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Featured Application: This study supplies a clear thinking to improve the dynamic model of
turbine blade with under-platform damper. With this thinking, deeper study can be done to
make the damper design more scientific.

Abstract: To simplify the dynamic model, it is generally assumed that the bladed disc is stationary
in current studies on the dynamics of the turbine blade with an under-platform damper. With this
assumption, convective inertial force in tangential direction and Coriolis inertial force are not be
considered in the dynamic model and its equations. To make the dynamic model and relevant analysis
more scientific, an approximation method has been developed with the theory of compositive motion.
With this method, the response of the blade relative to the rotating bladed disc could be calculated,
and the influence of the bladed disc’s rotation is considered in this paper. Considering the bladed disc
from startup to steady-state, the dynamic characteristics of the system were studied. The influence of
damper mass, damper vibration stiffness, and external excitation amplitude on the vibration reduction
characteristics of the system were obtained. A method for determining the time when the system
reaches steady-state vibration was proposed with the normalized cross-correlation function (NCCF)
and the bisection method. The simulation results show that the bladed disc’s rotation has an obvious
influence on the dynamic characteristics of the system, and some new conclusions were obtained.

Keywords: under-platform damper; bladed disc’s rotation; compositive motion; relative displacement;
dynamical characteristic

1. Introduction

High-cycle fatigue (HCF) failure of the turbine blades of aero-engines caused by high vibrational
stresses is one of the main causes of aero-engine incidents. Due to its insensitivity to temperature and its
simple structure, the under-platform damper was widely used to reduce the vibration of the aero-engine
turbine blades [1]. To predict the response of the turbine blade with an under-platform damper more
and more accurately, recently, there have been quite a lot of developments in the calculations and
analyses of under-platform dry friction damper. These studies are mainly about structural dynamic
model, dry friction contact model, and methods for solving response of the nonlinear system.

Menq [2] and Sanliturk [3] studied the friction contact and the effect on the vibration reduction
of the two-dimensional friction motion. Xia [4] proposed a model for investigating the stick-slip
motion caused by dry friction of a two-dimensional oscillator under arbitrary excitations and provided
a numerical approach to investigate the system with the Coulomb friction law. Shan and Zhu [5,6]
used the numerical tracking method to analyze the complex motion and studied the dynamic response
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of the plate blade with an under-platform damper. Ma et al. established a dynamic model of rotating
shrouded blades considering the effects of the centrifugal stiffening and spin softening of the blade [7].
He B and Ouyang H studied the forced vibration response of a turbine blade with a new kind of
under-platform damper, in which the vertical motion of the damper leads to time-varying contact
forces and can cause horizontal stick-slip motion [8]. For understanding the actual dynamics of the
blade–damper interaction, a novel experimental test rig was developed to extensively investigate
the damper’s dynamic behavior [9,10]. Umer and Botto [11] explored the contact forces and relative
displacement between the damper–blade contact interface with an experimental study for the first time.
Liao and Li [12] proposed a two-dimensional friction ball/plate model and established a dynamics
model of the rotor with elastic support/dry friction dampers.

Qi and Gao [13,14] established a one-dimensional macro-micro slip friction model to analyze the
dynamic characteristics of the damper system, and compared it with the results of the finite element
method. The phenomenological macro-slip of dry friction modeling was described in mathematical
form by two approaches, and both approaches were illustrated using different acceleration excitations
to describe the differences between them [15]. A model was proposed to characterize friction contact
of non-spherical contact geometries obeying the Coulomb friction law with constant friction coefficient
and constant normal load and the dissipated energies were obtained for different contact geometries [16].
A decrease in vibrational amplitudes was explained by changes in boundary conditions induced by
a stick/slip behavior, and the contribution of respective energy dissipation and change of contact state
on peak levels was shown [17]. He and Ren [18] studied the reducing vibrational characteristics of the
blade by the two-dimensional friction model and finite element model. A purposely developed contact
model was tuned on a single-contact test and then included in the numerical model of a curved-flat
damper to simulate its cylindrical interface [19]. A microslip model was developed for analyzing the
damping effect of under-platform dampers for turbine blades, but the inertia and rotating effects of the
damper were ignored for simplicity [20].

