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Abstract: In this paper, we take into account a two-dimensional inverse scattering problem for
localizing small electromagnetic anomalies when they are surrounded by small, randomly distributed
electromagnetic scatterers. Generally, subspace migration is considered to be an improved version of
Kirchhoff migration; however, for the problem considered here, simulation results have confirmed
that Kirchhoff migration is better than subspace migration, though the reasons for this have not
been investigated theoretically. In order to explain theoretical reason, we explored that the imaging
function of Kirchhoff migration can be expressed by the size, permittivity, permeability of anomalies
and random scatterers, and the Bessel function of the first kind of order zero and one. Considered
approach is based on the fact that the far-field pattern can be represented using an asymptotic
expansion formula in the presence of such anomalies and random scatterers. We also present results
of numerical simulations to validate the discovered imaging function structures.

Keywords: Kirchhoff migration; random scatterers; multi-static response matrix; Bessel function;
numerical simulations

1. Introduction

Inverse scattering problems often involve identifying the specific characteristics (for example,
location, geometry, or material properties) of an unknown target from scattered or far-field data.
Such problems are of great practical importance in fields such as mathematics, physics, engineering,
and biomedical science. However, due to their inherent nonlinearity and ill-posedness, they
remain challenging. Related work can be found in [1–10] and references therein. Attempts to
address these types of problems have led to a search for fast and effective identification techniques,
and various approaches have been developed. Those include the MUltiple SIgnal Classification
(MUSIC) algorithm [11–15], the linear [16–21] and direct [22–26] sampling methods, and topological
derivatives [27–31]. We also refer to various non-iterative imaging techniques [32–37].

Kirchhoff and subspace migration are also well-known non-iterative techniques for finding
location/shape of unknown inhomogeneities, and they have been applied to a variety of problems
(see [38–43], for instance). Several studies have confirmed that they are fast, stable, and effective
methods for finding various kinds of defects without a priori information of unknown targets. However,
most of these researches was performed for homogeneous background media, and further research is
still needed on the imaging performance of Kirchhoff and subspace migrations when the unknown
targets are surrounded by random scatterers or embedded in an inhomogeneous medium. Notice that
for subspace migration, some studies have considered inverse scattering problems in random media
[44–47], random scatterers [48,49], and mathematical theory for detecting point-like scatterers with
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random noise [50]. However, Kirchhoff migration-based imaging in random media and related
mathematical theory has not been considered yet.

In this paper, we consider Kirchhoff migration for localizing small electromagnetic anomalies
surrounded by small random scatterers. We carefully analyze its imaging functions by discovering
a relationship with the Bessel function of the first kind of order zero and one. This enables us
to discuss its various properties and compare the imaging performance with subspace migration.
The analysis is based on the structure of the singular vectors associated with non-zero singular values
of so-called multi-static response (MSR) matrix and asymptotic expansion formula in the presence of
small electromagnetic defects [51].

This paper is organized as follows: In Section 2, we introduce the two-dimensional direct scattering
problem and asymptotic expansion formula that holds in the presence of small inhomogeneities
surrounded by random scatterers. In Section 3, we introduce the imaging function of Kirchhoff
migration and its mathematical structure by establishing a relationship with Bessel function of order
zero and one. On the basis of analyzed structure, we discuss its intrinsic properties for several cases of
anomalies and random scatterers, and compare the imaging performance with subspace migration.
In Section 4, we present some numerical simulation results to support the analytical discussion.
We apply various non-iterative techniques for imaging of several extended targets completely hidden
in an inhomogeneous medium and discuss their imaging performances in Section 5. Finally, we present
our conclusion in Section 6.

2. Two-Dimensional Direct Scattering Problems

In this section, we briefly survey two-dimensional direct scattering problems and introduce
an asymptotic expansion formula that holds true in the presence of small anomalies. For a more
detailed discussion of this topic, we recommend [51]. Let Am be anomalies with small diameters αm,
m = 1, 2, · · · , M, expressed as

Am = x(m)
ANO + αmBm,

where x(m)
ANO denotes the location of Am and the Bm are simply connected smooth domains containing

the origin. For simplicity, we let Λ be the set of all Am. Analogously, let Rs be random scatterers with
small radii σs, s = 1, 2, · · · , S, which is given by

Rs = x(s)RND + σsBs,

where x(s)RND denotes the location of Rs and Υ is the set of all Rs.
In this paper, we assume that the Am and Rs are characterized by their dielectric permittivities

and magnetic permeabilities at a given positive angular frequency ω = 2π f . For simplicity, we define
the piecewise-constant electric permittivity ε(x) and magnetic permeability µ(x) such that

ε(x) =


ε
(m)
A for x ∈ Am

ε
(s)
R for x ∈ Rs

ε0 for x ∈ R2\(Λ ∪ Υ)

and µ(x) =


µ
(m)
A for x ∈ Am

µ
(s)
R for x ∈ Rs

µ0 for x ∈ R2\(Λ ∪ Υ),

respectively. With this, we set the wavenumber k = ω
√

ε0µ0 = 2π/λ, where λ denotes the wavelength
that satisfies λ� αm and λ� σs for all m and s.

