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Abstract: A labeled multi-Bernoulli (LMB) filter is presented to jointly detect and track radar targets.
A relevant LMB filter is recently proposed by Rathnayake which assumes that the measurements of
different targets do not overlap, leading to the favorable separable likelihood assumption. However,
new or close tracks often violate the assumption and lead to a bias in the cardinality estimate.
To address this problem, a one-to-one association method between measurements and tracks is
proposed. In our method, any target only corresponds to its associated measurements and different
tracks have little mutual interference. In addition, an approximate method for calculating the
point spread function of radar is developed to improve the computational efficiency of likelihood
function. The simulation under low signal-to-noise ratio scenario with closely spaced targets have
demonstrated the effectiveness and efficiency of the proposed algorithm.
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1. Introduction

Multi-target tracking based on multi-target Bayes filter makes an important contribution to
capturing and maintaining the awareness of the environment [1,2]. Multi-target Bayes filter is
usually computationally intractable [3] by simply extending the classic single-target Bayes filters [4]
for multi-target case. With the development of the emerging random finite set (RFS) theory,
tremendous efforts have been devoted to investigating various approximate multi-target Bayes
filters [5–8], including probability hypothesis density (PHD) filter, cardinalized PHD (CPHD) filter
and multi-Bernoulli (MB) filter, and their various revised versions. In order to integrate track
management into the filtering scheme, the so-called generalized labeled multi-Bernoulli (GLMB)
filter and labeled multi-Bernoulli (LMB) filter were proposed [9–11]. Most of these filters are based
on the standard multi-target observation model which assumes that one target generates at most
one measurement and so any measurement corresponds to at most one target [12]. However,
in many scenarios, the observation models are nonstandard and cannot be modeled by standard
multi-target likelihood function, for example, track before detect (TBD) in video [13,14], superpositional
sensors [15–17], unresolved target tracking [18] and extended target tracking [19].

As a typical application of the nonstandard observation model, the TBD algorithm of radar
targets [20–25] works with the raw radar data directly, and detects and tracks the targets jointly, so
it is suitable for application in a low signal-to-noise ratio (SNR) scenario. The observation model for
radar sensor is called a generic observation model (GOM) [20,26]. This is because the measurements
affected by different target point spread functions may overlap. The joint likelihood function for the
GOM cannot be denoted as the product of each target likelihood function and so it is typically referred
to as inseparable likelihood [20]. However, for computational efficiency, it could be assumed that the
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measurements affected by different targets do not overlap and then the separable likelihood could be
derived [20,27].

References [27,28] proposed the MB filter and the LMB filter for the GOM under the assumption of
the separable likelihood which are called the S-MB-GOM filter and the S-LMB-GOM filter, respectively.
Both filters are computational efficiently but the cardinality estimate bias easily occurs when the
separable likelihood assumption is violated. Firstly, due to the influence of new or close tracks,
the measurements generated by a target may be associated with multiple tracks which causes
an increase of cardinality estimate. Secondly, the measurements generated by multiple closely
spaced targets may only be associated with a track due to merging [12] which causes a decrease
of cardinality estimate.

To avoid the problem, References [20,26] proposed the GLMB filter and the group LMB filter
for the GOM, which are called the GLMB-GOM filter and the G-LMB-GOM filter, respectively.
Both filters adapt to inseparable likelihood and improve the tracking performances for radar. However,
the implementations of both filters require high-dimensional particle sampling, so the calculation
amounts are intensive.

In our paper, we propose a one-to-one correspondence method between measurements and
tracks to overcome the cardinality estimate bias of the S-LMB-GOM filter [28]. Further, to improve the
computational efficiency of the S-LMB-GOM filter, we propose an approximate method to calculate
the point spread function according to its property analysis. The Sequential Monte Carlo (SMC)
approximation method has been used to implement our S-LMB-GOM filter. The performance is
verified by a scenario with closely spaced targets in low SNR and compared with the G-LMB-GOM
filter. The S-LMB-GOM filter applying the proposed method can significantly reduce the probability of
violating the separable likelihood assumption and drastically reduce the computational complexity
without loss of performance compared with the G-LMB-GOM filter.