Wang and Zhang [21] studied the free vibration and forced vibration of a dry friction oscillator,
which was composed of the Iwan model and a mass by harmonic balance method. The multi-harmonic
balance method was used to analyze the periodic vibrations of the damper system and to investigate
the steady-state solutions of the nonlinear system [22]. A method to predict the nonlinear steady-state
response of a complex structure was described, and two differential forms of friction force were given
to solve the tangential force of the blades with under-platform dampers accurately [23]. The vertical
contact forces and the resultant friction forces acted as moving loads, and the finite element method
and the modal superposition method were used to obtain the numerical modes and to solve the
dynamic response of the dry friction dampers [24]. Yu and Xu studied the properties of cubic nonlinear
systems with dry friction damping and an approximate method was used to get the frequency-response
function [25].

In the most studies, it is generally assumed that the bladed disc is stationary, to simplify the
dynamic model in the design and analysis of the blade. Bladed disc’s rotation is considered in some
studies from the aspect of the centrifugal stiffening of the blade. There are few studies about the
improvement of the dynamic model considering the bladed disc’s rotation. Besides, the study of the
dynamic characteristics of the whole process from startup to steady-state has not been included.

In engineering practice, the blades are set up in a circle around the disc, and the under-platform
damper can be installed between two adjacent blades. The whole structure can be considered to be in
cyclic symmetry. If the normal pressure between contact surfaces is supposed to be distributed equally
between two adjacent blades, then the structural model of under-platform damper, as used in this
paper, can be described as in Figure 1, where the xyz orthogonal coordinate system (called the moving
coordinate system) is defined in accordance with the axial (x, along to the angular velocity direction of
the blade), tangential (y), and radial (z) directions. The coordinate system is attached to the bladed disc
and rotates with it. A static coordinate system fixed to the ground is defined.
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Figure 1. Structure of blade with under-platform damper. 
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Figure 1. Structure of blade with under-platform damper.

When the rotation of the bladed disc is considered, firstly the vibration stress of the blade mainly
depends on its relative displacement (response) to the bladed disc, and the relative displacement
should be studied instead of absolute displacement. Secondly, at the rotating state the variation of
the convective inertial force and Coriolis inertial force leads to the change of normal pressure and
tangential force, which has a significant influence on the damping effects of the damper and the
dynamic characteristics of the blade. To study the influence of bladed disc’s rotation and improve the
accuracy of analysis of the damper, an approximation method for the dynamic response of the blade
relative to the bladed disc (moving coordinate system) has been proposed in this paper by combining
the theories of compositive motion and dynamics. Compositive motion describes the motion of
a moving body relative to different coordinate systems. The response before steady-state could be
defined as the transient response. With this method, the convective inertial force and Coriolis inertial
force are considered in dynamic equations; the properties of the system solution are derived; and the
vibration-damping law of the steady-state response and the transient response of the blade are studied.
Some new conclusions about the damping characteristics of the turbine blade with an under-platform
damper were obtained, which will be useful in the damper design in engineering practice.

2. Mechanical Model and Dynamics Equations

2.1. Blade-Damper Model

In accordance with Figure 1, the vibration of the first bending mode of the blade in y direction is
considered in this paper. The vibrations of the blade in the x and z directions will be neglected, as they
are higher order modes and very small relative to the displacement in the y direction. The blade is
taken as the moving body; the bladed disc is the moving coordinate system. The convective motion,
the motion of the moving coordinate system relative to the static coordinate system, is the bladed
disc’s rotation about a fixed axis. The motions of the blade and damper relative to the bladed disc
can be approximated as the linear motion along the y direction. In Figure 1,

→
ω is the angular velocity

of the bladed disc;
→
α (
→
α = d

→
ω/dt =

.
→
ω) is the angular acceleration. The absolute motion of the blade

consists of rigid body rotation and vibration relative to the bladed disc. It is assumed that the rigid
damper is mounted on an elastic beam and that there is no friction between the damper and the elastic
beam. When the bladed disc is rotating, the damper is pressed on the platform by the normal pressure
which contains the centrifugal force, Coriolis inertia force and the component of the damper’s gravity.
The damper and the platform are not separated during the whole process. The sizes of the damper and
the blade are ignored for approximate calculation. Based on the above assumption, the structure of
under-platform damper (Figure 1) is simplified as a spring-mass model, which is shown in Figure 2.
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Two local coordinate systems parallel to the oxyz coordinate system are defined at the platform
and the damper, and are stationary relative to the bladed disc. Displacement of the blade relative to
the corresponding local coordinate system is y1, while relative displacement of the damper is y2, both
of which are in the y direction. The equivalent mass of the blade is m1. The total equivalent mass of the
damper and the elastic beam given by the energy method is m2. The vibrational stiffnesses of the blade
and damper in the y direction are k1 and k2. The linear damping coefficients of the blade and damper

in the y direction are c1 and c2.
→

Q1 is aerodynamic excitation force. The dry friction force between the

damper and the platform is
→

f 1, and its reaction force is
→

f 1
′.(
→

f 1 = −
→

f 1
′, in y direction).