Throughout this paper, we consider plane-wave illumination. For a given fixed wavenumber k,
uinc(x, θ) = eikθ·x denotes a plane-wave incident field with propagation direction θ ∈ S1, where S1

denotes the two-dimensional unit circle. Let u(x, θ) be the time-harmonic total field that satisfies the
Helmholtz equation

∇ ·
(

1
µ(x)

∇u(x, θ)

)
+ ω2ε(x)u(x, θ) = 0
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with transmission conditions on the boundaries of Am and Rs. With this, we let uscat(x, θ) = u(x, θ)−
uinc(x, θ) be the scattered field that satisfies the Sommerfeld radiation condition

lim
|x|→∞

√
|x|
(

∂uscat(x, θ)

∂|x| − ikuscat(x, θ)

)
= 0

uniformly in all directions ϑ = x/|x| ∈ S1. The far-field pattern u∞(ϑ, θ) of the scattered field uscat(x, θ)

is defined on S1:

uscat(x, θ) =
eik|x|√
|x|

u∞(ϑ, θ) + o

(
1√
|x|

)
, |x| −→ +∞.

Based on [51], an asymptotic expansion formula of far-field pattern u∞(ϑ, θ) can be written as
follows. This formula plays a key role of the analysis of mathematical structure in the next section.

Lemma 1. For sufficiently large k, the far-field pattern u∞(ϑ, θ) can be represented as follows.

u∞(ϑ, θ) =
k2(1 + i)

4
√

kπ

{
M

∑
m=1

α2
m|Bm|

(
ε
(m)
A − ε0√

ε0µ0
− 2µ0

µ
(m)
A + µ0

ϑ · θ
)

eik(θ−ϑ)·x(m)
ANO

+
S

∑
s=1

σ2
s |Bs|

(
ε
(s)
R − ε0√

ε0µ0
− 2µ0

µ
(s)
R + µ0

ϑ · θ
)

eik(θ−ϑ)·x(s)RND

}
, (1)

where |B| denotes the area of B.

3. Structure and Properties of Kirchhoff Migration

3.1. Introduction to Kirchhoff Migration and Its Mathematical Structure

The main purpose of this problem is to identify unknown locations x(m)
ANO from measured far-field

pattern data without any a priori information of targets, e.g., permittivity, permeability, size, shape, etc.
For this, we present the Kirchhoff migration technique for a real-time identification of the anomalies
Am. For simplicity, we will ignore the term k2(1 + i)/4

√
kπ in (1). To introduce this topic, we first

consider the MSR matrix K:

K =


u∞(ϑ1, θ1) u∞(ϑ1, θ2) · · · u∞(ϑ1, θN)

u∞(ϑ2, θ1) u∞(ϑ2, θ2) · · · u∞(ϑ2, θN)
...

...
. . .

...
u∞(ϑN , θ1) u∞(ϑN , θ2) · · · u∞(ϑN , θN)

 ,

where {θn : n = 1, 2, · · · , N} and {ϑn : n = 1, 2, · · · , N} denote the set of incident and observation
directions, respectively. For the sake, we set ϑn = −θn for all n = 1, 2, · · · , N, and

θn :=
[

cos
2πn

N
, sin

2πn
N

]T
∈ S1.

Now, let us define a test vector

F(x) =
[

c1 · [1, θT
1 ]e

ikθ1·x, c2 · [1, θT
2 ]e

ikθ2·x, · · · , cN · [1, θT
N ]e

ikθN ·x
]T

∈ CN×1 (2)

and corresponding unit vector

W(x) =
F(x)
|F(x)| , (3)
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where cn ∈ R1×3\ {0}, n = 1, 2, · · · , N. With this, we can introduce the following imaging function
adopted by the Kirchhoff migration:

FKIR(x) :=
∣∣W(x)∗KW(x)

∣∣ = ∣∣∣∣∣ N

∑
n=1

τn〈W(x), Un〉〈W(x), Vn〉
∣∣∣∣∣ . (4)

Then, the map of FKIR(x) will contain peak of large magnitude at the location x ∈ Λ ∪ Υ, so that
it will be possible to identify unknown anomalies. A detailed description of Kirchhoff migration is
discussed in Appendix A.

Remark 1 (Selection of test vector). It is worth mentioning that the selection of cn of (2) is highly rely on
the shape of Am and Rs. Unfortunately, we have no a priori information on targets Am and Rs so that it is
impossible to select optimal vectors cn. Thus, with motivation from several researches [14,15,41,42], we adopt
following unit vector W(x) instead of (3) such that

W(x) =
1√
N

[
eikθ1·x, eikθ2·x, · · · , eikθN ·x

]T

∈ CN×1. (5)

The feasibility of the Kirchhoff migration can be explained based on the discussion in Appendix A.
However, sometimes it is impossible to obtain good results via the Kirchhoff migration. Furthermore,
appearance of various unexpected results via Kirchhoff migration cannot be explained. Hence, a careful
investigation of the mathematical structure of the imaging function FKIR(x) must be considered.
For this purpose, we establish the mathematical structure of imaging function. The result is following.