The rest of the paper is structured as follows. We review the basic definitions of LMB RFS and
introduce the generic observation model for radar sensor in Section 2. In Section 3, the S-LMB-GOM
filter is introduced, and then a one-to-one correspondence method and an approximate method to
calculate point spread function are proposed. Section 4 is the simulation results of radar target detection
and tracking under nonlinear motion model. The conclusion is given in Section 5.

2. Backgound

2.1. LMB RFS

The label space denoted as L contains a countable number of distinct labels. The unlabeled target
state space is denoted as X. The labeled single target state is denoted as x = (x, `), where x ∈ X
denotes the target state and ` ∈ L denotes the label. The labeled multi-target state is denoted as
X = {x1, . . . , xi, . . . , x|X|}, where |X| denotes the cardinality of the multi-target, xi denotes a labeled
single target state and X ⊂ X×L. The generalized Kronecker delta function and the inclusion function
can be defined as:

δY(X) ,

{
1, X = Y
0, otherwise,

1Y(X) ,

{
1, X ⊂ Y
0, otherwise.

(1)

Define a projection L : X× L → L to make L(x) = ` and L(X) = {L(x) : x ∈ X}. ∆(X) =

δ|X|(|L(X)|) is the indicator function of distinct labels. When X has distinct labels, ∆(X) = 1. The inner
product of f (x) and g (x) on X×L is defined as 〈 f , g〉 ,

∫
f (x)g (x) dx. The multi-target exponential

function is defined as

hX ,

{
1, X = ∅
∏x∈X h(x), X 6= ∅.

(2)
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The LMB distribution of an LMB RFS with the parameter form π = {(r`, p`)}`∈L is

π (X) = ∆ (X)ω (L (X)) pX (3)

where r` is the existence probability of the target x and p` = p (x) is the probability density of the
target x. The weight ω(I) of the hypothesis I = {`1, ..., `|I|} is

ω(I) = ∏
i∈L

(1− ri)∏
`∈I

1L(`)r`

1− r`
. (4)

2.2. The Observation Model and Likelihood Function of Radar

The range-azimuth-Doppler image of the echo power signal is used as the raw radar
measurements [20,21]. The measurements per frame can be denoted as a three dimensional matrix
after sampling. Each element in the matrix denotes a measurement and the coordinate of measurement
cell i can be denoted as ci (x) , [rm, bn, dq], where rm, bn and dq denote the range, azimuth and Doppler
cells, respectively. i = (m, n, q) is the index of cell i. The index set of the measurements affected by the
target x is called the target template and denoted by T (x). i ∈ T (x) denotes that the measurement in
cell i is affected by x. The setting of T (x) is detailed in Section 3.4.

The measurement matrix can also be denoted as a vector form Υ =
[
z1, ..., zi, ..., zmz

]
, where mz is

the number of the measurements, zi , zi (X) is the power signal in cell i and X is the multi-target state.
The measurement zi can be denoted as [20,25]

zi =
∣∣∣zi

A

∣∣∣2 =

∣∣∣∣∣∑x∈X
1T(x) (i) A (x) hi

A (x) + wi
n

∣∣∣∣∣
2

(5)

where zi
A is the received complex signal in cell i and wi

n denotes a zero-mean complex Gaussian white
noise with a variance of 2σ2

wn . A (x) is a complex amplitude. ∑x∈X 1T(x) (i) denotes that the signal in
cell i is the sum generated by X, so the signal in each cell may affected by all x (x ∈ X).

hi
A(x) denotes the signal generated by the point spread function of the target x. The expression is

(according to the point spread function formula of Reference [21], we assume that Lr =
1
R , Ld = 1

D ,
Lb = 1

B )

hi
A (x) = exp(− (rm − r (x))2

2R2 − (bn − b (x))2

2B2 − (dq − d (x))2

2D2 ) (6)

where
r (x) =

√
p2

x + p2
y, (7)

b (x) = atan2
(

py, px
)

, (8)

d (x) = −
(

px ṗx + py ṗy
)
/r (x), (9)

R, B and D denote the range, azimuth and Doppler resolution of radar, respectively.
(

px, py
)T and(

ṗx, ṗy
)T denote the position and speed of x in the state space, respectively. r (x), b (x) and d (x) denote

the range, azimuth and Doppler positions relating to x, respectively. Note that r (x), b (x) and d (x) are
continuous while rm, bn and dq are discrete sampling in the measurement space.