2.2. The Dynamics Equations of Blade-Coupled Vibration

In the yoz plane, the sizes of the damper and the platform are neglected when calculating the
convective acceleration. In accordance with Figure 2, the dynamic equation of the system in vector
form is established with the theories of compositive motion, which can be written as: m1

(
→
a 1r +

→
a 1e +

→
a 1k

)
+ c1

→
v 1r +

→

FK1 = −m1
→
g +

→

Q1 +
→

f 1 +
→

N

m2
(
→
a 2r +

→
a 2e +

→
a 2k

)
+ c2

→
v 2r +

→

FK2 = −m2
→
g +

→

f 1
′
−
→

N
(1)

where m1
→
g and m2

→
g are gravity vectors, which can be ignored, as they are very small in comparison

with the other forces. The relative acceleration vectors of m1 and m2 in the corresponding local
coordinate systems are

→
a 1r and

→
a 2r, respectively (in y direction). The corresponding convective

acceleration vectors are
→
a 1e and

→
a 2e. (When

→
ω is constant, the convective acceleration is along the z

direction. When
→
ω changes, the tangential component of the convective acceleration is along y direction,

and the normal component of the convective acceleration is along the z direction.) The corresponding
Coriolis acceleration vectors are

→
a 1k and

→
a 2k. (The direction of

→
ω is perpendicular to the yoz plane;

according to
→
a k = 2

→
ω ×

→
v r, the Coriolis acceleration is along the z direction.) The corresponding

relative velocity vectors are
→
v 1r and

→
v 2r(in y direction).

→

FK1 and
→

FK2 are the corresponding stiffness

forces vectors in y direction.
→

Q1 is the aerodynamic excitation forces’ vector in y direction.
→

N is the
normal pressure vector between the blade and the damper in z direction. Ignoring m1

→
g and m2

→
g ,

the dynamic Equation (1) is projected to the y direction, and the scalar form of it could be written as{
m1

..
y1 + c1

.
y1 + k1y1 = Q1 − f1

m2
..
y2 + c2

.
y2 + k2y2 = f1′ = f1

(2)
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{
m1(

..
y1 + a1eτ) + c1

.
y1 + k1y1 = Q1 − f1

m2(
..
y2 + a2eτ) + c2

.
y2 + k2y2 = f1′ = f1

(3)

The dynamic equation of the system in y direction is Equation (2) when the rotation speed of
the bladed disc is constant, with the rotation speed varying the equation shown as Equation (3).
The response characteristics of the blade vibration relative to the bladed disc can be studied at working
speed (uniform rotation) and in start-stop condition (non-uniform rotation). In Equation (3), a1eτ and
a2eτ exist with the bladed disc’s rotation considered, and the tangential component of the convective
acceleration is described as {

a1eτ = −l1α = −l1
.
ω

a2eτ = −l2α = −l2
.
ω

(4)

where l1 and l2 are, respectively, the rotation radius of the platform and the damper rotating around the
center of the bladed disc, and could be supposed to be constant values during the motion. The scalar
quantity of angular acceleration and angular velocity are α and ω respectively; the counterclockwise
direction is taken as their positive direction.

2.3. Normal Pressure and Dry Friction Force

Studies have shown that normal pressure is a very critical parameter in the design of dry friction
dampers [26,27]. According to Figures 1 and 3, the normal pressure of the under-platform damper
consists of the normal component of the convective inertia force (centrifugal force), the Coriolis inertial
force, and the gravity of damper. The Coriolis inertial force is generated by the movement of the
damper in the y direction relative to the bladed disc and varies with the relative velocity to the disc
and the rotational speed of the disc. In addition, the component of the gravity of the damper in the
normal pressure’s direction changes with the rotation of the bladed disc, and it can be ignored, as it is
small enough to be, relative to the centrifugal force and the Coriolis inertial force.
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In Figure 3, the motion of the damper relative to the bladed disc can be approximated as a linear
motion along the y direction. The relative velocity, relative acceleration and Coriolis acceleration
of each point on the damper are equal, and the direction of Coriolis acceleration changes with the
direction of relative velocity. When calculating the total normal pressure, the mass-center acceleration
is used to approximately replace the acceleration of each point on the damper.
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2.3.1. Normal Pressure