Theorem 1. For sufficiently large N and k, FKIR(x) can then be represented as follows:

FKIR(x) ≈ N

∣∣∣∣∣ M

∑
m=1

α2
m|Bm|

(
ε
(m)
A − ε0√

ε0µ0

)
J0(k|x

(m)
ANO − x|)2 +

S

∑
s=1

σ2
s |Bs|

(
ε
(s)
R − ε0√

ε0µ0

)
J0(k|x

(s)
RND − x|)2

−
M

∑
m=1

α2
m|Bm|

(
µ0

µ
(m)
A + µ0

)
(

x(m)
ANO − x

|x(m)
ANO − x|

· e1

)2

+

(
x(m)

ANO − x

|x(m)
ANO − x|

· e2

)2 J1(k|x
(m)
ANO − x|)2

−
S

∑
s=1

σ2
s |Bs|

(
µ0

µ
(s)
R + µ0

)
(

x(s)RND − x

|x(s)RND − x|
· e1

)2

+

(
x(s)RND − x

|x(s)RND − x|
· e2

)2 J1(k|x
(s)
RND − x|)2

∣∣∣∣∣∣ ,

(6)

where Jn denotes the Bessel function of order n of the first kind.

Proof. See Appendix B.

3.2. Various Properties of Kirchhoff Migration

Identified structure (6) allows us to examine how the locations of the anomalies Am are identified
using Kirchhoff migration. It is worth mentioning that unlike to the several researches, the applied
wave number k, i.e., angular frequency ω must be sufficiently large: for small values of k, the results in
Theorem 1 no longer hold and cannot be used to identify Am, we refer to (Figure 7, [49]) for an example
of low-frequency imaging. In the following discussion, we consider following three possible cases.
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Case 1. Assume that αm � σs, ε
(m)
A � ε

(s)
R , and µ

(m)
A � µ

(s)
R for all m and s. Then, the terms associated with

x(s)RND are dominated by the ones associated with x(m)
ANO. Thus, FKIR(x) will become

FKIR(x) ≈ N

∣∣∣∣∣ M

∑
m=1

α2
m|Bm|

(
ε
(m)
A − ε0√

ε0µ0

)
J0(k|x

(m)
ANO − x|)2

−
M

∑
m=1

α2
m|Bm|

(
µ0

µ
(m)
A + µ0

)
(

x(m)
ANO − x

|x(m)
ANO − x|

· e1

)2

+

(
x(m)

ANO − x

|x(m)
ANO − x|

· e2

)2 J1(k|x
(m)
ANO − x|)2

∣∣∣∣∣∣ .

On the basis of [49], the first M singular vectors, U1, U2, · · · , UM, will be associated with the vectors
W(x(m)

ANO), m = 1, 2, · · · , M, and remaining singular vectors will be associated with the vectors W(x(s)RND),
s = 1, 2, · · · , S. Thus, the singular vectors will satisfy

τ1 ≥ τ2 ≥ · · · ≥ τM � τM+1 ≥ τM+2 ≥ · · · ≥ τM+S ≥ · · · ≥ τN

so that it will be possible to discriminate the first M singular values. In this case, the imaging function of
subspace migration FSUB(x) becomes (see [52] for instance)

FSUB(x) =

∣∣∣∣∣ 3M

∑
n=1
〈W(x), Un〉〈W(x), Vn〉

∣∣∣∣∣
≈

∣∣∣∣∣∣
M

∑
m=1

J0(k|x
(m)
ANO − x|)2 −

( x(m)
ANO − x

|x(m)
ANO − x|

· e1

)2

+

(
x(m)

ANO − x

|x(m)
ANO − x|

· e2

)2 J1(k|x
(m)
ANO − x|)2


∣∣∣∣∣∣ .

(7)

Hence, subspace migration will provide better results to the Kirchhoff migration. However, if the wrong singular
values are selected, the subspace migration results will actually be worse than those of the Kirchhoff migration.

Case 2. Assume that αm ≥ σs, ε
(m)
A ≥ ε

(s)
R , and µ

(m)
A ≤ µ

(s)
R for all m and s. Then, even though the first M

singular vectors, U1, U2, · · · , UM will be associated with the vectors W(x(m)
ANO), m = 1, 2, · · · , M, it will still

be very hard to discriminate the first M singular values. In this case, if we select the first N0 singular vectors,
where M < N0 < N, then FSUB(x) becomes

FSUB(x) ≈

∣∣∣∣∣∣∣
M

∑
m=1

J0(k|x
(m)
ANO − x|)2 −


 x(m)

ANO − x

|x(m)
ANO − x|

· e1

2

+

 x(m)
ANO − x

|x(m)
ANO − x|

· e2

2
 J1(k|x

(m)
ANO − x|)2


+

N0−M

∑
s=1

J0(k|x
(s)
RND − x|)2 −


 x(s)RND − x

|x(s)RND − x|
· e1

2

+

 x(s)RND − x

|x(s)RND − x|
· e2

2
 J1(k|x

(s)
RND − x|)2


∣∣∣∣∣∣∣ .