In the following, we construct the likelihood function of the radar observation model.
The estimated value of the measurement zi in cell i is denoted by ẑi and ẑi can be written as [25]

ẑi =
∣∣∣ẑi

A

∣∣∣2 ≈ ∣∣∣∣∣∑x∈X
1T(x) (i) Āhi

A (x)

∣∣∣∣∣
2

. (10)
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When ẑi
A 6= 0, zi/σ2

wn subjects to a noncentral χ2 distribution with 2 degrees of freedom.
The probability density of zi is

P
(

zi|X
)
=

{
1
2 exp

(
− zi+ẑi

2σ2
wn

)
I0

(√
zi ẑi

σ2
wn

)
, zi > 0

0, zi < 0.
(11)

where I0 (u) is the first kind modified Bessel function with 0 order. When ẑi
A = 0 ( only with noise),

zi/σ2
wn subjects to a central χ2 distribution with 2 degrees of freedom. The probability density of zi is

P
(

zi|X
)
=

{
1
2 exp

(
− zi

2σ2
wn

)
, zi > 0

0, zi < 0.
(12)

Dividing Equation (12) by Equation (11), we can obtain that the likelihood ratio function of cell
i is

l
(

zi|X
)
=

{
exp

(
− ẑi

2σ2
wn

)
I0

(√
zi ẑi

σ2
wn

)
, zi > 0

0, zi < 0.
(13)

The likelihood function of the measurement vector Υ can be written as

g (Υ|X) = f (Υ) ∏
i∈(∪x∈XT(x))

l
(

zi|X
)

(14)

where f (Υ) = ∏1≤i≤mz 0.5 exp
(
−0.5

(
σ2

wn

)−1zi
)

denotes the likelihood function only with noise.
g (Υ|X) cannot be denoted as a product form of each target likelihood function so it is called the
inseparable likelihood.

If we assume that the measurements generated by different targets do not overlap and any
measurement is most affected by one target. Therefore, there is at most one item in ẑi,

ẑi =
∣∣∣ẑi

A

∣∣∣2 =
∣∣∣1T(x) (i) Āhi

A (x)
∣∣∣2. (15)

Further, the second term of Equation (14) can be simplified to

∏
i∈(∪x∈XT(x))

l
(

zi|X
)
= ∏

x∈X

 ∏
i∈T(x)

l
(

zi|x
). (16)

The likelihood function g (Υ|X) can be denoted as the product of the likelihood function of each
target x so it is called the separable likelihood. The expression can be written as

g (Υ|X) = f (Υ) ∏
x∈X

gΥ (x), (17)

gΥ (x) = ∏
i∈T(x)

l
(

zi|x
)

. (18)

2.3. Multi-Target Bayes Filter

The label space of the birth targets at time k is Lk, the label space of the targets (including the targets
prior to k− 1) at k− 1 is L0:k−1 and L0:k = L0:k−1

⋃
Lk denotes the label space at k. The multi-target

state at k is Xk ⊂ X×L0:k and the multi-target state at k− 1 is Xk−1 ⊂ X×L0:k−1. The measurement
vector at time k is Υk . The prediction and update for the multi-target Bayes filter can be written as [6]

πk|k−1 (Xk) =
∫

fk|k−1 (Xk|Xk−1)πk−1 (Xk−1)δXk−1 (19)



Appl. Sci. 2019, 9, 4187 5 of 16

πk (Xk) =
gk (Υk|Xk)πk|k−1 (Xk)∫

gk (Υk|Xk)πk|k−1 (Xk)δXk
(20)

where πk−1 is the multi-target prior, πk|k−1 is the predicted multi-target posterior, fk|k−1 is the
multi-target Markov transition density, gk is the multi-target likelihood function and πk is the
multi-target posterior density at k. The integral is the set integral. For simplicity, we define L , L0:k−1,
B , Lk, L+ , L0:k, π , πk−1, π+ , πk|k−1, π̄ , πk, g , gk and f , fk|k−1.