The mass of the damper is m3, less than m2 which is the total equivalent mass of the damper and
the elastic beam. Calculating the normal pressure N, the projection of the damper gravity in the z
direction is very small in comparison with the convective inertia force and Coriolis inertia force, thus it
can be ignored. As can be seen in Figure 3:

m3(a2en − a2k) = N (5)

where {
a2en = l2ω2

a2k = 2ωv2r
(6)

In Equation (5), a2k and a2en are the Coriolis acceleration and the normal component of the
convective acceleration of the damper, respectively. Obviously, normal pressure is caused by the
normal component of the convective inertial force (centrifugal force) and the Coriolis inertial force of the
damper. The Coriolis inertial force being equal to −ma2k exists with consideration of the bladed disc’s
rotation. According to Equation (6), the centrifugal force m3l2ω2 contributes positively to the normal
pressure, while the direction of relative velocity v2r determines the positive or negative contributions
of the Coriolis inertial force to the normal pressure.

2.3.2. Dry Friction Force

The dry friction force between two moving bodies is calculated by a bilinear hysteresis model
with which stick-slip-separation transition is considered and captured by the bisection method.

As shown in Figure 4, the contact of two moving bodies is considered in this study. The friction
force is simulated by a spring which has no initial length and can yield. The contact stiffness is kd, N is
the normal pressure, and µ is the coefficient of kinetic friction. Point 1 is attached to the platform and
remains attached at all times, while point 2 is attached to the damper and remains attached at all times.
Point b is the sliding contact point, which is initially attached to point 2 with a limiting friction force
µN. Initially the sliding contact point b coincides with point 1 and point 2. The displacements of the
platform and the damper relative to the bladed disc are y1 and y2, respectively; the displacement of the
sliding contact b relative to the bladed disc is yb. With two bodies moving, point b keeps static with the
damper when

∣∣∣y1 − yb
∣∣∣ is less than µN/kd; otherwise, point b keeps static with point 1 and the distance

of the two points equals to µN/kd.
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damper
N
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Figure 4. Friction contact model between the damper and the platform. Figure 4. Friction contact model between the damper and the platform.

Corresponding to the two local coordinate systems of y1 and y2, assuming that y1 = y2 = yb = 0
in the initial state of the system, then the friction force can be determined by Equation (7).

f1 = kd(y1 − yb) (7)

Obviously, the friction force is positive when y1 ≥ yb; otherwise, it is negative.
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3. Numerical Simulation

Referring to the engineering, the angular acceleration of the bladed disc increases from 0, and
then decreases to 0 after it reaches the top value. The fourth-order Runge–Kutta algorithm was used to
compute the relative vibration responses and study the influence of bladed disc’s rotation on the
dynamic characteristic of the system. The vibration reduction effect is illustrated. The smooth function
is used to describe the angular acceleration as α(t) = ω0[cos(2πt/3 + π) + 1]/3. The working angular
velocity of the bladed disc is ω0, and the angular acceleration α decreases to 0 after the angular velocity
reaches ω0; then, the bladed disc rotates at a uniform angular velocity ω0. The steady excitation
frequency is fe, which equalsω0/2π. F0 is the external excitation amplitude. This paper is a mechanistic
study. The parameters of the system can be taken from Table 1. The other parameters are given in the
following simulations.

Table 1. The parameters of the system.

Parameters Values Parameters Values

m1 0.5 kg c1 1 N s/m
k1 4 × 105 N/m c2 1 N s/m
kd 1 × 106 N/m l1 0.01 m
ω0 600 rad/s l2 0.01 m
µ 0.2 Q1 F0 sin(ω(t) × t)

3.1. The Analysis of the Vibration Response’s Characteristics

1. The parameters are taken from Table 2. Figures 5 and 6 show the simulation results.

Table 2. The parameters of the system.