This means that a map of FSUB(x) will identify not just the anomalies Am but also some random scatterers
Rs. Note that a map of FKIR(x) will identify almost all the anomalies Am and random scatterers Rs, but the
anomaly locations will show peaks of magnitude τm, m = 1, 2, · · · , M, while the scatterer locations will only
show relatively small peaks τs, s = 1, 2, · · · , N0 −M. Otherwise, if N0 < M, location of some anomalies Am,
m = N0 + 1, N0 + 2, · · · , M, cannot be identified via subspace migration. Therefore, in this case, Kirchhoff
migration will provide better results than subspace migration.

Case 3. If there are no relationships between αm and σs, ε
(m)
A and ε

(s)
R , or µ

(m)
A and µ

(s)
R for any m and s, both

Kirchhoff and subspace migrations will identify a mix of anomalies and random scatterers. Hence, the detection
performance of both subspace and Kirchhoff migration will be poor, even if we apply a sufficiently large k.
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Based on the discussion, we can conclude that the imaging performance of the subspace migration
is better than the one of the Kirchhoff migration if the background is homogeneous and discrimination
of nonzero singular values of MSR matrix is clear, i.e., for the imaging of small inhomogeneities (see
Figure 2, [14]) for the distribution of singular values corresponding to the target shape). In contrast,
the imaging performance of the Kirchhoff migration will be better than the one of the subspace
migration if the background is inhomogeneous and discrimination of nonzero singular values of MSR
matrix is vague.

4. Simulation Results

In order to validate the results derived from Theorem 1, we now present a set of simulation
results. In this section, we only consider the dielectric permittivity contrast case. For the simulation,
M = 3 small anomalies, all with the same permittivity ε

(m)
A ≡ 5, permeability µ

(m)
A = µ

(s)
R = 1,

and radius αm ≡ 0.1 were placed at the following locations: x(1)ANO = [0.25, 0]T , x(2)ANO = [−0.4, 0.5]T ,

and x(3)ANO = [−0.3,−0.7]T . In addition, S = 100 small scatterers were randomly distributed over
Ω = [−1, 1]× [−1, 1] ⊂ R2 such that

x(s)RND = [η1(−1, 1), η2(−1, 1)]T ,

where the ηp(a, b), p = 1, 2, are arbitrary real values between a and b. Figure 1 shows the distribution
of the three anomalies Am and random scatterers Rs. The data u∞(ϑ j, θl) for the MSR matrix K
was generated by solving the Foldy-Lax formulation to avoid an inverse crime (see [53] for instance).
We used a total of N = 64 incident and observation directions and wavelengths of λ = 0.7 and λ = 0.2
as low and high frequencies, respectively. After obtaining the far-field data, 20 dB Gaussian random
noise is added to the unperturbed data through the MATLAB command awgn included in the signal
processing package.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x−axis

y
−

a
x
is

Figure 1. Distribution of anomalies Am (red dots) and random scatterers Rs (blue ‘×’ symbols).

Example 1 (Case 1). In this Example, we consider the imaging results for examining Case 1. For this, we set
the permittivities and radii of the random scatterers as ε

(s)
R = η3(2, 3) and σs = η5(0.03, 0.06). Figure 2 shows

the distribution of K’s normalized singular values and maps of FSUB(x) and FKIR(x) for both wavelengths.
Note that although the 3 singular values were successfully discriminated, it is very hard to identify the anomaly
locations from the FSUB(x) map for the low applied frequency (λ = 0.7) due to the presence of huge numbers
of artifacts. Fortunately, the three anomalies could be extracted satisfactorily from the FKIR(x) map at this
frequency. At the higher frequency (λ = 0.2), selecting the first 3 singular values allows the anomaly locations
to be identified more clearly from the FSUB(x) map, supporting the discussion of Case 1. That said, the anomaly
locations can also be extracted via Kirchhoff migration at this frequency.
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Figure 2. (Example 1: Case 1) Distribution of normalized singular values, maps of FKIR(x) and FSUB(x)
for λ = 0.7 (top line) and λ = 0.2 (bottom line).

Example 2 (Case 2). In this Example, we consider the imaging results for Case 2. For this, we set the
permittivities and radii of the random scatterers as ε

(s)
R = η6(3.5, 4.5) and σs = η8(0.05, 0.1). Based on the

Figure 3, it is far from clear that the first 3 singular values can be identified as the non-zero values of K so the
exact threshold of the non-zero singular values cannot be determined. Hence, the FSUB(x) imaging results are
poor at the lower frequency. Although there are some artifacts in the FKIR(x) map, all the anomaly locations can
be accurately identified. In contrast, at the higher frequency, the FSUB(x) map allows all the anomaly locations
to be retrieved very accurately although one random scatterer, located at [−0.58,−0.42]T , is also identified.
The permittivity and radius of this random scatterer were 2.5596 and 0.0998, respectively. This scatterer’s
location was also identified by the FKIR(x) map, but its magnitude was small enough that the anomaly locations
could still be accurately identified via Kirchhoff migration.