3. The S-LMB-GOM Filter

In this section, firstly, we introduce the prediction and the update of the S-LMB-GOM filter;
Secondly, a method to overcome the cardinality estimate bias of the filter is proposed. Thirdly,
we analyze the property of the point spread function and set the size of T (x). Finally, an approximate
method for calculating point spread function is proposed to improve the efficiency.

3.1. Prediction

Given that the multi-target prior is an LMB distribution denoted as π = {(r`, p`)}`∈L. Ps (x)
denotes the survival probability from k − 1 to k. The Markov density f+ (x+| (x, `)) denotes the
transiting probability from k − 1 to k. The density of the newborn targets is an LMB distribution
denoted as π = {(r`B, p`B)}`∈B . From References [8,11], the predicted probability density is

π+ =
{(

r`+,s, p`+,s

)}
`∈L
∪
{(

r`B, p`B
)}

`∈B
=
{(

r`+, p`+
)}

`∈L+

(21)

where
r`+,s = η`

s r` , η`
s =

〈
PS (·, `) , p` (·, `)

〉
, (22)

p`+,s (x+) =

〈
Ps (·) f+ (x+| (·, `)) , p` (·, `)

〉
η`

s
, (23)

p`+ (x+) = 1L (`) p`+,s (x+) + 1B (`) p`B (x+) . (24)

3.2. Update

The predicted multi-target posterior π+ = {(r`+, p`+)}`∈L+
is an LMB distribution. π+ has

the form of Equation (3) and can be denoted as {(W+ (I+) , ∏x∈X+
p`+)}I+⊂L+

. I+ is the label
set of X+ and also denotes a possible multi-target hypothesis. W+ (I+) denotes the existence
probability of the hypothesis. Under the separable likelihood assumption, we can obtain that
g (Υ|X+) = f (Υ)∏x∈X+

gΥ (x).
From Reference [28], the multi-target posterior density π̄ can be written as

π̄ =
{(

r̄`+, p̄`+
)}

`∈L+

(25)

where

r̄`+ =
r`+ηΥ (`)

1− r`+ + r`+ηΥ (`)
, (26)

p̄`+ (x) =
gΥ (x) p`+ (x)

ηΥ (`)
, (27)

ηΥ (`) =
〈

gΥ(·, `), p`+(·, `)
〉

. (28)

Therefore, when the prior is an LMB distribution, the multi-target predicted density and posterior
density are both LMB distributions, so the LMB distribution is the conjugate prior for the S-LMB-GOM
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filter [27,28]. Each hypothesized track of the S-LMB-GOM filter is predicted and updated independently
so the filter is efficient.

3.3. A Method to Overcome the Cardinality Estimate Bias

3.3.1. The Reason of The Bias

New birth hypothesized tracks often violate the separable likelihood assumption [20] which leads
to a cardinality estimate bias for the S-LMB-GOM filter.

Each hypothesized track is updated independently and the probability density of each track
is approximated by a group of particles in the state space. As shown in the Figure 1, when a new
target x is born, the particle group of the hypothesized track `1 surrounds the target x and then x is
subsequently tracked by track `1. The particle group of `1 always surrounds x until the target dies.
If the particle group of another birth hypothesized track `2 also surrounds the target before the target
died, the target x will be detected again and an increase of cardinality estimate will occur.

xx̂

State space

Measurement space

     ˆx x xT T T 

x
1 2

Figure 1. A sketch diagram to show the measurements affected by a target are associated with two
tracks. Solid dots denote the particles of track `1, Hollow dots denote the particles of track `2 and
triangles denote the associated measurements of x, x̂ and x̃.

The reason is that the target x is surrounded by multiple particle groups of different tracks which
makes the measurements affected by the target x associate with multiple tracks, then the target will be
detected repeatedly. Eventually, a cardinality estimate bias occurs.

3.3.2. The One-to-One Correspondence Method

Motivated by the standard LMB filter, we propose a one-to-one correspondence method between
measurements and tracks to overcome the problem of the cardinality estimate bias. The idea of our
method is similar with the Nearest Neighbor (NN) method [29]. The difference is that our method
matches the maximum likelihood but the NN method matches the smallest distance.