Parameters Values

m2 0.049 kg
m3 0.04 kg
k2 6×105 N/m
F0 400 N
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Figure 5. Phase diagram (a) and the hysteretic constructive relationship of f1 and y1 − y2 (b) when the
system reaches steady-state.
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The two simulations above are typical among the simulating results in this study. When the
blade is at steady-state, the motion is periodic from Figures 5a and 7a. Figure 5b and b show the
comparison of hysteretic constructive relation of friction force and relative displacement with and
without the Coriolis inertial force, and the two constructive relations in the same figure are obviously
different. Considering the bladed disc’s rotation, the Coriolis inertial force exists and changes the
normal pressure; therefore, the hysteresis loop is not symmetrical. As the normal pressure is a very
critical parameter in the dry friction damper’s design, the dynamic characteristics of the system will be
different with that without considering the Coriolis inertial force. In Figures 6 and 8, fe is the steady
excitation frequency, and only odd multiple frequencies of y1 and f1 can be observed. When the mass
of the damper, the vibration stiffness of the damper, and the amplitude of external excitation change,
there are no fractional frequencies, nor any bifurcation or chaos with the friction contact surface not
being separated. The motion of the system is periodic, and the minimum period of the steady-state
response T is equal to that of the external excitation, T = 2π/ω0.

3.2. The Decision of Steady-State of the Blade

To supply more reference to dry friction platform damper design in engineering, the blade’s
vibrational reduction of the steady-state response and the transient response will be studied in the next
section; therefore, it is necessary to get the moment t0 when the system reaches steady-state. In this
section, a method for deciding the stable state of the system is proposed: combining the normalized
cross-correlation function (NCCF) and the bisection method. The principle of this method is as
followings: choosing steady-state response of the last period as a reference sequence, and a response
before the last period as the target sequence. Window size h is the length of target sequence which is
taken out each time. The correlation coefficient maximum C of reference sequence and target sequence
is calculated by the NCCF. The closer that the value of C is to 1, the more that target sequence is in



Appl. Sci. 2019, 9, 4181 10 of 16

agreement with reference sequence. f lag is a given parameter, and when C is greater than its value the
response can be considered steady-state. The step length s is the moving length of a target sequence
each time, and is changeable via the bisection method, which is used to improve the calculation’s
accuracy and efficiency. Comparing target sequence from back to front with the reference sequence,
the moment t0 can be obtained when the step length equals to 1. A computational scheme of the
mothed is shown in Figure 9.
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When f lag is 0.999, 0.998, and 0.997, the other parameters are shown in Table 2. The results are
shown in Figure 10. The difference between the two lines has been amplified by three times for clarity.
The moment t0 when the system reaches steady-state was obtained. When f lag is 0.999, t0 satisfies the
accuracy requirement.
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With t0, the response of blade before t0 can be defined as y1t, and after t0 can be can be defined as
y1s; therefore, y1 is divided into y1t and y1s.

3.3. The Vibration Reduction Characteristics of the System

Based on the analyses done in Sections 3.1 and 3.2, the influence of damper mass, damper vibration
stiffness, and external excitation amplitude on the vibration reduction characteristics of the system are
studied in this section. Relevant parameters were set as in Table 1. The other parameters are given in
the following simulation.

Eds is the vibrational power reduction rate of the steady-state response of the blade. As the
steady-state response is periodic, T is the minimum period of the steady-state response, which is equal
to the period of the external excitation with the value of 2π/ω0. Therefore, Eds can be expressed as
Equation (8). Edt is the average power-reduction rate of the transient response of the blade, and can be
expressed as Equation (9). The relative displacement of the blade without an under-platform damper
is y′1, and the moment when the system without an under-platform damper reaches steady-state is t′0.
Similarly, the response of the blade before t′0 can be defined as y′1t, and after t0 can be defined as y′1s.
The response is divided into y′1t and y′1s.

Eds =

∫
T y′21dt/T −

∫
T y2

1dt/T∫
T y′21dt/T

=

∫
T y′21dt−

∫
T y2

1dt∫
T y′21dt

=

∫
T (y′21 − y2

1)dt∫
T y′21dt

(8)

Edt =

∫ t0
′

0 y′21dt/t0
′
−

∫ t0

0 y2
1dt/t0∫ t0′

0 y′21dt/t0′
=

∫ t0
′

0 y′21dt−
∫ t0

′

0 t0
′y2

1dt/t0∫ t0′

0 y′21dt
=

∫ t0
′

0 (y′21 − t0
′y2

1/t0)dt∫ t0′

0 y′21dt
(9)

The maximum values of
∣∣∣y1t

∣∣∣ and
∣∣∣y1s

∣∣∣ are y1tm and y1sm respectively, Similarly, the maximum
values of

∣∣∣y′1t

∣∣∣ and
∣∣∣y′1s

∣∣∣ are y′1tm and y′1sm respectively. Ads is the reduction rate of y1sm and Adt is the
reduction rate of y1tm. Adt and Ads are expressed in Equation (10). Ads =

y′1sm−y1sm
y′1sm

Adt =
y′1tm−y1tm

y′1tm

(10)

3.3.1. The Effect of Damper Mass on the Vibration Reduction

When the working speed is constant, the damper mass has a great influence on the normal
pressure. The numerical simulation parameters are taken from Table 4.