Example 3 (Selection of nonzero singular values: Cases 1 and 2). Figure 4 exhibits maps of FSUB(x) with
various selection of nonzero singular values N0. By regarding the distribution of normalized singular values of K
in Figure 3d, the number N0 are chosen as 3, 4, and 15 for evaluating FSUB(x). Notice that if one selects N0 = 3,
which is the same number of anomalies Am, it is possible to obtain a good result. Furthermore, by comparing with
the Figure 3e, this result is better than the one via the map of FKIR(x) so that subspace migration will provide
better results to the Kirchhoff migration when appropriate number of singular values are chosen. In contrast,
if N0 = 4 is chosen, Kirchhoff migration provides better results than subspace migration because the location
of one random scatterer, located at [−0.58,−0.42]T , is retrieved clearly in the map of FSUB(x). If one selects
N0 = 15, similar to the Figure 3e, the map of FSUB(x) provides locations of anomalies, single random scatterer,
and unexpected artifacts. This result supports the discussions in Cases 1 and 2.

Example 4 (Case 3). In this Example, we consider the imaging results for Case 3. For this, we set the
permittivities and radii of the random scatterers as ε

(s)
R = η9(4, 5), ε

(s)
R = η10(4, 5), and σs = η11(0.07, 0.14),

respectively. In this case, there was no relationship between αm and σs, ε
(m)
A and ε

(s)
R , or µ

(m)
A and µ

(s)
R for any

m and s, so it was impossible to distinguish locations of the anomalies and random scatterers accurately via
subspace or Kirchhoff migration at either the low or high frequency, as shown in the Figure 5.
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Figure 3. (Example 2: Case 2) Distribution of normalized singular values, maps of FKIR(x) and FSUB(x)
for λ = 0.7 (top line) and λ = 0.2 (bottom line).
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Figure 5. (Example 4: Case 3) Distribution of normalized singular values, maps of FKIR(x) and FSUB(x)
for λ = 0.7 (top line) and λ = 0.2 (bottom line).

5. Further Result: Imaging of Extended Dielectric Targets in an Inhomogeneous Medium

To examine the effectiveness of Kirchhoff migration, additional numerical simulation about the
imaging of extended targets completely embedded in an inhomogeneous medium were performed.
Following the test configuration in [54], we consider only the permittivity contrast case and set the
inhomogeneous domain Ω to be a unit circle with a permittivity of ε0 = η(0.5, 1.5). For the sake,
we set the value of permeability µ(x) = µ0 ≡ 1 for x ∈ Ω. We assumed the existence of four extended
inhomogeneities Am ⊂ Ω with smooth boundaries ∂Am satisfying ∂Am ∩ ∂Ω = ∅ and permittivities
εm, m = 1, 2, 3, 4. The shapes of Am are shown in the Figure 6, and their boundaries are expressed as

∂A1 =
{
[s, t] : 11.11(s− 0.3)2 + 25(t− 0.5)2 = 1

}
, ε1 = 2.5

∂A2 =
{
[s, t] : 53.1250(s− 0.5)2 − 93.75(s− 0.5)(t + 0.4) + 53.1250(t + 0.4)2 = 1

}
, ε2 = 3

∂A3 =
{
[s, t] : 76.5625(s + 0.6)2 + 81.1898(s + 0.6)t + 29.6875t2 = 1

}
, ε3 = 2

∂A4 =
{
[s, t] : s2 + t2 = 0.01

}
, ε4 = 0.01.

With this configuration, we denote the time-harmonic total field as u(n)(x), which satisfies the
following boundary value problem

∆u(n)(x) + ω2ε(x)u(n)(x) = 0 in Ω
∂u(n)(x)

∂ν(x)
=

∂eikθn ·x

∂ν(x)
on ∂Ω

(8)

and with transmission condition on the boundary ∂Am, m = 1, 2, 3, 4. Here, ν(x) is the unit normal to
∂Ω at x, and θn, n = 1, 2, · · · , N(= 128) denotes a two-dimensional vector on the ∂Ω, such that

θn =

[
cos

2πn
N

, sin
2πn

N

]T
.

Similarly, u(n)
0 (x) = eikθn ·x denotes the solution of (8) without anomalies and constant ε0 ≡ 1.
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Based on [12,51], u(n)(x)− u(n)
0 (x) can be represented as

u(n)(x)− u(n)
0 (x) =

4

∑
m=1

∫
∂Am
N (x, y)φ(n)(y)dy + E(ε0), (9)

where φ(n)(y) is an unknown density function, E(ε0) denotes an error term that is highly depending
on the value of ε0, and N (x, y) satisfies ∆N (x, y) + k2N (x, y) = −δ(x, y) in Ω

∂N (x, y)
∂ν(y)

= 0 on ∂Ω.

Here, δ denotes the dirac delta function. On the basis of (9), we cannot use the boundary
measurement data u(n)(x)− u(n)

0 (x) directly to design the Kirchhoff and subspace migrations. So,
motivated by [12], we consider the following normalized boundary measurement data Bmeas(n, n′)

Bmeas(n, n′) :=
∫

∂Ω

(
u(n)(x)− u(n)

0 (x)
) ∂v(n

′)(x)
∂ν(x)

dS(x) =
4

∑
m=1

∫
∂Am

e−ikθn′ ·yφ(n)(y)dy + E(ε0), (10)

where v(n
′)(x) = e−ikθn′ ·x.