The method can be summarized as Algorithm 1. We update the predicted track in order of
existence probability r`+ to prevent the new birth predicted tracks from interfering with the surviving
predicted tracks. Given that the predicted track `1 update first and after update the existence probability
r̄`1
+ is greater than the detection threshold λ (e.g., λ = 0.5), the hypothesized track `1 is considered a true

track and has tracked a target x. Still as shown in the Figure 1, the target x can be approximated by the
particle x̂ with the maximum likelihood in the particle group of track `1. The associated measurements
by T(x) are reset to noise, where T(x) is approximated by T(x̂). This operation makes the track `1 only
correspond to the associated measurements by T (x). The setting of T (x) is detailed in Section 3.4.
Then, another predicted track `2 is updated and cannot track the same target x again due to the
resetting of the associated measurements. Therefore, the overlapped particle groups will no longer
lead to a repeated cardinality estimate.



Appl. Sci. 2019, 9, 4187 7 of 16

Algorithm 1 One-to-one correspondence method

1. Descending sort: r`+ = sort
`∈L+

(r`+, ’descend’).

2: Update in order of r`+ to get r̄`+ and p̄`+(x).
If r̄`+ ≥ λ

x̂ = max
x∈X

(compute-likelihood(Z, x)).

x ≈ x̂.
Z = reset-noise(Z, T (x)).

end

When the two targets x1 and x2 are closely spaced and the templates T (x1) and T (x2) are
partially overlapped as shown in the Figure 2, the one-to-one correspondence method can work
properly. After update of the track `1, the target x1 is associated with track `1 and the associated
measurements by T (x1) are reset to noise where T(x1) ≈ T(x̂1). If the setting range of T (x1) is
small enough and T (x1) do not include the peak region of the likelihood function of the target x2,
then x2 can be distinguished at the update step, because the peak region of likelihood function roughly
corresponds to a target position and determines the existence probability of the target.

State space

Measurement space

   1 1ˆx xT T

1x1x̂ 2x 2x̂

   2 2ˆx xT T

1 2

Figure 2. A sketch diagram to show the measurements affected by two targets are associated with
two tracks. Solid triangles denote the associated measurements of the target x1 and the particle x̂1,
Hollow triangles denote the associated measurements of the target x2 and the particle x̂2.

3.3.3. The Analysis and Performance of the Proposed Method

The new birth probability is usually smaller than the surviving probability. We update the
predicted track in order of existence probability, that is, let the surviving tracks update firstly. This is
to prevent the new birth predicted tracks from interfering with the survived predicted tracks and
ensure the continuity of the tracks.

In essence, the one-to-one correspondence method reduces the probability of violating the
separable likelihood assumption. The particle groups are in the state space and the sets T(·) of
the associated measurements are in the measurement space. As seen in the Figures 1 and 2, the particle
group of each track has a large coverage to prevent particle depletions, while the coverage of the
associated measurements T(·) can be set small. Therefore, the probabilities of the mutual interference of
different tracks get smaller after applying the one-to-one correspondence method. Further, the method
can reduce the negative effect of separable likelihood assumption but cannot completely eliminate the
negative effect.

For radar, when the target planar positions overlap completely, there is usually a difference
in the Doppler cell and the targets can still be considered closely spaced. Even if the Doppler cell
is also temporarily the same and the one-to-one correspondence method will cause a bias in the
cardinality estimate temporarily. Then we can set a low intercept threshold so that the hypothesized
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tracks can survive through the completely overlapped region and wait for the next update. Therefore,
the one-to-one correspondence method still can work.

A scenario with two closed targets has been used for our comparisons of two cases:
without applying the one-to-one correspondence method between measurements and tracks or
with applying the proposed method. Figure 3 shows the true trajectory and the estimated trajectory
without applying the proposed method. Figure 4 shows the true trajectory and the estimated trajectory
with applying the proposed method. Figure 5 shows the true cardinality and the estimated cardinality
without and with applying the proposed method. From Figures 3 and 5, it can be seen without
applying the proposed method that the estimated cardinality is 7 from 7th to 25th frame while in fact
there are only two targets and the estimated cardinality is 1 to 3 from 1th to 4th frame, while in fact
there is only one target. From Figures 4 and 5, it can be seen with applying the proposed method that
the trajectory and the cardinality is estimated accurately. Therefore, in the subsequent comparisons
with other methods in Section 4, we have applied the one-to-one correspondence method between
measurements and tracks.
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Figure 3. The true trajectory and estimated trajectory before applying the proposed method.
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Figure 4. The true trajectory and estimated trajectory after applying the proposed method.
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Figure 5. The true cardinality and the estimated cardinality before and after applying the
proposed method.

