motor
(Shinsei Industrial Co., Ltd., Tokyo, Japan), which is the most representative traveling wave motor
currently available; this is shown in Figure 15, where β’ is the measured amplitude–velocity ratio.
From Figure 15a, the β’ value of USM-60 is 4.17, which is the minimum; that of 70HA is 5.88, and that
of 70HB is 18.37, which is the maximum. This means that the mechanical characteristics were changed
from soft to hard. Compared with 70HA, the maximum speed of 70HB was reduced from 65 rpm to
50 rpm and the maximum stall torque was increased from 1.2 N·m to 2.4 N·m. The operating frequency
of 70HA is in the range 50.5–53.5 kHz, and the maximum efficiency is only roughly 10% at 50% of the
maximum stall torque. The operating frequency of 70HB is in the range 25–28 kHz, and the maximum
efficiency is roughly 27% at 55% of the maximum stall torque. Overall, the maximum speed of the
improved 70HB dropped by 23.1%, the maximum stall torque increased by 100%, and the maximum
efficiency increased by 170%. In addition, we compared the 70HB with the same size motor in Ref. [11].
It can be seen that as the driving frequency decreases, the output speed and torque of both motors
increase and peak near the resonance point. The output performance indicators drop sharply when
the driving frequency is below the resonance point. Although the efficiency of 70HB is lower than
that of the reference motor, the power consumption of 70HB is also relatively lower. The maximum
input power of the reference motor is 70 W, while that of 70HB is only 26 W, as shown in Figure 15b,c.
In summary, it is fully demonstrated that the design of 70HB’s low-speed–high-torque characteristics
was successful.
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The measured vibration parameters were substituted into Equations (4) and (8) of Section 2.
The preload was set to 550 N and the average dynamic friction coefficient was set to 0.2. Thus, the
limiting speed and the limiting stall torque of the motor could be calculated and were found to be
slightly larger than the measured values, as shown in Tables 4 and 5. In summary, the simulation and
calculation results play an important role in designing and improving the motor.
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and USM-60; (b) mechanical characteristics of 70HB and the motor in Ref. [11]; and (c) power
consumption of 70HB and the motor in Ref. [11].

Table 4. Results of maximum speed by simulation, calculation, and measurement.

Motor Type Simulated Speed
Nmax (rpm)

Calculated Speed
N0 (rpm)

Measured
N’ (rpm)

70HA 66.48 81.92 65
70HB 54.57 52.73 50

Table 5. Results of maximum stall torque by calculation and measurement.

Motor Type Calculated Stall Torque
MT0 (N·m)

Measured
M’T0 (N·m)

70HA 1.70 1.2
70HB 2.82 2.4

Because preload has a great influence on the output performance of the motor, it was necessary to
analyze the influence of preload on the performance of the prototype. By adjusting the preload nut
when assembling the motor, the mechanical output characteristics of the motor with different preload
levels could be tested. The experiments showed that the no-load speed and stall torque of 70HA and
70HB were smaller when the preload was small (about 200 N). With increasing preload, the no-load
speed and stall torque of both motors increased rapidly and tended to be flat. The no-load speed and
stall torque of 70HA reached their peak at about 600 N, then decreased rapidly, and the motor failed to
start at about 900 N. The no-load speed and stall torque of 70HB reached their peak at about 700 N,
then decreased rapidly, and the motor failed to start at about 1000 N. The optimum preload of both
motors was larger than the preset 550 N, and the optimum preload of 70HB was about 100 N larger
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than that of 70HA. The results also show that the 70HB stator has larger normal amplitude, which can
make it withstand greater preload and significantly increases the stall torque, as shown in Figure 16.
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(driving frequency: f 70HA = 51.3 kHz, f 70HB = 25.4 kHz; excitation voltage: U = 440 Vpp).

In summary, the working principle and structure of the prototype may not be innovative, but
we propose a new method from a technical point of view to make the motor have lower speed
and greater torque, which is also emphasized in this paper. In order to further prove the validity
of the research results, we compared the prototype with some commercial products and designs
published in recent literature, such as the product PMR70ZK of NUAA Super Control Technology
Co., Ltd. (www.scnuaa.com, China), the product USR60-S3 of SHINSEI Corporation (www.shinsei-
motor.com, Japan), the product PSM60S-A of Piezo Sonic Corporation (www.piezo-sonic.com, Japan),
the polymer-based ultrasonic motor designed by Wu et al. [26], the metal/polymer-matrix material
compound motor designed by Li et al. [27], and the ring-type motor using a radial bending mode
designed by Chen et al. [28], all of which have similar structure and size, as shown in Table 6. From
the list, it can be seen that the motor 70HB has the lowest maximum-speed but the highest stall-torque,
showing significant low speed and large torque characteristics. It is proved that the prototype in this
paper is unique.

Table 6. Performance comparison between 70HB and other motors.

Performance Parameters 70HB PMR70ZK USR60-S3 PSM60S-A Ref. [26] Ref. [27] Ref. [28]

Outside diameter (mm) 70 70 60 60 30 60 90
Driving frequency (kHz) 25~28 37~43 40~45 40~45 25~27 40~45 19~22
Driving voltage (Vrms) 160 ± 20 160 ± 20 130 130 250 140 150
Maximum speed (rpm) 50 200 150 180 117.5 85 146

Stall torque (N·m) 2.4 1.6 1.0 1.2 9.5 × 10−3 0.5 1.0
Mass (g) 210 350 258 230 2.5 224.5 180

6. Conclusions

In this paper, the intrinsic influencing factors of the low-speed–high-torque characteristics of
traveling wave motors were studied without changing the outer diameter or the external drives. It was
noted that changing the size and shape of the elliptical motion of the stator is the fundamental way
to realize low-speed–high-torque characteristics, whereupon the 70H hollow traveling wave motor
was developed. A parameter β for measuring the significance of the low speed and high torque of
a traveling wave motor was proposed. The influence of the stator characteristic parameters on the
amplitude–velocity ratio was simulated. The larger the value of β, the taller and thinner the elliptical
motion trajectory of the stator and the more significant the low-speed–high-torque characteristics.
Based on this, improved stator characteristic parameters were determined according to the simulation,
and the two prototype motors 70HA and 70HB were fabricated. On testing the vibration and mechanical

www.scnuaa.com
www.shinsei-motor.com
www.shinsei-motor.com
www.piezo-sonic.com
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characteristics, the measured results were found to be consistent with the simulated ones. Compared
with the conventional 70HA, the improved 70HB’s maximum speed was reduced by 23.1% and its
maximum stall torque was increased by 100%. The motor speed changed less with load; that is, 70HB
exhibited a harder mechanical characteristics curve. In addition, 70HB was lighter at 201 g and had a
higher torque density of 11.43 N·m/kg, making it more suitable for aerospace applications. Finally,
with a constant outer diameter of the motor, the methods for designing a low-speed–high-torque
traveling wave motor stator are summarized as follows: (i) the motor should have a lower working
mode order; (ii) the stator base thickness and tooth height should be reduced; (iii) the tooth spacing
should be reduced and the contact range between the teeth and the rotor should be increased; and
(iv) the actual operating frequency of the motor should be slightly higher than 20 kHz.

In the future, this prototype has the potential to be used as an actuator in the aerospace field,
such as for satellite Control Moment Gyroscopes (CMGs). In order to control the attitude of a satellite,
the motor usually requires very low speed but larger torque and higher positioning accuracy. The 70HB
motor is simple in structure, small in size, and light in weight, and it does not need a deceleration
mechanism, which effectively saves space and energy in a system.
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