Now, let us consider the following MSR matrix

K =


Bmeas(1, 1) Bmeas(1, 2) · · · Bmeas(1, N)

Bmeas(2, 1) Bmeas(2, 2) · · · Bmeas(2, N)
...

...
. . .

...
Bmeas(N, 1) Bmeas(N, 2) · · · Bmeas(N, N)

 .

Then, K can be decomposed as (see [14] for instance)

K ≈
4

∑
m=1

∫
∂Am

E(y)D(y)dy,

where E(y) and D(y) denote the illumination and resulting density vectors

E(y) =
[

e−ikθ1·y, e−ikθ2·y, · · · , e−ikθN ·y
]T

and D(y) =
[

φ(1)(y), φ(2)(y), · · · , φ(N)(y)
]

, (11)

respectively.
Based on [14], it should be noted that the range of K is determined by the span of the E(y)

corresponding to Am. This means that the signal subspace can be determined by selecting the singular
vectors associated with the nonzero singular values of K. Thus, by taking the test vector W(x) of (5) as

W(x) =
1√
N

[
e−ikθ1·x, e−ikθ2·x, · · · , e−ikθN ·x

]T

,

imaging functions FKIR(x) and FSUB(x) can be defined similarly with (4) and (7), respectively.

Example 5 (Imaging performances of Kirchhoff and subspace migrations). Figure 6 shows the imaging
results via FKIR(x) and FSUB(x) when λ = 0.3. We also mention that 20dB Gaussian random noise is added to
the unperturbed data Bmeas(n, n′), n, n′ = 1, 2, · · · , N. For performing subspace migration, first 15 singular
values are selected. In contrast to the traditional results, it is very hard to identify the outline shapes of every
inhomogeneity via FSUB(x) while it is possible to identify the outline shape of every inhomogeneity. Although
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the size and permittivity of A4 were both very small, the existence of A4 was successfully recognized. On the
basis of simulation results, we conclude that the result via Kirchhoff migration is better than the one via subspace
migration for addressing problems of this type.

Example 6 (Influence of total number of incident fields). Based on the condition in Theorem 1, let us
examine the effect of total number N of incident fields. Figure 7 exhibits the maps of FKIR(x) and FSUB(x) for
N = 32 and 64. Similar to the traditional researches, it appears that small value of N might be a reason of poor
result while large value of N will guarantee good imaging performance of Kirchhoff migration. Unfortunately,
it is impossible to identify outline shape of all Am through the subspace migration with small and large N.

Example 7 (Comparison of imaging performances). For the final example, let us apply various non-iterative
techniques such as MUSIC, direct sampling method, and factorization method for imaging extended targets
and compare the imaging performances. In Figure 8, imaging results via subspace migration (map of FSUB(x)),
MUSIC (map of FMUSIC(x)), direct sampling method (map of FDSM(x)), and factorization method (map of
FFM(x)) are exhibited with the same simulation configuration of Figure 6.

First, let us compare the imaging results via subspace migration and MUSIC algorithm with different
selection of nonzero singular values. For this, different from the Figure 6e, N0 = 10 and N0 = 37
nonzero singular values are selected to define FSUB(x). However, for any selection of N0, an outline shape of
inhomogeneities Am cannot be retrieved. Thus, we can examine that the result via Kirchhoff migration is better
than the one via subspace migration and MUSIC for imaging of arbitrary shaped inhomogeneities embedded in
a random medium.

Next, let us consider the imaging result via direct sampling method with a fixed incident direction θ1.
Based on the Figure 8c, we can easily examine that the result via direct sampling method is poorer than the one
via Kirchhoff migration. Notice that Kirchhoff migration and direct sampling method are identical when the
number of incident fields becomes sufficiently large (see Section 5, [24]) so that total number of incident fields
must be large enough to obtain a good result via direct sampling method.

Figure 8c shows the imaging result via factorization method. It is interesting to observe that similar to
the imaging result via Kirchhoff migration, the outline shapes of inhomogeneities are also successfully retrieved.
Hence, factorization method can be regarded as an appropriate imaging technique in random medium.
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Figure 6. (Example 5) Imaging results for extended targets embedded in an inhomogeneous medium.
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Figure 7. (Example 6) Distribution of normalized singular values, maps of FKIR(x) and FSUB(x) for
λ = 0.3 with N = 32 directions (top line) and N = 64 directions (bottom line).
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Figure 8. (Example 7) Imaging results via the subspace migration, MUSIC, direct sampling method,
and factorization method for λ = 0.3 with N = 128.