3.4. The Property Analysis and the Set of the Point Spread Function

We analyze the property of the point spread function hi
A (x) defined in Equation (6) and set the

size of T (x).
We assume that R = 5 m, B = π/180 rad, D = 1 m/s in Equation (6) and c0 = [R, B, D].

The sampling interval of the measurement space is equal to the resolution. The corresponded
range, azimuth and Doppler cell of the target x is denoted as ct (x) = [r (x) , b (x) , d (x)] and ct (x)
is not necessarily the position of a measurement cell as it is not necessarily located in the sampling
position. Find the closest cell ci0 (x) to ct (x) in the measurement space, then find the nearest k cells
around cell ci0 (x) in each dimension to construct the set C (x) where C (x) = {ci (x) : i ∈ T (x)} is the
corresponded position cell set of the index set T (x) and ci (x) = [rm, bn, dq]. C (x) is a k× k× k matrix
and falls within a certain distance from ci0 (x). A simple example to show the relations of different
cells is given in Figure 6. T (x) is the index set of C (x) and contains k3 index elements. Define the
confidence level β as

β =

∑
i∈T(x)

1U (i) hi
A (x)

∑
i∈U

1U (i) hi
A (x)

(29)

where U represents the complete index set of the measurement space and 0 ≤ β ≤ 1. When β is close
to one, we think that T (x) can replace U almost without loss.

From the result of Table 1, the cell number k of C (x) in each dimension can be set to 9 when the
simulation data is generated and T (x) contains 729 index elements; the cell number k of C (x) can
be set to 5 to reach a compromise between computational efficiency and accuracy when calculating
likelihood function and T (x) contains 125 index elements; the cell number k of C (x) can be set to 2
or 3 to reduce the impact on the other close targets when resetting the associated measurements into
noises and T (x) contains 8 or 27 index elements.
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Table 1. The confidence level β under different cell number k when ct (x) = ci0 (x) (the corresponded
range, azimuth and Doppler cell of the target x is is located in the sampling position) and ct (x) =

ci0 (x) + 0.5c0 (the corresponded range, azimuth and Doppler cell of the target x is is not located in the
sampling position with a offset 0.5c0 in each dimension).

Cell Number k β When β When ct (x) =
ct (x) = ci0 (x) ci0 (x) + 0.5c0

1 0.0635 0.0436
3 0.6882 0.5794
5 0.9728 0.9432
7 0.9992 0.9973
9 0.999991 0.999951

r

b

Figure 6. For simplicity of drawing, C (x) is a two dimensional matrix and k equals to 3. ct (x) is
the cell of the target x indicated by a orange triangle, ci0 (x) is indicated by a hollow red pentagram
in the center closest to ct (x), C (x) is the measurement cell set indicated by all pentagrams which is
the nearest 3 cells around cell ci0 (x) in each dimension and ct (x̃) is indicated by an blue dot which
approximates ct (x).

3.5. An Approximate Method for Calculating Point Spread Function

The idea for fast calculation of point spread function is approximating the ct (x) to the nearest
subdivision grid ct (x̃) and approximating H (x) to H (x̃), where H (x) = {hi

A (x) : i ∈ T (x)} and
H (x̃) =

{
hi

A (x̃) : i ∈ T (x̃)
}

. T (x) and T (x̃) are the index sets of C (x) and C (x̃), respectively.
The method is effective because the number of particles is large and the number of likelihood functions
required computation is also large.

The details of the method can be summarized as: from Figure 6, the grid of cell ci0 (x)
corresponded by the target x is divided into ten equal divided cells and then ct (x) is approximated by
the nearest divided cell ct (x̃). The point spread function H (x) of the target x is approximately equal
to H (x̃) of the target x̃. The number of H (x̃) is finite so we can calculate and store all the point spread
function H (x̃). When computing the likelihood function, we can approximate ct (x) to ct (x̃) and find
the corresponding H (x̃) through the index.