Table 4. The parameters of the system.

Parameters Values

m2 m3 + 0.009kg
m3 0.04 kg~0.08 kg
k2 8 × 105 N/m
F0 400 N

The results are as follows:
In Figure 11, Edt and Eds vary with the increase of the damper mass m3; some peaks of Edt and Eds

are extant. There is a significant reduction of vibrational power with proper damper mass adding to
the blade. In Figure 12, Adt increases with the damper mass’s increase, while Ads fluctuates while the
damper mass increases.y1tm and y1sm reduce significantly with the proper damper mass adding to the
blade. From Figures 11 and 12, the laws of Eds and Ads varying with m3 are basically the same, while
the laws of Edt and Adt are obviously different, as the transient response of the blade is complicated.
The maximum values of Eds and Ads are smaller than those of Edt and Adt with the same parameters.
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3.3.2. The Effect of a Damper’s Vibrational Stiffness on the Vibration Reduction

The effect of a damper’s vibration stiffness on the vibration reduction of the blade with
an under-platform damper was studied. The parameter values are shown in Table 5.

Table 5. The parameters of the system.

Parameters Values

m2 0.059 kg
m3 0.05 kg
k2 6 × 105 N/m~1 × 106 N/m
F0 400 N

The results are as follows:
In Figure 13, Edt and Eds fluctuate with the increasing of the damper stiffness k2, and there is

a significant reduction of vibrational power with proper damper stiffness k2. In Figure 14, the damper
stiffness k2 has an obvious influence on Adt and Ads; y1tm and y1sm reduce significantly with the proper
damper stiffness. From Figures 13 and 14, the laws of Eds and Edt varying with k2,are basically the
same, while the laws of Eds and Edt are obviously different. The maximum values of Eds and Ads are
smaller than those of Edt and Adt with the same parameters.
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3.3.3. The Effect of External Excitation Amplitude on the Vibrational Reduction

The parameters are shown in Table 6. The results are shown in Figures 13 and 14.

Table 6. The parameters of the system.

Parameters Values

m2 0.059 kg
m3 0.05 kg
k2 8 × 105 N/m
F0 200 N~800 N

In Figure 15, Edt and Eds basically decrease with the increase of external excitation amplitude F0.
In Figure 16, Adt and Ads decrease with increasing F0. From Figures 15 and 16, the increasing external
excitation amplitude causes the vibrational reduction effect of the blade to decrease, obviously, and
a larger normal pressure would be needed to make the damper work well. The laws of Eds and Edt
varying with k2, are basically the same, as are Eds and Edt. Besides, Edt could be negative with F0

increasing, which needs to be considered when engineering damper designs.
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4. Conclusions

The paper presents a study on the dynamic characteristics of a blade’s vibration response relative to
a bladed disc by considering the bladed disc’s rotation, and an effective method for deciding the
steady-state of the blade is proposed. The influences of the mass of the damper, the damper’s vibrational
stiffness, and the external excitation amplitude are discussed. The following conclusions can be drawn:

1. The dynamic model and analysis method presented in this paper are effective to study the
influence of a bladed disc’s rotation on the dynamic characteristics of a turbine blade. The changes
of the convective inertial force and Coriolis inertial force during the rotation of the bladed
disc have a significant influence on the hysteretic constructive relationship of friction-relative
displacement and the characteristics of the system dynamics.

2. When the friction contact surface is not detached, changing the damper mass, the damper
vibration stiffness, and the external excitation amplitude, results in only higher harmonics in the
system response and friction force, and in the system’s response, bifurcation and chaos cannot
be observed.

3. With proper parameters, adding a platform damper will make the turbine blade’s vibration reduce
obviously. When the steady-state response is periodic, the reduction law of the average power
of blade vibration and the maximum absolute value of the steady-state response are basically
the same. However, reduction laws of the average power of blade vibration and the maximum
absolute value of the transient response are different. With some parameters, the reduction effect
of the transient response may be negative. Greater normal pressure would be needed to keep the
damper working well when the external excitation amplitude increases.

4. In engineering, the vibrational reduction effects of the steady-state response and the transient
response should be analyzed comprehensively in the under platform-damper design.
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