6. Conclusions

In this paper, we have considered Kirchhoff migration techniques for locating small anomalies
when they are surrounded by small random scatterers. In order to investigate the mathematical
structure of imaging function and examine the imaging performance, we carefully established a
relationship with Bessel functions of the first kind of order zero and one based on the asymptotic
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expansion formula in the presence of anomalies and random scatterers. Based on the established
relationship, we showed that Kirchhoff migration can be regarded as an effective non-iterative
technique for identifying the locations of small anomalies when the sizes and permittivities of the
random scatterers are smaller than those of the anomalies and the applied frequency is high enough.
However, when one of these conditions is not satisfied, the imaging results are somehow poor but
Kirchhoff migration yields better results than various non-iterative techniques such as subspace
migration, MUSIC, direct sampling method, etc. We have also presented simulation results for
several different cases to validate these relationships and observed properties. Although we have
discovered various properties of Kirchhoff migration, some phenomenon cannot yet be explained.
Further development of mathematical theory for explaining such phenomenon will be a remarkable
research topic. Here, we considered the two-dimensional problem, the analysis could be extended to
the three-dimensional problem.
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Appendix A. Basic Idea of Kirchhoff Migration

Here, a detailed description of Kirchhoff migration is discussed. For this, let us recall the MSR
matrix K:

K =


u∞(ϑ1, θ1) u∞(ϑ1, θ2) · · · u∞(ϑ1, θN)

u∞(ϑ2, θ1) u∞(ϑ2, θ2) · · · u∞(ϑ2, θN)
...

...
. . .

...
u∞(ϑN , θ1) u∞(ϑN , θ2) · · · u∞(ϑN , θN)

 .

Then, since each element u∞(ϑ j, θl) of K is

u∞(ϑ j, θl) =
M

∑
m=1

α2
m|Bm|

(
ε
(m)
A − ε0√

ε0µ0
+

2µ0

µ
(m)
A + µ0

θj · θl

)
eik(θj+θl)·x

(m)
ANO

+
S

∑
s=1

σ2
s |Bs|

(
ε
(s)
R − ε0√

ε0µ0
+

2µ0

µ
(s)
R + µ0

θj · θl

)
eik(θj+θl)·x

(s)
RND ,
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K can be represented as

K = N
M

∑
m=1

α2
m|Bm|E(x(m)

ANO)



ε
(m)
A − ε0√

ε0µ0
0 0

0
2µ0

µ
(m)
A + µ0

0

0 0
2µ0

µ
(m)
A + µ0


E(x(m)

ANO)
T

+ N
S

∑
s=1

σ2
s |Bs|E(x(s)RND)



ε
(s)
R − ε0√

ε0µ0
0 0

0
2µ0

µ
(s)
R + µ0

0

0 0
2µ0

µ
(s)
R + µ0


E(x(s)RND)

T , (A1)

where

E(x) :=
1√
N


eikθ1·x (θ1 · e1)eikθ1·x (θ1 · e2)eikθ1·x

eikθ2·x (θ2 · e1)eikθ2·x (θ2 · e2)eikθ2·x

...
...

...
eikθN ·x (θN · e1)eikθN ·x (θN · e2)eikθN ·x

 ∈ CN×3 (A2)

with e1 = [1, 0]T and e2 = [0, 1]T . Based on this representation, we can introduce the basic concept of
Kirchhoff migration as follows. The singular value decomposition (SVD) of K can be represented as

K = UDV∗ =
N

∑
n=1

τnUnV∗n ≈
N0

∑
n=1

τnUnV∗n, (A3)

where the superscript ∗ represents the Hermitian operator, Un and Vn are the left- and right-singular
vectors of K, respectively, and τn denotes singular value of K such that

τ1 ≥ τ2 ≥ · · · ≥ τN0 > 0 and τn ≈ ρ ≈ 0 for n > N0.

Note that on the basis of (A1), the value of τn is significantly depending on the size, shape,
permittivity, and permeability of Am and Rs. Then, by comparing (A1)–(A3), orthonormal property of
the singular vectors, and relationship [38], we can observe that for some yn ∈ Λ ∪ Υ,

Un ≈ eiγ(1)
n W(yn), Vn ≈ e−iγ(2)

n W(yn), and γ
(1)
n + γ

(2)
n = arg(τn),

〈W(x), Un〉 ≈ 1 and 〈W(x), Vn〉 ≈ 1 if x ∈ Λ ∪ Υ,

〈W(x), Un〉 ≈ 0 and 〈W(x), Vn〉 ≈ 0 if x ∈ R2\(Λ ∪ Υ),

(A4)

where 〈U, V〉 = U ·V. With this, we can introduce the following imaging function adopted by the
Kirchhoff migration:

FKIR(x) :=
∣∣W(x)∗KW(x)

∣∣ = ∣∣∣∣∣ N

∑
n=1

τn〈W(x), Un〉〈W(x), Vn〉
∣∣∣∣∣ .

Following (A4) we can easily observe that the map of FKIR(x) will contain peak of magnitude τn

at the location x ∈ Λ ∪ Υ.
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Appendix B. Derivation of Theorem 1

In order to explore the mathematical structure of of FKIR(x), we recall a useful relation derived
in [41].

Lemma A1. For sufficiently large N, x ∈ R2, θn, θ, ξ ∈ S1, the following results hold.

1
N

N

∑
n=1

eikθn ·x ≈ 1
2π

∫
S1

eikθ·xdθ = J0(k|x|)

1
N

N

∑
n=1

(θn · ξ)eikθn ·x ≈ 1
2π

∫
S1
(θ · ξ)eikθ·xdθ = i

(
x
|x| · ξ

)
J1(k|x|).