4. Simulation Results

Consider a nearly constant turn (NCT) model [8] with noisy range, azimuth and Doppler
measurements [20,25]. A target state can be denoted as xk = (xk, `k), where xk = [x̃T

k , wk]
T,
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x̃k = [px,k, ṗx,k, py,k, ṗy,k]
T denotes the planar position and velocity of the target at k and wk denotes

the turn rate. The state transition model can be denoted as

x̃k = F (wk−1) x̃k−1 + GWn,k−1 (30)

wk = wk−1 + uk−1Ts (31)

where Wn,k−1 and uk−1 denotes the state noises of the velocity and the turn rate, respectively. Wn,k−1 ∼
N(· ; 0, σ2

Wn
I2) and uk−1 ∼ N(· ; 0, σ2

u I1), where Ii denotes the i order identity matrix. The state
transition matrix and noise transition matrix can be denoted as

F (w) =


1 sin wTs

w 0 − 1−cos wTs
w

0 cos wTs 0 − sin wTs

0 1−cos wTs
w 1 sin wTs

w
0 sin wTs 0 cos wTs

 , (32)

G =

[
T2

s
2 Ts 0 0

0 0 T2
s

2 Ts

]T

. (33)

The observation region is [800, 1800] m ×[20π/180, 70π/180] rad ×[−30, 0] m/s. The received
power signal can be denoted by Equations (5) to (9). The sampling interval of the range is 5 m,
the sampling interval of the azimuth is π/180 rad and the sampling interval of the Doppler is
1 m/s. The variance of observation noise is 2σ2

wn = 2. A (x) = Āejθ can be modeled as a complex
amplitude of the Swerling 0 type [20,25] where the modulus Ā is a constant and the phase are
uniformly distributed on [0, 2π), Ā = sqrt(2σ2

wn × 10SNR/10). The measurements per frame can be
denoted as a 201× 51× 31 matrix and the measurements with a total of 40 observation frames have
been recorded. The birth distribution is an LMB RFS and each track in the birth distribution obeys a
Gaussian distribution with mean and variance shown in Table 2. The other basic simulation parameters
are also shown in Table 2. The unit of position px, py is m, the unit of velocity ṗx, ṗy is m/s and the
unit of the turn rate w is rad/s.

Table 2. Some Simulation Parameters.

Parameter Symbol Value

Signal-to-Noise Ratio SNR 7 dB
Mean of 1st birth track x1

B [1250,−10, 1000,−10, 0]T

Mean of 2st birth track x2
B [1000,−10, 1250,−10, 0]T

Mean of 3st birth track x3
B [1050,−18, 1200,−5, 0]T

Mean of 4st birth track x4
B [1250,−15, 1250,−15, 0]T

Variances of all birth tracks Q diag(15, 2, 15, 2, 2π/180)2

Range Resolution R 5 m
Azimuth Resolution B π/180 rad
Doppler Resolution D 1 m/s

Time Sampling Interval Ts 1 s

The state noise standard deviations σWn =
√

5 m/s2 and σu = π/180 rad/s2. The target survival
probability is Ps = 0.99. The number of particles is set to 1000 for each hypothesized track. We prune
hypothesized tracks with a weight threshold of PT = 10−3. Due to the nonlinearity of the observation
model, we use the SMC method to implement the filter. The performance of our S-LMB-GOM filter is
evaluated with OSPA metric [30] (c = 100 m, p = 1) and compared with G-LMB-GOM filter over 100
Monte Carlo trials. We should point out that there are many papers [20–25] based on the Bayes filter
to solve the TBD problem of radar, but the G-LMB-GOM filter [26] is the new method which adapts
to inseparable likelihood and reduces the computational complexity compared with the method in
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Reference [20]. Therefore, we choose the G-LMB-GOM filter for comparison. For our S-LMB-GOM
filter, the one-to-one correspondence method between measurements and tracks for the update and
the proposed approximate method to calculate the point spread function have been applied.

Figures 7–11 show the simulation results when SNR is 7 dB. The solid lines in Figures 7 and 8
denote the true positions of the targets. The different trajectories estimated by the S-LMB-GOM filter
are denoted by different color dots. It can be seen that there is a small delay in the initiations and
terminations of the trajectories and the estimates of each target state and the total cardinality are
generally accurate with a small incidence of false tracks in the region of the closely spaced targets.
The estimated results of the G-LMB-GOM filter are similar and are not shown.
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Figure 7. The true and estimated trajectory of a S-LMB-GOM filter.
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Figure 8. The true and estimated trajectory of S-LMB-GOM filter in x and y coordinates.
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Figure 9. The true and estimated cardinality for S-LMB-GOM filter and G-LMB-GOM filter.
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Figure 10. The OSPA distances for S-LMB-GOM filter and G-LMB-GOM filter.
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Figure 9 shows the estimated cardinality over 100 Monte Carlo trials. The estimated cardinality
mean of two filters both converge to the true cardinality. The estimated cardinality variance of the
S-LMB-GOM filter is slightly larger than that of the G-LMB-GOM filter, because the negative effect
of the separable likelihood assumption cannot be completely eliminated. The average estimated
cardinality variances of two filters are 0.28 and 0.224, respectively.

Figure 10 shows the OSPA miss distance for the two filters. The OSPA distance will increase
with target births and deaths due to the estimated delay. We also give the average OSPAs of two
filters in Table 3. The OSPA in the cardinality errors of the S-LMB-GOM filter is larger than that of the
G-LMB-GOM filter, because of the larger cardinality variance for the S-LMB-GOM filter. The OSPA in
the localization errors of the S-LMB-GOM filter is less than that of the G-LMB-GOM filter, because of
less mutual interference in state estimation for the S-LMB-GOM filter. We can obtain that the total
OSPA distance of the S-LMB-GOM filter is slightly less than that of the G-LMB-GOM filter.

Table 3. Average OSPA distances for the S-LMB-GOM filter and the G-LMB-GOM filter.

Method Localization Cardinality Total
Component (m) Component (m) OSPA (m)

S-LMB 4.1 2.95 7.05
G-LMB 4.48 2.81 7.29

Figure 11 shows the average execution time per frame. The execution time per frame for the
S-LMB-GOM filter is less than 1 s. The average time each simulation for the S-LMB-GOM filter is about
29.3 s, while the average time each simulation for the G-LMB-GOM filter is about 323 s. The execution
time from the 5th frame to 10th frame is significantly increased for the G-LMB-GOM filter because
the hypothesized tracks are relative close and the group processing cannot effectively reduce the
computation time.

Figure 12 shows the OSPA miss distance at different SNR for the S-LMB-GOM filter. It can be
seen that the OSPA distance decreases with increasing SNR.
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Figure 12. The OSPA miss distance at different SNRs for S-LMB-GOM filter.

In general, both filters can track the targets over time and can output the trajectory of each target
accurately and stably. From the OSPA miss distances in Table 3, the estimated performances of two
filters are similar, but the execution time of the S-LMB-GOM filter is 1/11 of the G-LMB-GOM
filter. Compared with the G-LMB-GOM filter, our proposed filter can greatly improve the
computational efficiency.
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Finally, we note that, the trajectories of the targets we studied turn out to be smooth curves
(cf. Figures 3, 4 and 7), for which the trajectory fitting approach [31,32] may be applied for better
results, either in the manner working by themselves independently or jointly with our proposed filter.
To avoid distracting the attention of the reader from our key contribution, we refer the reader to the
mentioned works.

5. Conclusions

We analyze the reasons of the cardinality estimate bias for the S-LMB-GOM filter when violating
the separable likelihood assumption and then propose a one-to-one correspondence method between
measurements and tracks to overcome the problem. In addition, to improve the computational
efficiency, we propose an approximate method to calculate point spread function according to its
property analysis. We design a TBD simulation with multiple closely spaced targets for radar sensor
to evaluate the performance. In comparison with the G-LMB-GOM filter, our proposed algorithm
can drastically reduce computational complexity when tracking performance is guaranteed. It should
be pointed out that our model is simplified without considering the target amplitude fluctuations in
different frames [33,34] so the processing of the real data will be the focus of our future research.
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