Since N is sufficiently large, applying Lemma A1 yields

W(x)∗E(x(m)
ANO) =

1
N


e−ikθ1·x

e−ikθ2·x

...
e−ikθN ·x


T


eikθ1·x
(m)
ANO (θ1 · e1)eikθ1·x

(m)
ANO (θ1 · e2)eikθ1·x

(m)
ANO

eikθ2·x
(m)
ANO (θ2 · e1)eikθ2·x

(m)
ANO (θ2 · e2)eikθ2·x

(m)
ANO

...
...

...

eikθN ·x
(m)
ANO (θN · e1)eikθN ·x

(m)
ANO (θN · e2)eikθN ·x

(m)
ANO



=



1
N

N

∑
n=1

eikθ1·(x
(m)
ANO−x)

1
N

N

∑
n=1

(θ1 · e1)eikθ1·(x
(m)
ANO−x)

1
N

N

∑
n=1

(θ1 · e2)eikθ1·(x
(m)
ANO−x)



T

≈



J0(k|x
(m)
ANO − x|)

i

(
x(m)

ANO − x

|x(m)
ANO − x|

· e1

)
J1(k|x

(m)
ANO − x|)

i

(
x(m)

ANO − x

|x(m)
ANO − x|

· e2

)
J1(k|x

(m)
ANO − x|)



T

,

we can obtain

W(x)∗E(x(m)
ANO)



ε
(m)
A − ε0√

ε0µ0
0 0

0
µ0

µ
(m)
A + µ0

0

0 0
µ0

µ
(m)
A + µ0


≈



(
ε
(m)
A − ε0√

ε0µ0

)
J0(k|x(m)

ANO − x|)

i

(
µ0

µ
(m)
A + µ0

)(
x(m)

ANO − x

|x(m)
ANO − x|

· e1

)
J1(k|x

(m)
ANO − x|)

i

(
µ0

µ
(m)
A + µ0

)(
x(m)

ANO − x

|x(m)
ANO − x|

· e2

)
J1(k|x

(m)
ANO − x|)



T

.

So, we arrive

W(x)∗E(x(m)
ANO)



ε
(m)
A − ε0√

ε0µ0
0 0

0
µ0

µ
(m)
A + µ0

0

0 0
µ0

µ
(m)
A + µ0


E(x(m)

ANO)
TW(x)

≈



(
ε
(m)
A − ε0√

ε0µ0

)
J0(k|x(m)

ANO − x|)

i

(
µ0

µ
(m)
A + µ0

)(
x(m)

ANO − x

|x(m)
ANO − x|

· e1

)
J1(k|x

(m)
ANO − x|)

i

(
µ0

µ
(m)
A + µ0

)(
x(m)

ANO − x

|x(m)
ANO − x|

· e2

)
J1(k|x

(m)
ANO − x|)



T 

J0(k|x(m)
ANO − x|)

i

(
x(m)

ANO − x

|x(m)
ANO − x|

· e1

)
J1(k|x

(m)
ANO − x|)

i

(
x(m)

ANO − x

|x(m)
ANO − x|

· e2

)
J1(k|x

(m)
ANO − x|)



=

(
ε
(m)
A − ε0√

ε0µ0

)
J0(k|x(m)

ANO − x|)2 −
(

µ0

µ
(m)
A + µ0

)
(

x(m)
ANO − x

|x(m)
ANO − x|

· e1

)2

+

(
x(m)

ANO − x

|x(m)
ANO − x|

· e2

)2
 J1(k|x

(m)
ANO − x|)2.

(A5)
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Similarly, we can get

W(x)∗E(x(s)RND)



ε
(s)
R − ε0√

ε0µ0
0 0

0
µ0

µ
(s)
R + µ0

0

0 0
µ0

µ
(s)
R + µ0


E(x(s)RND)

TW(x)

≈
(

ε
(s)
R − ε0√

ε0µ0

)
J0(k|x

(s)
RND − x|)2 −

(
µ0

µ
(s)
R + µ0

)
(

x(s)RND − x

|x(s)RND − x|
· e1

)2

+

(
x(s)RND − x

|x(s)RND − x|
· e2

)2 J1(k|x
(s)
RND − x|)2.

(A6)

Finally, applying (A5) and (A6) to (A1),

W(x)∗KW(x) ≈N
M

∑
m=1

α2
m|Bm|

(
ε
(m)
A − ε0√

ε0µ0

)
J0(k|x

(m)
ANO − x|)2 + N

S

∑
s=1

σ2
s |Bs|

(
ε
(s)
R − ε0√

ε0µ0

)
J0(k|x

(s)
RND − x|)2

−N
M

∑
m=1

α2
m|Bm|

(
µ0

µ
(m)
A + µ0

)
 x(m)

ANO − x

|x(m)
ANO − x|

· e1

2

+

 x(m)
ANO − x

|x(m)
ANO − x|

· e2

2
 J1(k|x

(m)
ANO − x|)2

−N
S

∑
s=1

σ2
s |Bs|

(
µ0

µ
(s)
R + µ0

)
 x(s)RND − x

|x(s)RND − x|
· e1

2

+

 x(s)RND − x

|x(s)RND − x|
· e2

2
 J1(k|x

(s)
RND − x|)2.

By taking the absolute value, we obtain the result (6).
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